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ABSTRACT 
In this paper, we present Human-Aided Computing, an ap-
proach that uses an electroencephalograph (EEG) device to 
measure the presence and outcomes of implicit cognitive 
processing, processing that users perform automatically and 
may not even be aware of. We describe a classification sys-
tem and present results from two experiments as proof-of-
concept. Results from the first experiment showed that our 
system could classify whether a user was looking at an im-
age of a face or not, even when the user was not explicitly 
trying to make this determination. Results from the second 
experiment extended this to animals and inanimate object 
categories as well, suggesting generality beyond face rec-
ognition. We further show that we can improve classifica-
tion accuracies if we show images multiple times, poten-
tially to multiple people, attaining well above 90% 
classification accuracies with even just ten presentations. 

Author Keywords: Brain-Computer Interface (BCI), hu-
man cognition, implicit processing, visual attention, image 
classification, Electroencephalography (EEG). 

ACM Classification Keywords: H.1.2 [User/Machine Sys-
tems]; H.5.2 [User Interfaces]: Input devices and strategies; 
B.4.2 [Input/Output Devices]: Channels and controllers; J.3 
[Life and Medical Sciences]. 

INTRODUCTION 
Distributed computing, which divides complex computing 
tasks and performs them using processing cycles on multi-
ple computers, has captured the imagination of researchers 
(eg. [10]). Some of these researchers have set out to design 
systems that distribute their tasks onto computers with un-
used processing cycles. For example, SETI@home 
(setiathome.berkeley.edu) makes use of available process-
ing cycles to analyze radio-telescope data in search of intel-
ligent extraterrestrial signals [2], without impacting the user 
and their tasks. Similarly, Folding@home (fold-
ing.stanford.edu) focuses on simulations of protein folding 

to find cures for diseases [17], World Community Grid 
(www.worldcommunitygrid.org) aims to create the world’s 
largest public computing grid, and distributed.net focuses 
on using these cycles to break cryptographic ciphers. 

We believe that there exists a parallel opportunity for utiliz-
ing processing cycles in human brains. In his work on Hu-
man Computation, von Ahn has built systems that motivate 
people to perform decision making tasks, mostly within 
game environments [24]. With clever design, he is able to 
redirect these conscious human decisions to perform secon-
dary tasks such as labeling images, which would otherwise 
be tedious for humans and difficult for computers [25]. 
Amazon.com’s Mechanical Turk system operates on a simi-
lar principle, except that users are rewarded for their work 
with small monetary payments [1]. 

While current work in Human Computation requires con-
scious attention and explicit intent to perform the specific 
task, we assert that there is a set of tasks that can be use-
fully performed by humans even when they are not explic-
itly trying to perform them. We recognize that the human 
brain implicitly processes a large amount of environmental 
information [23]. For example, the brain constantly per-
forms recognition of objects in the environment. In fact, it 
has been asserted that humans cannot help but process some 
of these tasks, even when they are actively trying not to. 
Furthermore, they may not always be aware of the result. 
Recent advances in neuroscience and brain sensing tech-
nologies provide us with the unprecedented ability to inter-
face directly with activity in the brain and measure some of 

Figure 1: Artist’s depiction of multiple people  
connected to electroencephalograph devices,  

implicitly classifying images they see. 
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the presence and output of this implicit processing. We be-
lieve these results can complement existing computational 
methods such as using machine learning techniques to per-
form image classification (e.g. [19]). 

The contributions of this paper are threefold. First we intro-
duce the novel concept we call Human-Aided Computing, 
which proposes using brain sensing technologies to extract 
results from the implicit processing that the human brain 
already performs. We envision that using multiple people to 
redundantly process information, just as distributed com-
puting technologies use multiple machines, would make the 
process more robust to individual differences and for com-
plex tasks. See Figure 1 for an artist’s depiction of this idea. 

Second, we provide background on electroencephalograph 
(EEG) technology, and review work relevant to Human-
Aided Computing. We hope this will lower the barriers to 
entry for researchers with classical human-computer inter-
action training, and that these first two contributions will 
spur interest and inspire creativity within the community.  

Third, we present a classification system and results from 
two experiments that serve as initial proof-of-concept for 
these ideas. In the first experiment, we show that we can 
use EEG technology to reliably sense when a user has seen 
a face or not in a picture that they are trying to memorize. 
In the second experiment, we extend this result to more 
categories than just faces, suggesting generality in the ap-
proach. We also demonstrate improved classification accu-
racies if we present images multiple times. In fact, we attain 
well above 90% classification accuracies with even just ten 
presentations to single users or distributed to multiple users.  

