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ABSTRACT 
A reliable and unobtrusive measurement of working mem-
ory load could be used to evaluate the efficacy of interfaces 
and to provide real-time user-state information to adaptive 
systems. In this paper, we describe an experiment we con-
ducted to explore some of the issues around using an elec-
troencephalograph (EEG) for classifying working memory 
load. Within this experiment, we present our classification 
methodology, including a novel feature selection scheme 
that seems to alleviate the need for complex drift modeling 
and artifact rejection. We demonstrate classification accu-
racies of up to 99% for 2 memory load levels and up to 
88% for 4 levels. We also present results suggesting that we 
can do this with shorter windows, much less training data, 
and a smaller number of EEG channels, than reported pre-
viously. Finally, we show results suggesting that the models 
we construct transfer across variants of the task, implying 
some level of generality. We believe these findings extend 
prior work and bring us a step closer to the use of such 
technologies in HCI research. 

Author Keywords: Brain-Computer Interface (BCI), elec-
troencephalogram (EEG), cognitive load, memory load, 
machine-learning, feature selection, classification.  
ACM Classification Keywords: H.1.2 [User/Machine Sys-
tems]; H.5.2 [User Interfaces]: Input devices and strategies; 
B.4.2 [Input/Output Devices]: Channels and controllers; J.3 
[Life and Medical Sciences]. 

INTRODUCTION 
Human-computer interaction (HCI) researchers continually 
work on techniques that allow us to measure user states 
such as cognitive and memory workload, task engagement, 
surprise, satisfaction, or frustration. Such measures are use-
ful not only for evaluating the efficacy of interfaces, but 
also for providing real-time information to systems that 

dynamically adapt and support users’ goals [4]. Since we 
have traditionally interacted with computers through our 
physical bodies, most of these techniques have been based 
on observations of user actions and behavior (e.g. [23]). 
Less frequently, other techniques have utilized physiologi-
cal signals as indicators of user state [14,21]. While these 
measures have been reasonably successful, they are rather 
indirect, especially when the user state in question is of a 
cognitive nature. Fortunately, advances in cognitive neuro-
science and brain-sensing technologies provide us with the 
ability to interface more directly with the human brain. This 
is possible through the use of sensors that monitor the elec-
trical and chemical changes within the brain that correspond 
with certain forms of thought. While using these technolo-
gies in HCI research has been previously articulated 
[12,28], we believe there is an opportunity to further ex-
plore practical issues with their use in HCI applications. 

In our work, we explore using one of these technologies, an 
electroencephalograph (EEG), to estimate or classify work-
ing memory load, or the cognitive effort dedicated to hold-
ing information in the mind for short periods of time while 
performing a cognitive task [1]. Working memory has been 
shown to be a key component of cognitive load, and is a 
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Figure 1: Measuring working memory load with an 
electroencephalograph. Shot taken from experiment.



 

 

 

reasonable measure of how hard a user is working to solve 
a problem or use an interface. For example, working mem-
ory load has long been recognized in HCI to be an impor-
tant indicator of potential errors as well as a predictive fea-
ture of procedural skill acquisition [3]. Given this evidence, 
interface designers often try to minimize the working mem-
ory load required to perform a task, and reliable real-time 
measures would benefit them greatly.  

While various researchers have worked on classifying 
working memory with EEG (e.g. [6,7,20,21,27]), previous 
work has typically relied on costly equipment and tech-
niques that make it difficult for non-EEG-experts to repli-
cate and use this work. Additionally, this work has often 
required experimenters to collect large amounts of classifier 
training data (sometimes on the order of days), a process 
that is often prohibitively expensive. While we believe that 
EEG is complementary to many of the other measures of 
memory and cognitive load, it is outside the scope of this 
paper to explore the detailed relationships between these 
measures. We leave this for future work. 

The contributions of this paper are three-fold: 

• First, we present our methodology within an experiment 
we ran to measure working memory load using only EEG 
signals. The innovation within this methodology is an 
automatic feature selection scheme that eliminates the 
need for procedures used in most previous work, such as 
complex device and physiological drift modeling as well 
as manual artifact rejection.  

• Second, using this methodology, we present classification 
results using machine learning techniques that replicate 
and extend prior work in the area. Specifically, we show 
classification accuracies of up to 99.0% between two 
load levels, and up to 88.0% between four levels, all with 
just 8 channels of EEG data. More importantly, we pre-
sent results showing how classification accuracy varies 
with different temporal window sizes, amounts of train-
ing, and number of EEG channels. Specifically, the re-
sults suggest that our techniques allow us to attain accu-
rate classification with less lag, much less training data, 
and simpler equipment.  

