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ABSTRACT 
Web image search is difficult in part because a handful of 
keywords are generally insufficient for characterizing the 
visual properties of an image. Popular engines have begun 
to provide tags based on simple characteristics of images 
(such as tags for black and white images or images that 
contain a face), but such approaches are limited by the fact 
that it is unclear what tags end-users want to be able to use 
in examining Web image search results. This paper presents 
CueFlik, a Web image search application that allows 
end-users to quickly create their own rules for re-ranking 
images based on their visual characteristics. End-users can 
then re-rank any future Web image search results according 
to their rule. In an experiment we present in this paper, 
end-users quickly create effective rules for such concepts as 
“product photos”, “portraits of people”, and “clipart”. When 
asked to conceive of and create their own rules, participants 
create such rules as “sports action shot” with images from 
queries for “basketball” and “football”. CueFlik represents 
both a promising new approach to Web image search and 
an important study in end-user interactive machine learning. 
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INTRODUCTION AND MOTIVATION 
Although the number of images available on the Web 
continues to explode, driven by a combination of 
technological advances and the development of new uses 
for that technology, image search on the Web remains a 
challenging problem. Web image search is difficult in part 
because a handful of keywords are generally insufficient for 
characterizing an image. Visually different images can have 

the same keywords, or visually similar images could be 
labeled by very different keywords. If a person seeks an 
image with visual characteristics that cannot be easily 
expressed in keywords, or if their attempts to use keywords 
to describe visual characteristics of an image are 
ineffective, they are generally left to scroll through large 
numbers of results in search of a desired image. 

Widely used Web image search engines have begun to 
provide tags that can be used to filter results according to 
certain characteristics. The most common of these can be 
used to automatically detect and exclude pornographic 
content from results, but several engines also support 
queries based on image size (small, medium, or large 
images), whether an image is in color or in black and white, 
and whether an image contains a face. The computer vision 
research community has explored identification of a 
number of other characteristics of images, such as indoor 
vs. outdoor scenes [21], city vs. landscape scenes [8], and 
photos vs. graphics [17]. But it is hard to successfully apply 
such work to Web image search, in part because it is 
unclear what concepts will be valuable to Web search users. 

In this paper, we present CueFlik, a Web image search 
application that allows end-users to quickly create their own 
rules for re-ranking images based on their visual 
characteristics. To use CueFlik, end-users provide examples 
of images each rule should match and examples of images 
the rule should reject. CueFlik learns the common visual 
characteristics of examples, and the end-user can then 
re-rank any future Web image search according to the 
learned concept.  

Figure 1 presents an example sequence of interaction with 
CueFlik surrounding a rule for the concept Scenic. An 
image search for “Mountain” yields reasonable results, but 
the top results include images that the end-user is not 
interested in, such as a movie poster and a picture of a dog. 
They create a new rule by dragging several of the scenic 
mountain images to the rule panel, then use the rule editing 
interface to provide positive and negative examples until 
satisfied with how the rule re-ranks the mountain images. 
When this rule is then applied, the top results are now all 
scenic images. Future searches can then be re-ranked using 
the scenic rule, and examples are shown here for “Water” 
and for “Scenic” (which includes several photos of a car, 
the Renault Scénic). 
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Figure 1. CueFlik enables the interactive creation and application of rules based on the visual properties of images. 
In this case, a “Scenic” rule is created from a query for “mountain” and then applied to queries “water” and “scenic”. 

We present an experiment exploring the effectiveness of 
CueFlik in light of several design decisions that confront 
such systems. This experiment shows that participants can 
quickly create effective rules for identifying such concepts 
as “product photos”, “portraits of people”, and “clipart”. 
When asked to conceive of and create their own rules, 
participants create such rules as “sports action shot” with 
images from queries for “basketball” and “football”. 

Our experiment also has broader implications for end-user 
interactive concept learning. An end-user provides CueFlik 
with examples of images that each rule should match, is 
shown the rule that CueFlik has learned, and then continues 
to provide CueFlik with examples of images that should be 
matched or rejected until they are satisfied with the learned 
rule. We examine six approaches to presenting this 
interactive inference process. We find that an interface 
condition that shows only the best and worst matches (as 

opposed to showing an entire ranking of a set of matches) 
leads participants to create better rules, based on fewer 
examples, in less time. This suggests that such split 
presentations should be considered in future applications 
based on interactive concept learning. 