BACKGROUND 

Implicit vs. Explicit Processing 
The literature dealing with the distinction between implicit 
and explicit processing is not only extensive and complex, 
but is also fraught with divergent hypotheses and theories. 
However, there does seem to be consensus that awareness 
of a stimulus is preceded by subconscious, or implicit, in-
formation processing. The physical features of verbal or 
visual stimuli, for example, are thought to be implicitly 
analyzed within the first 250ms or so or presentation [21].  

While the implicit processing system seems to be able to 
simultaneously analyze the physical properties of multiple 
stimuli, Broadbent provides evidence showing that the 
channel used for explicit analysis of meaning has limited 
parallel processing capacity [3]. He asserts that this causes a 
“bottleneck” in the human information processing system. 
Consequently, only some of the implicitly processed infor-
mation can be selected for explicit processing. Recent ad-
vances in brain sensing technologies and processing tech-
niques allow us to extract some of the outcomes of these 
implicit processing activities. 

Attentive vs. Explicit Processing 
Many psychologists have traditionally assumed that implicit 
and pre-attentive processing are identical, and so are ex-
plicit and focal-attentive processing (e.g. [19]). However, 
recent work has shown that it is possible to manipulate the 
two factors independently. For example Koch and Tsuchiya 
review the growing body of evidence showing that visual 
processing can occur in the absence of conscious perception 
[16]. Conversely, people can make certain visual judgments 
about objects in the attentional periphery.  

In our work, we carefully consider the cross between these 
two factors. While there has been quite a bit of work done 
in using brain sensing technologies to measure focal-
attentive explicit processing (e.g. [7, 9]), much less has 
been done to explore the implicit and pre-attentive compo-
nents of cognition. The work reported in this paper repre-
sents a move towards focal-attentive implicit processing, 
that is, the user is paying specific attention to the stimuli, 
but they are not explicitly trying to perform the task we care 
about and measure.  

Electroencephalography (EEG) Primer 
In this paper, we use an Electroencephalograph, a sensing 
technology that uses electrodes placed on the scalp to 
measure electrical potentials related to brain activity (see 
Figure 1). Each electrode consists of a wire leading to a 
conductive disk that is electrically connected to the scalp 
using conductive paste or gel. The EEG device records the 
voltage at each of these electrodes relative to a reference 
point (often another electrode on the scalp). Electrode 
placements on the scalp are typically defined by the Inter-
national 10-20 electrode placement standard [14]. Because 
EEG is a non-invasive, passive measuring device, it is safe 
for extended and repeated use, a characteristic crucial for 
adoption in HCI research. Additionally, EEG does not re-
quire a highly skilled operator or medical procedure to use. 
Recently, Lee and Tan have shown that even low-cost ver-
sions of such devices can be used for task classification in 
HCI research [18]. For more information about electrical 
signals generated by the brain as well as EEG see [6]. 

The signal provided by an EEG is, at best, a crude represen-
tation of brain activity due to the nature of the detector. 
Scalp electrodes are only sensitive to macroscopic coordi-
nated firing of large groups of neurons near the surface of 
the brain, and then only when they are directed along a vec-
tor perpendicular to the scalp. Additionally, because of the 
fluid, bone, and skin that separate the electrodes from the 
actual electrical activity, the already small signals are scat-
tered and attenuated before reaching the electrodes. One 
way to analyze EEG data is to look at the spectral power of 
the signal in a set of frequency bands, which have been 
observed to correspond with certain types of neural activity 
[6]. These frequency bands are commonly defined as 1-4 
Hz (delta), 4-8 Hz (theta), 8-12 Hz (alpha), 12-20 Hz (beta-
low), 20-30 Hz (beta-high), and >30 Hz (gamma). 



 

 

Another way the EEG signal can be analyzed is by inspect-
ing the Event-related Potential (ERP), the spatiotemporal 
pattern of EEG displayed in response to discrete visual or 
auditory stimuli. The idea is that different kinds of discrete 
stimuli evoke distinct, characteristic ERPs, which can be 
detected in the shape of the raw data.  

Since EEG is a noisy signal, researchers typically average 
ERP brain responses across a large number of stimulus 
presentations and users, resulting in a grand average ERP. 
These grand average responses can be compared across 
different stimulus classes in order to make statistical state-
ments about the signals. We show an example of an average 
ERP response to images containing faces in a later section. 
Unfortunately, showing that a signal is statistically different 
from another does not trivially allow one to conclude if we 
can classify such signals, especially when we only have a 
small amount of data available to us. In our work, we aim to 
explore whether we can classify such signals for the domain 
of tasks in which we are interested. 