• Third, we show how our models work across variants of 
the memory task, providing encouraging evidence that it 
might be possible to develop canonical training tasks and 
to perform general classification of memory load.  

RELATED WORK 

EEG Primer 
In this paper, we use an Electroencephalograph (EEG), a 
sensing technology that uses electrodes placed on the scalp 
to measure electrical potentials related to brain activity (see 
Figure 1). Each electrode typically consists of a wire lead-
ing to a conductive disk that is electrically connected to the 
scalp using conductive paste or gel. The EEG device re-
cords the voltage at each of these electrodes relative to a 
reference point, which is often another electrode on the 

scalp. Because EEG is a non-invasive, passive measuring 
device, it is safe for extended and repeated use, a character-
istic crucial for adoption in HCI research. Additionally, it 
does not require a highly skilled operator or medical proce-
dure to use. For more information about electrical signals 
generated by the brain as well as EEG, see [5]. 

The signal provided by an EEG is, at best, a crude represen-
tation of brain activity due to the nature of the detector. 
Scalp electrodes are only sensitive to macroscopic and co-
ordinated firing of large groups of neurons near the surface 
of the brain, and then only when they are directed along a 
perpendicular vector relative to the scalp. Additionally, 
because of the fluid, bone, and skin that separate the elec-
trodes from the actual electrical activity, the already small 
signals are scattered and attenuated before reaching the 
electrodes.  

EEG data is typically analyzed by looking at the spectral 
power of the signal in a set of frequency bands, which have 
been observed to correspond with certain types of neural 
activity [5]. These frequency bands are commonly defined 
as 1-4 Hz (delta), 4-8 Hz (theta), 8-12 Hz (alpha), 12-20 Hz 
(beta-low), 20-30 Hz (beta-high), and >30 Hz (gamma). 

EEG for Cognitive State Evaluation 
Early researchers observed the sensitivity of EEG to 
changes in mental effort. For example, Hans Berger [2] and 
others [11] report observing a decrease in the amplitude of 
the alpha (8-12 Hz) rhythm during mental arithmetic tasks   
Other researchers have shown that higher memory loads 
cause increases in theta (4-8 Hz) and low-beta (12-15 Hz) 
power in the frontal midline regions of the scalp [17], 
gamma (>30 Hz) oscillations [8], as well as inter-electrode 
correlation, coherence, cross phase, and cross power [24].  

To test if alpha and theta bands were predictive of memory 
and cognitive loads in real world computing tasks, Smith et 
al. [27] compared EEG data when task difficulty was ma-
nipulated within a multi-attribute task battery (MATB) mul-
titasking environment. They report successfully creating a 
user-specific index of task load, the average values of 
which increase with increasing task difficulty and differed 
significantly between the difficulty manipulations.  

Given this evidence of the existence of reliable indicators of 
memory load, researchers have attempted to build tech-
niques that utilize these features to measure and classify 
memory load. Unfortunately, while these indicators may 
appear to be reliable when data is averaged over large time 
periods and many users, there is large variability within the 
signal for any given user at any given point in time. This 
makes using the features to classify memory loads an ex-
tremely difficult task. While it is reasonable to average the 
data when trying to make statements about the various 
rhythms, it is less useful when trying to classify user state in 
real time. For example, Jensen et al. found the increased 
theta power in only one of their ten subjects, and rather than 
an alpha decrease, they found that alpha power actually 



 

increased in many of their users [10]. However, the theta 
power they found in the one user was so large as to cause 
the data to exhibit the predicted trends when averaged 
across all users. Prinzel et al. [25] report building systems 
that adapt based on a task load metric they derived from the 
powers of beta/(alpha+theta) in the EEG signal. This raises 
questions because it again goes counter to the findings that 
alpha decreases and theta increases with higher task load. 

We have seen similar differences in our work, where EEG 
from an individual user may exhibit certain predicted char-
acteristics, but not all. For example, taken from our current 
set of experiments, Figure 2 shows very different frequency 
response patterns for two of our users. Just as in Jensen et 
al. and Prinzel et al., we found that users had signals that 
were inverted from the expected levels. Again, when aver-
aged across large numbers, the data typically exhibited the 
previously reported trends. In this paper, we assume that 
these characteristics are due mainly to individual differ-
ences and that we can build reliable models if we train on 
individual users. This also points to the importance of 
proper feature generation and selection as this is the phase 
that will account for most of the individual differences. 