The next section briefly discusses some related work. We 
then present CueFlik’s implementation, including details of 
how CueFlik learns by weighting potential distance metrics. 
We next discuss our design of an experiment to examine 
end-user interactive concept learning in CueFlik. The 
experiment compares six interface conditions to examine 
their effect on end-user interactive concept learning, then 
examines how participants re-use rules across queries, how 
they formulate queries to build rules, and what rules they 
choose to build on their own. Finally, we discuss CueFlik as 
a new approach to Web image search and as a case study of 
end-user interactive concept learning. 

 



RELATED WORK 
A number of systems have explored query-by-content 
approaches to image search [13, 19, 20]. Such systems are 
based in retrieving images according to low-level features, 
such as color or texture. A user specifies a desired set of 
features either abstractly (as in “images with blue in the 
upper-left corner”) or concretely (via an example image), 
and the system returns images with similar features. While 
CueFlik also analyses low-level image features, CueFlik is 
not a query-by-example system. CueFlik learns a rule by 
analyzing a set of example images, and can then apply that 
rule to re-rank any future set of images. In contrast, 
query-by-example generally requires a new demonstration 
of the desired characteristic with every query. 

Other systems have explored approaches to image 
searching or browsing that are based in clustering or 
otherwise grouping images according to some criteria [1, 2, 
4, 16, 22]. Clustering algorithms are fundamentally based 
on the specification of a distance metric, as the chosen 
notion of distance (or, inversely, similarity) controls what 
images are clustered together. A system’s distance metric is 
generally chosen by the developer, but CueFlik is distinct in 
that each rule is based in learning a distance metric 
according to the examples provided by an end-user. This 
allows CueFlik to learn the relevant visual properties of a 
user-specified concept. 

Yee et al. present the use of faceted metadata for image 
search and browsing [24]. Although CueFlik is currently 
based in re-ranking query results, our approach to end-user 
interactive concept learning could likely be applied to 
faceted search and browsing. The same concerns discussed 
in our introduction, that it is generally unclear what 
distinctions between images are best included in Web 
image search interfaces, also apply to faceted approaches. 
An interesting possibility, therefore, is supporting end-user 
interactive specification of facets based on the visual 
properties of images. 

A variety of other work has explored interactive machine 
learning. For example, Crayons supports the interactive 
creation of pixel-level classifiers for use in camera-based 
interfaces [3]. Exemplar supports designer creation of 
simple sensor-based recognizers through the direct 
manipulation of a dynamic time warping algorithm [9]. 
CueTip supports interactive intelligent correction of errors 
in handwriting recognition [18], while Kristjannson et al. 
examine intelligent interactive correction of an information 
extraction system [11]. Finally, Arnauld learns an 
individual user’s preferences for how automatically 
generated interfaces should be presented by examining the 
tradeoffs and choices that the generation algorithm 
encounters in creating interfaces for a particular platform 
[5, 6]. Although this variety of work addresses a wide range 
of problems using approaches that are very different from 
the approach taken by CueFlik, all are focused on creating 
truly usable end-user interfaces that leverage the application 
of machine learning algorithms and techniques. 

CUEFLIK IMPLEMENTATION 
CueFlik is currently implemented as a desktop application 
that retrieves images from a keyword-based Web image 
search engine. CueFlik enables the re-ranking of image 
search results according to rules based on visual 
characteristics of the images. Each rule is defined as a 
nearest-neighbor classifier, computing a score that indicates 
how similar an image is to the examples that were used to 
train that rule. The training of such rules requires learning a 
distance function from the examples provided by an 
end-user. In order to help end-users provide informative 
examples that help CueFlik determine what rule the user is 
creating, CueFlik implements two active learning criteria. 
This section discusses each of these aspects of CueFlik. 

Image Queries 
CueFlik retrieves images using queries to Microsoft’s Live 
Image Search. A format parameter in the query indicates 
that the engine should return its results list in an XML 
format, and CueFlik downloads the thumbnail for each 
image. Due to a limitation of the search service, a 
maximum of 1000 images are obtained for each query. The 
visual characteristics of each image are analyzed as they are 
downloaded, and the resulting images are ranked according 
to any active rules. 