Using EEG and ERPs to Measure Cognitive Processing 
ERPs are often used as a tool for exploring the mechanisms 
and timings of processing in the brain. For example, John-
son and Olshausen argue that the temporal features of the 
ERP in an image categorization task show two distinct 
phases [15]. The early features, which show up between 
100 and 220 ms after presentation of the stimulus in the 
response, are associated with visual processing of stimuli, 
whereas the late features, which show up 350 to 550 ms 
later, are indicative of post-sensory processing. Post sen-
sory processing refers to the phase in which the user makes 
a conscious decision about the perceived stimulus. The 
study considered two different scenarios. In the first, users 
were shown a category word (e.g., “face”, “animal”, etc.) 
and an image, in that order, and asked to decide if the two 
stimuli represented the same category. In the second, im-
ages were shown before the accompanying category word. 
For both scenarios, the grand average ERPs for the second 
stimulus was compared between cases when the stimulus 
pairs matched and cases where they did not. They found 
that the match vs. non-match differences for both images 
and words were similar in the post-sensory range, indicat-
ing that the difference must be the outcome of the decision 
process in the categorization task.  

Other work [4, 9, 13] has shown that different classes of 
stimuli (for example, faces, cars, animals, mushrooms, 
chairs, etc.) evoke spatially and temporally different re-
sponses. This is true especially of faces, which are possibly 
the most well-studied class of visual stimuli in the neuro-
science community. Faces have received particular atten-
tion not only because they are an ecologically important 
class of stimuli for humans, but also because behavioral and 
brain-sensing data indicate that faces may be processed in a 
manner different from other stimuli.  

Numerous functional Magnetic Resonance Imaging (fMRI) 
studies show characteristic activation of certain regions of 

the brain, popularly known as the fusiform face area (this is 
summarized, e.g, in [9]). In terms of EEG, there is signifi-
cant evidence that a feature of the ERP response is highly 
sensitive to faces [22]. This feature is referred to as the 
N170, named for the negative peak in the raw data seen 
about 170 ms following stimulus presentation. In particular, 
manipulation of stimuli that show behavioral differences in 
face recognition also modulate the N170 feature. Because 
of how well documented this is, we use this as our starting 
point and grow our work from there. 

Various researchers have shown this even when categoriza-
tion was not an explicit requirement of the task (e.g. [13]). 
Unfortunately, most of this work shows statistical differ-
ences in grand averages of large amounts of data, and do 
not show that the signal is at all classifiable, which is a nec-
essary component for real-world use of such a system. 

Single Trial ERP Classification 
From the perspective of psychology and neuroscience, sta-
tistical differences in grand averages are useful tools in in-
forming our understanding of the brain. However, to extract 
useful information about a particular stimulus, we need the 
ability to classify single-trial event-related responses as 
belonging to one of a small set of classes. Ideally, we need 
to be able to do this with a small number of trials and in as 
little time as possible (i.e. without excessive repeated pres-
entation or large amounts of processing time). 

There is quite a bit of work on classifying single-trial ERPs. 
For example, the brain-computer interface community has 
extensively used a single-trial P300 recognition response as 
a direct communication scheme. The P300 is named for the 
consistent positive peak seen in the ERP approximately 
300ms following the presentation of a sought-after stimu-
lus. By locating the stimuli that elicit the P300 response, 
one can decode the stimuli to which the user is attending. 
This forms the basis of several brain-operated communica-
tion schemes (e.g. a keyboard built on this principle [5]). 

Gerson et al. propose cortically-coupled computer vision 
[7], which exploits the explicit P300 response to speed up 
human labeling of images. The authors combine sophisti-
cated detection algorithms and a rapid serial presentation 
scenario to label images at a rate that is significantly faster 
than manual labeling of images. This work, along with the 
brain-computer interface work described previously, re-
quires explicit user cooperation and awareness of the task at 
hand (e.g., categorizing images as target/non-target). In our 
work, we explore whether the ERP features that encode 
object category can be used to label images on a single-trial 
basis, without explicitly requiring users to consciously 
categorize the images. 