In their experiments, Gevins and colleagues demonstrate 
impressive classification results of working memory and 
cognitive workload using EEG data (see [6] for a summary 
of this work). In one specific experiment, Gevins and Smith 

collected data from 8 users over three 6-8 hour sessions and 
present results showing ~95% classification accuracy be-
tween two levels of memory load [7]. They also showed 
relatively high cross-task and cross-session accuracies.  

However, subtle decisions made in their procedure leaves 
room for improvement. First, collecting 24 hours worth of 
training data from each user can be prohibitively high for 
some work. Second, they perform a Laplacian spatial en-
hancement that requires accurate per-subject head meas-
urements to filter noise from the signal. Third, they manu-
ally inspect the data and throw out periods where there are 
artifacts in the data even after performing an automatic arti-
fact rejection. This is tedious and requires expertise in read-
ing the EEG signals. They report throwing away up to 20% 
of the data, which is not desirable in our targeted settings 
where data may be scarce. Furthermore, having to perform 
this manual step between training and classification has 
implications on real-time usability of the system. Finally, 
since their design interleaved different tasks, and used ran-
dom hold out cross validation, they were training on data 
that was temporally fairly close to test data and we cannot 
be certain how well the models would generalize when ap-
plied to new data. In our work, we aim to replicate their 
high classification results and extend their work to further 
explore the space. We also set out to explore how various 
parameters such as temporal window size, amount of train-
ing data, and number of channels affect the classification. 
These factors are important to understand if EEG classifica-
tion is to be used in HCI settings. 

EXPERIMENT 
The overarching goal of this work is to extend prior work 
and to bring us closer to understanding the use of electroen-
cephalographs to measure working memory load in real 
world human-computer interaction applications. In this ex-
periment, we used a simple memory task that provided us 
with a level of control not otherwise possible with more 
complex tasks. We describe our classification methodology 
and demonstrate our ability to accurately classify between 
different task difficulties. We also describe the accuracy 
tradeoffs that exist along various dimensions. These dimen-
sions include: temporal window size, which implies lag 
when performing the classification in real time; training 
period, since we would like to minimize this; and number 
of EEG channels, which has implications on device and 
setup cost. Finally, we show that the models we build gen-
eralize to different variants of the task. 

Participants 
Eight (4 female) university students and recent graduates 
volunteered for this experiment. The average age of partici-
pants was 26.6, ranging from 18 to 34 years of age. All par-
ticipants had normal or corrected-to-normal eyesight, and 
none were color blind. Also, none of the participants had 
any known neurological disorders. Two of the participants 
were left-handed. The entire experiment took about three 
hours and participants were paid for their time. 

Figure 2: Example of different features and valences of 
changes showing up within different participants. Par-
ticipant 3 shows decreased alpha (8-12 Hz) power with 
increasing load, while participant 5 shows the opposite. 

Participant 5 also shows strong theta (4-8 Hz) dis-
criminability, but participant 3 does not. 



 

 

 

Task 
In this experiment, we employed the n-back task, an ex-
perimental paradigm that has been used extensively in func-
tional neuroimaging studies of working memory and cogni-
tive load [6,7,19]. In the n-back task, participants are 
presented a series of stimuli (e.g. letters of the English al-
phabet), one at a time. At each presentation, or trial, they 
respond with whether or not the current stimulus is the 
same as the one that they saw some number, n (e.g. 1, 2, 3, 
etc), presentations ago. Hence, for each trial, participants 
have to keep a sequence of stimuli in memory, perform a 
matching task, and then update the sequence with the new 
stimulus. See Figure 3 for a graphical representation of the 
3-back task flow. In the 0-back task, participants have to 
compare each stimulus with the first one seen in the series, 
making this solely a matching task with no updating re-
quired. Prior work has shown that increasing n, the number 
of items a user has to remember, increases the working 
memory load of the user [e.g. 7,19]. A particularly nice 
property of the n-back task is that the perceptual and motor 
demands remain constant across difficulty levels. This is 
important because it allows us to ensure that we are measur-
ing memory load and not some reaction to differing stimuli. 

For each trial, we presented the stimulus for 1 second in a 
400×400 pixel square centered on the screen, and then re-
moved it and left the screen blank for 3 seconds. Users re-
sponded with their answer within this 4 second trial win-
dow. Trials were presented back to back every 4 seconds.  