Ranking Image Results 
Images are re-ranked by applying a set of end-user created 
rules. Users can enable and disable rules in their library by 
moving them between the Active and Available panes of 
CueFlik’s interface (see Figure 1). A slider control on each 
active rule allows control of the relative weighting of 
multiple rules. Every active rule computes a score for each 
image, and scores are multiplied by a weighting between 
-1 and 1. Images are thus ranked by weighted sum of scores: 
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Applying Concept Rules 
Each CueFlik rule is a nearest-neighbor classifier. The rule 
is defined as a set of positive examples (images illustrating 
what the rule should match), a set of negative examples 
(images illustrating what the rule should reject), and a 
distance metric. Given these, a rule scores a new image by 
computing the distance between that image and each 
positive or negative example, then dividing the distance to 
the nearest positive example by the sum of the distance to 
the nearest positive and nearest negative example: 
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Note that scorer(i) ranges between 0 and 1, approaching 1 
when i is near a positive example and far from negative 
examples, having value .5 when i is equally close or far 
from the nearest positive and negative examples, and 
approaching 0 when i is near a negative example and far 

 



 

from positive examples. For its distance metric, CueFlik 
uses a weighted sum of a set of several component distance 
metrics: 
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Given this approach, the core of CueFlik’s ability to re-rank 
images according to their visual characteristics lies in a set 
of component distance metrics and CueFlik’s ability to 
learn how to weight those different metrics. 

CueFlik’s Distance Metrics 
CueFlik currently implements image distance metrics based 
on histograms of the hue, saturation, and luminosity of 
pixels, an edge histogram, a global shape histogram, and a 
texture histogram. CueFlik computes and stores these 
histograms with each image, using them to efficiently 
compute distances between images. 

The hue, saturation, luminosity, and edge histograms are 
computed over the pixels in each thumbnail image and 
normalized to account for thumbnails of varying size. Two 
distance metrics are defined for each histogram. The first is 
the quadratic distance between two histograms, a measure 
of histogram distance that accounts for the similarity 
between different bins in the histogram [13]. In the case of 
the luminosity histogram, for example, an image entirely of 
luminance 1.0 is considered more similar to an image 
entirely of luminance 0.8 than it is to an image entirely of 
luminance 0.4 (the simpler Euclidean comparison would 
treat the two images as equally dissimilar from the first, 
provided the three luminosity values are in different 
histogram bins). The second metric for each image’s 
histograms is the difference in histogram entropy. 

We compute a histogram representing the overall structure 
of each image by applying a shape descriptor to the entire 
image [23]. This descriptor sums local image gradients into 
bins over a log-polar target-shaped region covering the 
entire image, normalizing the resulting histogram. Similar 
histograms (using Euclidean distance) correspond to images 
with similar overall structure, and the descriptor offers a 
degree of invariance to illumination, translation, scale, and 
rotation. Less formally, this distance metric will generally 
indicate that two frontal close-ups of a face are similar and 
that two driver-side views of a car are similar. It will also 
generally indicate that a close-up of a face is different from 
a view of a car. The shape descriptor does not consider 
color, and so it complements our color histogram metrics. 

Finally, we compute a texture histogram that preserves less 
geometric information than the global shape histogram but 
allows discrimination between the distribution of structures 
present in an image without regard to their arrangement. 
This is a bag-of-words approach [12], and requires 
sampling a number of patches from the image. For 
efficiency, we sample on a regular grid of partially 
overlapping blocks and compute a descriptor for each block 

[23]. An offline recursive clustering analysis of a large 
image database is used to learn a set of discriminative 
textures [14], and a histogram is computed at runtime by 
resolving each sampled block to a bin based on the 
identified discriminative textures. Less formally, this metric 
considers images similar if they contain similar patches. It 
might consider images of two different city skylines to be 
similar, while the previously discussed global shape 
descriptor might consider the two skylines different. 

CueFlik’s Concept Learning over Distance Metrics 
CueFlik learns rules from positive and negative examples 1 
of images that rule should match or reject. Given a set of 
positive examples, there are many concepts a person might 
be attempting to specify. In most applications of 
nearest-neighbor algorithms, the developer of a system 
carefully tunes a distance function based on their 
knowledge of the problem being solved. In our case, 
however, we do not know beforehand what notion of 
similarity will be appropriate for an end-user’s rule. If we 
attempt to treat all distance metrics equally, the curse of 
dimensionality guarantees a very large number of images 
will be required in order to specify even the simplest rules 
[10]. It also seems inappropriate to ask end-users to directly 
manipulate the weights controlling rule formulation. 

CueFlik therefore defines a concept learning problem as a 
matter of learning a set of weights based on which distance 
metrics best correspond to the provided examples. CueFlik 
can learn, for example, whether a set of images are similar 
because of their color histogram, their global shape 
descriptor, or a combination of the two. Our method for 
learning these weights is inspired by the work of Globerson 
and Roweis [7], and is described next. 