OBJECT CLASSIFICATON SYSTEM 
Given our experiences with pilot experiments, we built a 
prototype system in MATLAB that can classify the cate-
gory of the image at which the user is looking. This system 
takes as input a stream of EEG data, measured while the 



 

 

user is viewing images. It does not actually assume a fixed 
number of EEG channels. In our experiments we used the 
following channel set: T7, T8, P3, PZ, P4, P7, P8, PO3, 
PO4, O1, Oz, O2. See Figure 2 for a map of the EEG chan-
nels and their locations on the user’s head. 

In order to process this data, we first downsample the data 
from each channel to 100 Hz in order to reduce the raw 
amount of data. This 100 Hz signal is more than sufficient 
for our analysis since we then bandpass it to only retain the 
frequency band in which most useful EEG information is 
thought to reside, between 0.15 and 30 Hz. We do this us-
ing Finite Impulse Response (FIR) filters because they are 
inherently stable and computationally efficient.  

Figure 3 shows an example of the response in one of our 
users with face and non-face stimuli. The response for face 

images, a strong N170 face-specific response is seen in the 
left image, data measured after a user has seen a face, but 
not in the right, in which they see non-faces. This is the 
purple line that protrudes out the bottom of the series at 
about 170 ms after stimulus presentation. 

In order to exploit this response and others like it, the sys-
tem uses a time window that is 100-300ms following stimu-
lus presentation from some set of EEG channels. The sys-
tem utilizes a recently developed spatial projection 
algorithm [12] designed for processing ERPs. This algo-
rithm projects the response sequences from the multiple 
channels onto three maximally discriminative time series. 
We then use Regularized Linear Discriminant Analysis 
(RLDA), a supervised machine learning method, to classify 
the resulting features into mutually exclusive and exhaus-
tive groups, namely the categories of interest [11].  

While we show in this paper that this technique works rela-
tively well, implementing and testing other machine learn-
ing techniques for such problems remains future work. 
Also, while we batch processed experimental results, the 
system is able to classify the signal in real-time once the 
model is built.  

EXPERIMENT ONE 
We conducted the first experiment to explore whether peo-
ple were implicitly processing faces when they viewed a set 
of images, and whether we could use our system to detect 
this without them being aware. We limited this initial ex-
ploration to faces so the problem would be tractable. 

Task 
The task that users explicitly performed was simple. They 
viewed a series of images on the display and tried to memo-
rize them. Each experimental block contained sequences of 

Figure 2: Layout of the channels according to the in-
ternationally accepted 10-20 system of EEG electrode 

placement. 
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50 images. At the end of each block, users saw six more 
images one at a time and had to decide if they had seen the 
image in that block. Three of these images were taken from 
the set the user had seen within that block and three were 
brand new images the user had never seen.  

This task was really a distracter task and merely a method 
of getting users to look at the display. It specifically did not 
require users to explicitly decide whether or not each image 
was a face or not. To this end, we were also careful not to 
tell users anything about the face classification task, and 

users assumed we were studying human memory perform-
ance. We briefed them of the purpose of the experiment 
only at the very end. 

Design and Materials 
We were interested in exploring two basic conditions. First, 
we wanted to know how well we could classify implicit 
cognitive responses with carefully controlled stimuli. Each 
of the stimuli within the classes had similar image proper-
ties such as composition and color histograms. Second, we 
wanted to know how well the results would extend to less 
controlled and more ecologically valid stimuli. We used 
images taken randomly from the web.  

Additionally, we wanted to know how quickly people could 
implicitly process these images and whether or not presen-
tation time would affect our classification accuracy. This 
has direct implications on the efficacy of any system that is 
using these techniques to classify images. Each image was 
flashed for 150ms and images were presented one after an-
other with some delay in between. We call this the inter-
stimulus delay. We refer to the total time the image is dis-
played and the inter-stimulus time as the Presentation time. 
We picked three presentation times (500, 750, and 1000ms) 
based on prior work on using EEG to detect conscious ob-
ject detection, suggesting that people could process these 
images in 200 to 600ms. This equated to inter-stimulus de-
lays of 350, 600, and 850ms. All images were presented in 
the middle of the display in a box that was 400 pixels, or 
about 3 degrees of visual angle, large. 

While we would have liked to perform a full factorial de-
sign, crossing stimulus-type with presentation time, we also 
needed to balance this with possible fatigue from staring at 
multiple flashing pictures for too long. Hence we chose four 
of the six possible conditions to test in this experiment. The 
four conditions we chose were the controlled stimuli with 
the three possible presentation times, and the ecologically 
valid stimuli with the middle 750 ms presentation time. We 
ran the experiment as a within-subjects design, with each 
user performing all four conditions.  

We selected images for the controlled stimuli conditions 
from the Caltech-256 Object Category Dataset [8]. This 
data set includes 30607 images manually categorized into 
256 object categories and is a benchmark test set for com-
puter vision based object recognition algorithms. These 
images tended to be fairly homogeneous within categories 
and we thought would allow us to test the upper bounds of 
our ability to classify objects. Based on pilot studies, we 
selected several categories from this test set: faces (our ob-
ject of interest), vehicles, animals, and structures. To 
broaden the non-face categories, we selected images for the 
latter three of these categories from multiple sub-categories 
within the test set. For example, animals came from the 
categories for dogs, cats, lions, and so on. For an example 
of the controlled images, see Figure 4. 

Figure 5: Ecologically valid real-world images 
downloaded from the web. Left two columns represent 

face images, right two represent non-faces. 

Figure 4: Controlled images taken from the Caltech-
256 Object Category Dataset. The columns represent 

the face, vehicle, animal, and structure classes.  



 

 

For each block in the controlled stimuli conditions, we 
manually selected 200 images from this dataset, 50 from 
each category of interest. We produced stimuli sets for four 
blocks (800 images) in each condition. This led to a total of 
2400 images in these conditions.  

To generate images for the ecologically valid condition, we 
took the top results from a web-based image search using 
images.google.com with the search terms “faces” and “ob-
jects”. Three independent people labeled these results on a 
scale of 1 to 5, classifying the degree to which the image 
represented a face. A rating of 1 signified that the image 
was clearly not a face, nor did it contain anything that could 
be interpreted as such, and a rating of 5 indicated that the 
image was definitely a face. Before they labeled the images, 
they were shown example images in each of the categories 
so that they could label them somewhat consistently. We 
discarded any image that received user ratings deviating by 
more than a 1 point on this scale, and treated the 2, 3, and 4 
ratings as distracter stimuli in our analysis. For an example 
of the stimuli shown in the ecologically valid conditions, 
see Figure 5. Note how the pictures are much less well de-
fined than the controlled images in Figure 4.  

For each block in the ecologically valid stimuli condition, 
we randomly chose 200 images from the sorted web im-
ages, 40 from each rating level. This led to 40 faces and 160 
non-faces for each block. We generated enough stimuli for 
four blocks, but ran each of these blocks twice because we 
wanted to know if having a user look at a given image mul-
tiple times could boost classification performance. 

As users performed the tasks, they were encouraged to take 
small breaks in between each block and a larger break be-
tween conditions. 

Equipment 
We collected EEG data using a Biosemi ActiveTwo system 
(www.biosemi.com), sampling at a rate of 2048 Hz. As 
seen in Figure 2, we placed electrodes at approximately 
evenly spaced locations on the scalp using the internation-
ally accepted 10-20 system [14]. We did not control or 
eliminate any of the traditionally considered noise elements 
(e.g. 60 Hz power hum, etc.) found in the experimental en-
vironment, a research lab with running computers and other 
electrical equipment. This was because we wanted to simu-
late an environment that was likely both in an HCI lab, as 
well as in a real-world setting. Before beginning, the ex-
perimenter explained the EEG device and requested that 
users try to reduce unnecessary physical movements during 
the testing phases of the experiment. This, however, was 
not enforced. 

Participants performed the tasks on a Compaq EVO N800c 
laptop with 2 GB RAM and an attached 18" NEC Multi-
sync 1880SX LCD monitor running at a 1280×1024 pixel 
resolution. Each user sat at a comfortable distance from the 
monitor (about 30" or 76cm) and provided answers with the 
left and right arrow keys on the keyboard.  

The task users consciously performed was mostly a distrac-
ter task to ensure that they were looking at the display. We 
collected the accuracy of answers and response times as 
dependent behavioral measures just to verify that they were 
indeed looking at the images. 

Participants 
Eight (3 female) student interns at an industrial research lab 
volunteered to participate in the experiment. The average 
age of users was 21, ranging from 20 to 22 years of age. 
None of the users reported any known neurological disor-
ders, and 7 of the 8 users were right-handed. We also 
screened users for color blindness and required normal or 
corrected-to-normal eyesight. The experiment took about an 
hour and users were given a small gratuity for their time. 

Evaluation Methodology 
We ran the collected EEG data through our classifier sys-
tem described above. We used 10-fold cross-validation ac-
curacies as a measure of classifier performance. We ran-
domly partitioned the labeled data into 10 groups and used 
a partition as the testing data for a classifier trained on the 
remaining partitions. The cross-validation procedure was 
repeated 10 times and the average of the runs is presented 
as the performance measure, or classification accuracy.  