Given a set of positive and negative examples, CueFlik 
learns a set of distance metric weights such that the distance 
between two images with the same label (positive or 
negative) is minimized and the distance between two 
images with different labels is maximized. Specifically, we 
minimize an objective function that separates the two 
classes as much as possible while keep examples of the 
same class close together: 
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The first two terms correspond to within-class distances, 
thus the minimization of the function favors weights that 
minimize the distance between data of the same class. The 
third term considers all examples and favors maximum 
separation. The combination of terms thus favors weights 

 

1 In the case where an end-user has provided only positive
examples, CueFlik randomly samples negative examples from 
the current image set under the assumption that, on average, 
these will serve as reasonable temporary negative examples. 
These provide a point of comparison against the images the 
end-user has selected as positive, and they are only used until 
the end-user provides negative examples. 

 



that collapse each of the classes while maximizing the 
distance between data with different labels. The function is 
convex, and the unique global minimum is efficiently found 
using standard non-linear optimization techniques [15].  
Less formally, CueFlik learns what notions of distance are 
relevant based on the examples that a person has provided. 
If all of the provided positive examples are mostly yellow, 
and they have no other common characteristics, and the 
negative examples are not mostly yellow, CueFlik will 
learn that hue histogram similarity is the relevant distance 
(giving it a large weight and other distance metrics small 
weights). The resulting rule will give high scores to images 
with hue histograms similar to those of the positive 
examples used to train the rule. In a situation where the 
positive examples have multiple characteristics in common, 
those characteristics will each receive some weighting. 

Active Learning in CueFlik 
Because it might sometimes be difficult to determine what 
images an end-user should provide as examples in order to 
help CueFlik learn the correct concept, CueFlik uses active 
learning to identify images that are likely to provide the 
most information about the rule a person is creating. We 
focus here on the heuristics used to identify images for 
labeling, while the next section examines the effects of 
different presentations of  identified images. 

CueFlik’s first active learning heuristic identifies images 
that, given the current set of learned distance weights, are 
closest to the boundary between positive and negative. 
These are the images about which CueFlik is most 
uncertain, so labeling them provides information within the 
space defined by the current distance weights. Formally, 
CueFlik selects images with the smallest value: 

( ) ( )NP mindistmindistabsiuncertain −=  

This is complemented by a second heuristic that identifies 
images that will result in the exploration of new weightings 
of the distance metrics. Although the active selection of 
examples for a given distance metric (as with our first 
heuristic) is a well-explored problem, the active selection of 
examples to inform the learning of a distance metric has not 
been well explored. For CueFlik, we have designed a 
heuristic based on data density and uncertainty, selecting 
images with the smallest value: 

( ) ( ) ( )iuncertainmindistmindistianceactivedist NP ∗+=  

The intuition behind this heuristic is to find images that are 
in dense portions of the space (near other labeled examples) 
but are still very uncertain. The first term captures density, 
as the distance to positive and negative examples will be 
lower in dense portions of the space. The second term 
captures uncertainty, as discussed in the previous 
paragraph. We select images with low scores, and labeling 
those images gives CueFlik new information to use in 
finding a weighting of distance metrics that pushes positive 
and negative examples away from each other. 

EXAMINING INTERACTIVE CONCEPT LEARNING 
In order to examine end-user interactive concept learning in 
CueFlik, we designed an experiment exploring whether 
end-users would create effective rules, how the presentation 
of images in and the rule editing panel would affect 
interaction with CueFlik, and how the presentation of 
images identified by active learning algorithms would 
affect interaction with CueFlik. 

Interface Conditions 
In considering the design of CueFlik as an example of an 
application based on interactive concept learning, we 
identified two dimensions of the rule editing interface that 
deserve careful attention. The first, Editing Presentation, is 
how the interface presents the effect of a rule on the current 
image query while that rule is being edited. The second, 
Active Learning Presentation, is how the interface presents 
the examples identified by our active learning algorithms. 
Crossing these two dimensions yields the six interface 
conditions tested in our experiment. 

Editing Presentation 
As a rule is being edited, CueFlik needs to present what rule 
has been learned. Presenting the positive and negative 
examples that form the basis for the rule is straightforward. 
The learned distance metric weights are illustrated by 
showing the images in the current query ranked according 
to the rule being edited. Editing Presentation considers 
whether CueFlik should show the entire set of images as 
they are ranked by the rule that is being edited (Single), or 
show only a small subset of the images, those that rank at 
the very top and those that rank at the very bottom (Split). 
The Single approach provides the end-user with access to 
the entire set of images from the current query, so they have 
more images to choose from in training the rule. But the 
rule is unlikely to ever be completely perfect, so a person 
may become overly focused on the noisy boundary between 
positive and negative images, continuing to provide training 
examples that are no longer noticeably improving a rule. 
The Split approach avoids this possibility, as end-users can 
provide training examples only until the small subset of 
images displayed from the top of the ranking match the 
desired concept and the small subset of images displayed 
from the bottom of the ranking are examples of images that 
have been correctly rejected. This comes at the cost that 
fewer images are available to choose from when providing 
training examples. 

Active Learning Presentation 
A similar tradeoff is explored in considering how to present 
images selected by CueFlik’s active learning algorithms. 
These images, by definition, will exist in the most uncertain 
regions of the image query space. They may therefore either 
help a participant to quickly find effective examples, or 
their presence may lead a participant to continue providing 
examples even after they are no longer noticeably 
improving a rule. Active Learning Presentation considers 
whether CueFlik should place active learning images in a 

 



 

separate pane (Explicit), randomly distribute active learning 
images near the top and bottom of a set of results in the 
hope being visually distinct from the nearby images may 
lead active learning images to be selected for use as a 
positive or negative example (Embedded), or rely only 
upon the ranked query results (None). 

 

  

Figure 2. Target images for the concept “product photo” 
taken from a Web image query “stereo.” 

 

 

 

  

 

Figure 3. Top 20 results from a Web image query “stereo.” 

Interface Condition Descriptions 
Crossing these two dimensions yields the six interface 
conditions tested in our experiment. They are: 

Split-Explicit. Uses three scrollpanes. They present the 50 
top-ranked results, 10 results selected by CueFlik’s active 
learning algorithms, and the 50 bottom-ranked results. 

Split-Embedded. Uses two scrollpanes. The first presents 
the 50 top-ranked results, as well as 5 randomly-seeded 
active learning results. The second presents the 50 
bottom-ranked results, as well as 5 randomly-seeded active 
learning results.  

Split-None. Uses two scrollpanes. They present the 50 
top-ranked results and the 50 bottom-ranked results. 

Single-Explicit. Uses two scrollpanes. 10 active learning 
results are displayed in one scrollpane. The other displays 
the remainder of the ranked query images. 

Single-Embedded. Uses one scrollpane. Seeds the top and 
bottom of the rankings with active learning results using the 
same algorithm as Split-Embedded, then displays the entire 
modified ranking in one scroll pane. 

Single-None. Uses one scrollpane. It displays all of the 
ranked query images. 

Tasks 
Participants performed four sets of related tasks. Each 
session started with Rule Creation, where we tested how 
well participants were able to create rules with CueFlik. 
The second task was Rule Transfer, where we tested 
whether rules created by participants worked well when 
applied to new queries. The third task was Query Creation, 
where we observed as participants issued their own search 
queries to create rules we had specified. The final task was 
Concept Creation, in which participants used CueFlik in a 
freeform manner, conceiving of and creating a rule of their 
own choice using their own Web queries. 

For each trial in the Rule Creation task, participants were 
given ten target images (printed on a sheet of paper) labeled 
with a common target property. Figure 2, for example, 
shows target images for the concept “product photo” in a 
Web image query for “stereo.” The system issued a 
pre-determined query, and the participant used CueFlik to 
build a rule that, when applied, would be expected to rank 
the target images as high as possible. We chose target 
concepts, search keywords, and target images such that 
(a) the Web query returned enough results for us to have 
very near to 1000 images; (b) there were minimal duplicate 
images within this set of 1000 images; (c) the property of 

interest applied to between a quarter and a third of the 
images; and (d) the images matching the property of 
interest were not already ranked near the top or the bottom 
of the results. Target images were well distributed across 
the ranking of the original result set, as we selected one 
target from each tenth of the images. The target images 
were filtered from the query results, so participants could 
not see how their rule ranked the target images. Our final 
set of concepts included six color-based concepts (red, 
orange, yellow, green blue, violet) and six non-color 
concepts (portraits of people, brightly color images, quiet 
scenery, product images, cluttered images, and clipart). The 
color concepts were used only in the earliest portion of the 
experiment, and each was associated with a single query. 
The non-color concepts were for the bulk of the experiment, 
and so each was associated with four queries. 

The Rule Transfer task was similarly structured around sets 
of target images for pre-determined queries, with the 
exception that participants performed sets of three related 
queries sequentially. The target property was identical 
across the three queries, but the queries themselves varied 
significantly. This task was based on the non-color 
concepts, using keywords participants had not yet seen. 

 



The Query Creation and Concept Creation tasks had users 
issue their own queries. In the Query creation task, 
participants created a rule for one of our non-color concepts 
and were given a small set of stop words they could not use 
as queries (for example, they could not use the query 
“clipart” in building the clipart rule). In the Concept 
Creation task, participants chose their own target concept 
and issued queries to build the most robust rule they could. 
We included these tasks to see how users might construct 
specific rules in the wild, to observe ecologically valid 
end-to-end usage, and to gather suggestions as to the types 
of rules end-users might like to construct. 