We also explored combining multiple user responses to a 
particular image in order to more accurately label it. We 
built a separate user-specific classifier based on individual 
users' responses, and used another RLDA classifier to com-
bine each classifier's prediction. This creates a voting 
mechanism of sorts, allowing each viewing of the stimulus 
to contribute to an overall classification answer. We evalu-
ated the performance of this compound-classifier in a 
method similar to the user-specific one. 

Results 
We present the results in several sub-sections. First, we 
present behavioral data, showing that users paid attention to 
the task and that performance did not deteriorate with time. 
Second, we describe the results when training our classifi-
cation on the controlled stimuli and cross-validating with 
hold out sets also of controlled stimuli. Third, we describe 
results when training on the controlled stimuli and testing 
on the ecologically valid stimuli. This tests how well the 
controlled stimulus set was able to train the model to dis-
criminate the factor of interest, faces. Fourth, we describe 
results when training and testing on ecologically valid stim-
uli, which we assert is the most likely case for real-world 
systems. We had initially projected that this would be nois-
ier and hence less accurate than the controlled set, but we 
show that this is not really the case. Finally, we show pre-
liminary results suggesting that classification might be im-
proved if we show the same stimulus multiple times, either 
to the same user or to different users. 



 

 

Behavioral Data 
The stated task was for the user to decide whether a given 
image had already been shown in the immediately preced-
ing block. We examined behavioral user responses to the 
questions following each block for correctness. There were 
twenty blocks per user, for a total of 120 questions. Of 
these, half had been previously seen and the other half were 
new. Users were able to respond correctly on average 
81.1% of the time. This performance is significantly above 
chance and indicates that they were paying attention to the 
presented images. The average response time was 1.3s for 
correct responses, and 1.09s for incorrect responses.  

Training and Testing on Controlled Stimuli 
The first analysis that we ran with the EEG data was one in 
which we trained the system using our controlled stimuli 
and tested on hold out sets also taken from this set of stim-
uli. From three of our conditions, we looked at the three 
presentation times of 500, 750, and 1000ms. For these three 
times, the average classification accuracies were 69.2%, 
72.5%, and 66.6%, with standard deviations across users of 
7.1%, 5.0%, and 8.4% respectively.  

These results suggest that it is possible to train a system to 
classify whether a user is looking at images of faces vs. 
non-faces even when the user is not trying to do that task 
and even with just a single presentation of the stimulus. 
Furthermore, the differences across presentation rates were 
small, suggesting that we can present many images in rapid 
succession. In future work we will attempt to push the 
lower bounds of this presentation rate to find out how fast 
we can present these images before the classification starts 
to deteriorate significantly. 

Testing Real-World Stimuli on Controlled Stimuli Models 
Next, we examined whether classifiers built on the con-
trolled images would be successful in labeling our real-
world images collected from the internet. Hence we applied 
classifiers trained on controlled face vs. non-face image 
EEG responses to 40 each of the ecologically valid face and 
non-face categories. The average classification for single 
presentations of 750ms across all users was 66.4%.  

We see from this slight drop in accuracy that while it is 
possible to generalize from controlled images to ecologi-
cally valid stimuli, there is some degradation in the process. 
We speculate that this is due to the fact that the controlled 
images are fairly homogenous within each class, and thus 
do not form a sufficiently representative set of stimuli for 
training our classifier. In other words, the EEG response 
might, in addition to the face-specific nature of the image, 
also have information regarding lighting, color, and size 
that would result in an over-fitted classifier. We explore a 
small portion of this in more detail in experiment two, 
where we present results suggesting that we were not actu-
ally latching on solely to color characteristics. 

Training and Testing on Real-World Stimuli 
To examine whether training on a more diverse and repre-
sentative data set would increase classification perform-
ance, we measured cross-validation error on real-world 
stimuli, with 40 examples each of the face/non-face catego-
ries. Here, the training and test sets are constructed entirely 
from the ecologically valid images, presented at a rate of 
750ms. We argue that this provides the most realistic test of 
real-world system performance.  

In this test, the cross-validation accuracy remained rela-
tively constant for the single presentation case, at about 
66.5%. However, when we averaged the responses across 
two presentations of the stimuli, we saw a boost in classifi-
cation accuracy, increasing to 76%. This strongly suggests 
real-world systems should train models on as diverse a rep-
resentative stimuli set as possible and that there may be 
opportunities for drastically increasing accuracy by collect-
ing EEG data from multiple presentations of the stimuli. 

Combining Information Across Users 
There are multiple ways to collect EEG response data for 
the same image. We have described in the results presented 
above that having a user view an image multiple times may 
remove extraneous noise associated with single-
presentations, and increase classification accuracy. How-
ever, another approach is to show the stimulus to multiple 
users for classification. This approach has the potential 
benefit of utilizing inter-user differences in order to get a 
more robust result.  

We explored the effects of multiple redundant presentations 
by picking data from random subsets of users, which we 
used as input to the classifier. For each user, we constructed 
a separate classifier with their training data, as we did be-
fore. We then combined the outputs from these classifiers 
as the input to a separate RLDA meta-classifier that pre-
dicted the image’s category label using only the individual 
classifier outputs. We averaged results over eight runs with 
different subsets of users to eliminate selection bias. 

As can be seen in Figure 6, the classification accuracies 
increase significantly as we add more and more users, with 
performance reaching near certainty (98.3%) by the time 8 
users have seen the images twice each. In the next experi-
ment, we explore opportunities for dynamically deciding 
whether an image should be shown again, as well as 
whether it would benefit from being shown to the same user 
or would attain a better label if shown to different users.  

EXPERIMENT TWO 
We conducted a second experiment to extend the results 
from the first experiment and to explore: (1) the perform-
ance of our classification method on a larger more diverse 
population than 20-22 year old students; (2) the generality 
of the approach in classifying more than just faces vs. non-
faces; (3) the tradeoffs associated with the ability to present 
stimuli multiple times, potentially to multiple people; and 
(4) the effects of varying the amount training data used.  



 

 

Task  
We used a similar task structure to that of the first experi-
ment. However, instead of having users look at images and 
memorize them, we randomly inserted between three and 
ten images of butterflies within the sequences, and had us-
ers count the number of these seen within each block. We 
improved our distracter task because observations in the 
previous experiment suggested that the memory task was 
creating additional cognitive load as users continued to 
mentally rehearse seen images even as new ones came up.  

Also, since users in the first experiment commented on the 
fatiguing nature of the rapidly flashing images, we decided 
to show the images for 250ms instead and to randomize the 
inter-stimulus delay between 500 and 750ms so as to elimi-
nate predictable periodicity of the presentations. 

Design and Materials 
In this experiment we chose three different categories of 
images for which we hoped to discriminate: faces, taken 
from the set of images ranked 5 in the previous experiment, 
inanimate objects, previously ranked 1, and animals, ran-
domly chosen from the Caltech 256 dataset.  

We divided the experiment into two phases, a training 
phase and a testing phase. In the training phase, we pre-
sented users with three blocks of images, each containing 
60 to 70 unique images from the three categories. In the 
testing phase, we chose 20 images from each of the three 
categories that did not already appear in the training set. 
While training images were presented exactly once during 
the experiment, we presented the test set of sixty images 10 
times in ten different experimental blocks. Each presenta-
tion contained a random number of butterfly images and 
was presented in random order. 

Equipment and Participants  
We used the same equipment and setup as in the first ex-
periment. We ran sixteen (5 female) volunteers who had not 
participated in the first experiment. The average age of us-
ers was 35, ranging from 20 to 58 years of age. None of the 
users reported any known neurological disorders or color 
blindness, and all had normal or corrected-to-normal eye-
sight. The experiment took about an hour and users were 
given a small gratuity for their time.  

We excluded data from two users, one whose signal showed 
no discriminative power and another on whom the experi-
menter had trouble getting the EEG device to work and 
whose data we did not even begin to analyze. We report on 
the data collected from the remaining fourteen users. 

Results 
We utilized the same classification methods and evaluation 
methodology as in the first experiment. We built a classifier 
using the training data and tested with data from the testing 
phase. Behavioral results showed that user performed the 
butterfly counting task very accurately, miscounting only 
by an average of .16 per task, or approximately one mis-
count for every six blocks of images.  

We present the results in several sections. First, we show 
the results of our classification across the various catego-
ries. Next, we describe how this was affected by repeated 
presentations, both within but also between users. Finally, 
we show how these results are minimally affected by the 
amount of training data collected and used. 