Design and Procedure 
We ran participants in pairs, with each participant working 
on an identical 2.4 GHz dual-core HP4300 machine with a 
21” Samsung SyncMaster 214B display. Participants used a 
Microsoft Optical Intellimouse and Microsoft Ergonomic 
keyboard for input. Before beginning the experiment, 
participants received a short tutorial introducing CueFlik. 
They were informed that some of the interfaces they would 
see during the experiment would present information 
slightly differently and told how to interact with each of 
these. They were led through a small example rule building 
exercise (a simple rule that favored images with a vertical 
aspect ratio) and then built a rule on their own (identifying 
maps within a query for “Seattle”). All participants were 
able to build a reasonable rule within two minutes.  

Participants performed the Rule Creation task using all six 
interface conditions. The order of conditions was 
counterbalanced using a Latin square design. They 
performed two trials with each interface, a color trial 
followed by a non-color trial. We kept the order of target 
concepts and queries constant because we did not expect 
concepts would lead directly to ordering effects and 
because we wanted to ensure balanced coupling of interface 
to concept and query. For each trial, participants were given 
the sheet of paper containing the target images and clicked 
on a button to begin. Participants were told to perform the 
task as quickly and accurately as possible, and they clicked 
a button on the interface to advance to the next trial when 
they thought their rule was not getting any better. In order 
to keep the experiment to a reasonable length, we also 
imposed a 2.5 minute time limit after which the task would 
self advance. Participants received visual warning 10 
seconds before this happened so that they could complete 
any pending actions. After each trial, a dialog appeared, the 
participant was given a new page of targets, and they would 
click on the button to begin the next trial. 

Because the remainder of the experiment does not explicitly 
compare interfaces, each participant completed the final 
three tasks in a single interface condition (the condition 
they used in their final Rule Creation trial). Because we had 
six conditions and there were twelve participants, each 
interface was used by exactly two participants for the latter 
three tasks. In the Rule Transfer task, participants created 

rules for two sets of three related queries. One set was done 
independently (as in Rule Creation), and one set was done 
with the rule persisting across the three queries. In the latter 
condition, the rule persisted and was automatically applied 
to the result sets for the second and third queries. 
Participants could choose to accept the rule if it was good 
enough or could augment it with more examples if they felt 
they could improve the rule. The task was based on two 
random non-color concepts that had not yet been used with 
the current interface condition. The order of the two 
conditions was counterbalanced across participants. 

For the Query Creation task, we chose another random 
non-color concept that had not yet been used with the 
current interface condition. During both Query Creation and 
Concept Creation, we logged the queries that participants 
issued and took notes on usage behavior. We did not 
impose the 2.5 minute time limit, and all participants built a 
reasonable rule within 10 minutes for each of these tasks. 

Participants 
Twelve individuals from the Greater Puget Sound area 
volunteered for this experiment. Most were daily computer 
users, none were colorblind, and all had 20/20 or corrected 
to 20/20 vision. While recruiting, we screened half of the 
participants to be image search novices and half to be image 
search experts. Novices reported performing no more than 
one image search every week, and experts reported 
performing more than five searches weekly. The 
experiment lasted approximately 90 minutes, and 
participants were given a software gratuity for their time. 

One participant experienced multiple software crashes and 
logs were incomplete for their session. We excluded this 
participant’s data, discarding it at the end of the participant’s 
session, and used a thirteenth participant as a replacement. 

RESULTS 
We present the results of our experiment in three parts. We 
first explore the effect of the interface conditions in the 
Rule Create task. We then examine the Rule Transfer task, 
comparing the independent creation of rules to the transfer 
of a previously created rule. We end with qualitative 
observations based on all of the tasks. 

We analyzed all our quantitative data at the summary level, 
taking the mean of multiple trials when appropriate. Our 
dependent variables were the number of examples provided 
to each rule, trial time, and the change in the mean rank of 
target images. For the latter metric, we calculated the 
difference between the starting and final rank for each 
target image for each trial, then took the mean of the 
differences for the ten target images for each trial. This 
provides a measure of the quality of the rule based on how 
it increased the rankings of the participant’s target images. 
As previously noted, target images were filtered from query 
results so participants could not see how their rule ranked 
the target images. We also logged how many times the 
participant switched in and out of edit mode within each 
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Figure 4. The number of training examples provided, task time, and average improvement in ranking. 
Participants using a Split Editing Presentation created results of higher quality, using fewer example images, in less time. 

trial. We found no effects of gender or expertise, nor any 
interaction between task and our conditions, so we leave 
these factors out in our final analyses for simplicity. 