Classifying Multiple Categories 
We ran several analyses, performing each of the three 2-
way classification as well as the 3-way one. As can be seen 
in the leftmost data point in Figure 7, the system was able 
to classify face vs. inanimate objects at a 75.3% accuracy, 
only slightly higher than that of the first experiment. We 
also show comparably high accuracies for classifying be-
tween the other classes, 71.6% for face vs. animals, 65.0% 
for animals vs. inanimate objects, and 55.3% for the 3-way 
classification, which was a more difficult classification 
task. The standard deviations for these classifications were 
7.6%, 7.6%, 9.2%, 10.5%, respectively. This is encouraging 
as it implies that the mechanisms we are using are relatively 
robust to multiple classes of stimuli beyond just human 
faces, as shown in the first experiment. Exploring the full 
scope of this generality remains future work. 

As a peripheral note, we also analyzed the effect that color 
might have on the classification accuracies. We found no 
significant performance differences across color and non-
color images, suggesting that color histograms were not a 
distinguishing factor in this experiment.   

Figure 6: Classification accuracies showing the effects 
of varying number of users to which each image was 
shown. The two colored lines depict number of times 

the image was shown to each user. 



 

 

Effects of Repeated Presentations 
In addition to the above analysis, we incrementally added 
data collected from repeated presentations of the same 
stimuli and combined their outputs to analyze how this 
would classification results. As can be seen in Figure 7, 
accuracies increase significantly as more repetitions are 
added, rising to 91.2%, 84.8%, and 74.1% for the 2-way 
classifications and 73.5% for the 3-way one, with just ten 
presentations. This suggests that multiple presentations, 
even to the same user, can reduce noise and add informa-
tional value. 

As in the previous experiment, we also explored how re-
peated presentations to multiple users would affect classifi-
cation accuracy. Results of this analysis for the multiple-
user face vs. inanimate object classification can be seen in 
Figure 8. The other classifications yielded similar results 
and we omit discussion of them due to space constraints. As 
can be seen in this graph, adding data from multiple users 
clearly increases the performance of the classifier. While 
this might be partially attributed to repeated presentation of 
any form, analysis suggests that adding presentations to 
multiple users leads to better performance than adding the 
same number of presentations to one user. While our simple 
implementation works relatively well, building a classifier 
that is able to optimally combine the complementary data 
from various users remains future work. 

Effects of Amount of Training Data Used 
To evaluate the effect of amount of training data on classi-
fication performance, we used random subsets of training 
data to build the classifier and performed the same compu-
tations as above. We averaged results over ten runs with 
different subsets of training data to eliminate selection bias.  

Results from this analysis, seen in Figure 9, suggest that 
reducing the amount of training data decreases perform-
ance. However, it is interesting to note that even with a very 

small training set such as 10 images, we are able to attain 
classification accuracies that seem to be above chance in all 
conditions tested. Loosely extrapolating from this graph, we 
also assert that we have not collected the amount of training 
data required for optimal performance and that designers of 
such systems should carefully consider the amount of train-
ing that they have users perform. 

CONCLUSION AND FUTURE WORK 
In this paper, we introduced the concept of Human-Aided 
Computing, which proposes that we can use brain sensing 
technologies such as EEG in order to measure the outcomes 
of implicit processing done by the human brain. We have 
shown in two experiments that our classification system is 
able to classify between images of several classes with rela-
tively high accuracy, even when the user is not aware of the 
task, and even with a single presentation of the image. We 

Figure 7: Relatively high accuracies for classification 
across multiple categories of images. This is especially 

true with repeated image presentation. 

Figure 9: Accuracy falls as the amount of training data 
is reduced. However, even with only 10 images, classi-
fication for face vs inanimate objects remains above 

chance, especially with repeated presentations. 

Figure 8: Accuracy increases with repeated presenta-
tions for face vs. inanimate object classification. The 

accuracies rise more when images are shown to multi-
ple users as opposed to repeated to a single user. 



 

 

have further shown that we can drastically improve classifi-
cation performance with multiple presentations of the same 
images, especially when we show them to multiple users.  

This work represents only a first step towards our vision of 
a Human-Aided Computing system, and much future work 
remains. For example, we think it would be interesting to 
explore how the current results apply to pre-attentive im-
plicit processing as well. In such a scenario, tasks could be 
placed in the attentive (e.g. visual or audio) periphery, not 
require explicit cognitive attention, allow the user to go 
about their primary tasks as they normally would, but get 
usefully processed by the brain and sensed by the system. 

We would also like to expand the set of objects that we are 
able to classify, and in fact the set of tasks beyond image 
classification. We believe that this work will largely be 
driven by neuroscience findings, but hope that we can also 
contribute to fundamental understanding in that domain.  
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