Rule Creation Task 
We performed a 2 (Editing Presentation: Split vs. Single) x 
3 (Active Learning Presentation: Explicit vs. Embedded vs. 
None) repeated measures analysis of variance 
(RM-ANOVA) for each of our dependent measures. We 
found significant effects of Editing Presentation, with Split 
interface conditions resulting in participants creating rules 
of higher quality (F(1,11) = 5.16, p ≈ .044) 2, using fewer 
examples (F(1,11) = 8.77, p ≈ .013), and completing the 
trial in less time (F(1,11) = 6.90, p ≈ .024) than when using 
Single condition interfaces. See Figure 4 for plots of our 
dependent measures. This provides converging evidence 
that the Split condition of Editing Presentation is more 
effective for Rule Creation. This performance benefit 
existed even though participants entered and exited edit 
mode significantly more in Split conditions (F(1,11) = 6.04, 
p ≈ .024), perhaps to check the overall quality of a rule as it 
was applied to all image results (because they could not see 
the entire set of images results in Split edit conditions). 

We also found a main effect of Active Learning 
Presentation (F(2,22) = 4.79, p ≈ .019), with posthoc tests 
suggesting that participants took significantly more time in 
Explicit conditions than Embedded conditions (p ≈ .049). 
This is somewhat difficult to interpret, but in the absence of 
any performance differences, this might be attributed 
simply to the fairly small size of the scrollpane used to 
display active learning results, since this led to more 
scrolling than in other conditions. We saw no other 
significant effects or interactions. 

Rule Transfer Task 
We performed paired t-tests for dependent measures in the 
Rule Transfer task, comparing the Independent Creation 
condition to the Persistent Rule condition. We found 
significant main effects, with participants in the Persistent 
Rule condition providing significantly fewer example 
images (17.4 images in the Persistent Rule condition vs. 

24.2 images in the Independent Creation condition, 
t(11) = 2.898, p ≈ .01) and spending less time creating their 
rule (119.0 seconds in the Persistent Rule condition vs. 
133.7 seconds in the Independent Creation condition, 
t(11) = 3.256, p ≈ .01). We found no significant difference 
in the quality of the resulting rules (an average ranking 
improvement of 246.1 in the Persistent Rule condition vs. 
an average ranking improvement of 214.2 in the 
Independent Creation condition, t(11) = 1.56, p ≈ .14). 
These results suggest that rules transferred between queries 
relatively well, and that persistent rules can indeed be more 
efficient than creating new filters within each query. 

Qualitative Results 
We now report on participant qualitative experiences, as 
observed by the experimenter, by examining usage logs, 
and from participant comments on a post-experiment 
questionnaire and in a post-experiment debrief. 

Participants expressed general satisfaction with the 
interface itself as well as CueFlik’s approach to re-ranking 
images. Without being prompted, at least five participants 
explicitly expressed the desire to see an offering like 
CueFlik in their Web search engines. Three others wanted 
the software to be able to search through personal picture 
repositories on their hard drive. All participants were able 
to learn the interface within the short tutorial and practice 
trial, each of which ran under 2.5 minutes (because they 
were implemented using the same timeouts used in the 
primary task trials). All but two of the participants also 
commented on how effective the system was in helping 
them rank the images, making comments like “it seemed 
very easy to get the pictures I wanted”, “it’s quick, it’s 
visual”, “drag-and-drop was easy”, or “it quickly intuits my 
selections”. 

 
 
 
 
 
 
 

2 As additional validation, we also repeated our analyses using 
mean average precision, a common information retrieval 
statistic. The same results reported here were obtained, namely 
that Split interface conditions resulted in participants creating 
rules of higher quality (F(1,11) = 5.53, p ≈ .038). 

 



Participants in the Query Creation tasks took varying 
approaches to formulating queries. Some participants issued 
sequences of very similar queries, such as “cartoon” 
followed by “licensed cartoons” and then “cartoon 
characters”. These participants seemed to be searching for 
more examples that possessed a specific property. This 
behavior may have been partially prompted by the fact that 
CueFlik returned only 300 images per query in the Query 
Creation and Concept Creation tasks (we reduced the 
number of images returned per query in order to ensure that 
our current implementation was sufficiently responsive in 
the face of queries that could not be pre-cached). Other 
participants issued queries that were relatively diverse, such 
as “anime” followed by “cartoon” and then “mega man”. 
These participants seemed more concerned with the 
robustness of the rule and were trying to provide as diverse 
a set of examples as possible. 

When asked to create their own rules in the Concept 
Creation task, participants chose a number of interesting 
concepts according to which they wanted to rank images. 
Example concepts include “sports action shots”, 
“underwater images with fish in them”, and “religious 
iconography”. In creating these rules, participants did not 
seem to distinguish between semantics and visual 
properties. Although CueFlik currently makes no use of the 
keywords associated with Web query results and so we 
would not expect CueFlik to capture semantics, many of 
these concepts worked surprisingly well. This seems to be 
because the set of images returned for a given Web query 
are not homogenously distributed in visual space, and so 
correlations exists between the visual properties of images 
and their semantics. Though CueFlik cannot detect the level 
of sports activity per se, it can identify differences in the 
visual characteristics of images returned from a Web query 
for “football” or “basketball”. Action shot images might, 
for example, be close-ups of a person, might contain fairly 
little of the characteristic colors of the field or court, or 
might include a large region of solid color corresponding to 
a player’s jersey. Such rules are possible only through a 
tight coupling of semantic keyword search with CueFlik’s 
visual rules, as current keyword-based engines cannot 
address such visual concepts and CueFlik does not address 
semantics. The complementary nature of keyword search 
and visual rules seems powerful and intriguing, and further 
exploiting it is a promising direction for future work. 

The one situation where we noticed that the lack of 
distinction between semantics and visual properties was 
problematic occurred when participants had built a good 
visual rule, then decided to refine the rule with additional 
semantic properties. As they provided more examples with 
related semantics, but explicitly different visual properties, 
the system would re-rank images in a manner that seemed 
unpredictable to participants, as they expected that the 
visual properties would remain fixed and the semantics 
would only add additional information. Exploring how to 
express this distinction is another direction for future work. 

DISCUSSION 
This paper has presented CueFlik, a novel approach to Web 
image search based in end-user interactive concept learning. 
CueFlik allows end-users to quickly create rules for 
re-ranking images according to their visual characteristics. 
In contrast to query-by-example approaches, CueFlik users 
can maintain a library of rules that they have developed, 
applying them to re-rank the results of future Web image 
searches. While existing clustering-based approaches to 
image search and browsing are based on pre-determined 
notions of similarity included by a system’s developer, 
CueFlik rules and their underlying notions of similarity are 
interactively defined by end-users. 

CueFlik explicitly does not attempt to solve computer 
vision problems related to the semantic recognition of 
image contents. We instead complement existing 
keyword-based Web image search functionality with a new 
approach to re-ranking images according to their visual 
characteristics. Our approach therefore seems have the best 
advantages of two approaches, in that (1) semantic image 
recognition remains a hard research problem, but keywords 
are available for many images, and (2) the visual 
characteristics of images can be difficult to describe in 
keywords, but low-level image features can support 
example-based approaches to interactive concept learning. 
Interestingly, our experiment revealed that the results of a 
Web image search sometimes include correlations between 
semantics and visual characteristics, so CueFlik may appear 
to learn a semantic concept even though it is actually 
learning the visual characteristics of images with those 
semantics within the particular space defined by the result 
of a keyword-based Web image search. Promising 
directions for future work are suggested by this finding and 
by the possibility of adding keyword-based semantic 
similarity to the distance metrics considered by CueFlik. 

Finally, our examination of strategies for presenting the 
interactive inference of a concept from examples has 
important implications for future work addressing end-user 
interactive machine learning. Interfaces that showed only 
the best and worst matches for a rule led participants to 
create better rules, using fewer examples, in less time than 
interfaces that presented an entire ranking of the current 
images according to the rule. One explanation for this might 
be that the Split conditions encouraged participants to focus 
on whether a rule was mostly correct, stopping when the 
top and bottom of a ranking corresponded to the desired 
concept. In contrast, the conditions that presented an entire 
ranking allowed participants to examine the more uncertain 
portions of the ranking (the middle images), and may have 
led participants to find relatively minor inconsistencies in 
this region of greater uncertainty which then prompted them 
to continue adding examples to refine their rule. This would 
explain participants providing more examples and taking 
more time, and we believe it might also explain the lower 
quality of the resulting rules. This is because the later 
training examples (those taken from the more uncertain 

 



 

middle portion of the ranking) may be of lower quality than 
the initial examples, as something about them has made it 
difficult for CueFlik to accurately rank them. As more of 
these types of examples are provided, CueFlik may begin to 
learn weights that correspond to irrelevant aspects of those 
images. In the context of such possibilities, our findings 
suggest careful consideration of how end-user interactive 
machine learning applications solicit examples and other 
evidence from end-users, as well as future research on how 
to determine when an end-user has encountered such a 
turning point in an interactive machine learning process. 
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