We grouped trials into sequences, each containing n pre-
loading trials followed by 30 test trials. Each sequence took 
2 minutes and was the unit for which we manipulated task 
difficulty. Sequences of trials were created by randomly 
assigning stimuli from a fixed pool of 8 items, with the fol-
lowing constraints: 1) One third of the sequence (10 trials) 
were matches. That is, the stimulus presented was the same 
as the one shown exactly n-back in the sequence. 2) One 
third were non-matches with foils. That is, even though the 
stimulus presented was not the same as the one n-back, 
there was a stimulus presented more recently than n-back 
that matched the current one, hence making the exact loca-
tion within the sequence important. 3) The remaining third 
were non-matches that did not include foils. See Figure 3 
for examples of each of these cases. 

Design and Procedure 
We were interested in developing techniques that allow us 
to classify memory load not only when training and testing 
on the same task, but also when training on one task and 
testing on another. Hence, we ran three distinct n-back tasks 
in this experiment, each drawing from a distinct set of stim-
uli. The first set consisted of 8 letters, randomly chosen 
from the set of English consonants. We did not include 
vowels because we wanted to make it difficult to chunk the 
letters into a single word or phoneme. The second set con-
sisted of images chosen to have comparable familiarity, 
complexity, and image ratings as measured by the norma-
tive data provided from a revised Snodgrass and Vander-
wart object set [26]. All images also had above 95% nam-
ing precision, indicating that different people reliably 
named objects using exactly the same word. The third set 
consisted of eight spatial locations contained within the 
400×400 pixel presentation square. We divided the square 
into nine equal sub-squares, and colored one of the bound-
ary sub-squares solid white for each of the locations. The 
center was never colored. We call these tasks the letter task, 
the image task, and the spatial task, respectively. 

We used a randomized block design, each block consisting 
of a randomly ordered 0, 1, 2, and 3-back sequence. The 
experiment was within-subjects, with each participant per-
forming multiple blocks in all three tasks. To limit the 
length of the experiment, we collected more data with the 
letter task than the other two. This allowed us to use letter 
task data to explore within-task classification and data in 
the other tasks for cross-task validation. All participants 
started by performing a practice block followed by 6 test 
blocks of the letter task. We always started with the letter 
task as this seemed representative of how a user may train a 
system on a standardized task before using it for real-time 
classification on other tasks. Participants then performed a 
practice block and 2 test blocks in each of the image and 
spatial tasks, the order of which was counterbalanced. 

W T F W F K 

Time 4 sec 

… … 

Match Non-match
w/o Foil 

Non-match 
w/ Foil 

Figure 3: Graphical representation of the 3-back task. 
This example shows a match (W and W), a non-match 
with a foil (F and T with a foil, or distractor, F in be-

tween), and a non-match without a foil (K and F). 
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Figure 4: Layout of the channels used in our experi-
ment, according to the internationally accepted 10-20 

system of EEG electrode placement. 



 

Equipment and Dependent Measures 
We collected EEG data using a Biosemi ActiveTwo 32-
channel system (www.biosemi.com), sampling at a rate of 
2048 Hz. As seen in Figure 4, we placed electrodes at ap-
proximately evenly spaced locations on the scalp using the 
internationally accepted 10-20 system [9]. We did not con-
trol or eliminate any of the traditionally considered noise 
elements (e.g. 60 Hz power hum, etc.) found in the experi-
mental environment, a university office. Before beginning, 
the experimenter explained the EEG device and requested 
that participants try to reduce unnecessary physical move-
ments during the testing phases of the experiment. Since 
this was not enforced, the extent to which motion artifacts 
impact performance is fully manifested in our results. 

Seven of the participants performed the tasks on an IBM 
Thinkpad laptop with its 14.1" LCD screen running at 
1024×768 pixels. Due to technical problems, the last par-
ticipant used a Compaq Evo N800C laptop with a 15" LCD 
screen running at 1024×768 pixels. Analysis showed no 
significant behavioral or classification differences between 
this participant and the other seven. Each participant sat at a 
comfortable distance from the laptop (about 30") and pro-
vided answers with the left (“non-match”) and right 
(“match”) arrow keys on the laptop keyboard. All users 
used their right hand to provide input. As visual feedback, 
their answer highlighted at the bottom of the screen when 
they hit a key. They were free to change this as many times 
as they liked during the 4 second trials.  

We collected response times and the accuracy of answers as 
dependent measures. We also collected subjective ratings of 
the difficulty of the tasks and participant confidence in their 
answers after each set of 2 test blocks. At the end of the 
experiment, we collected subjective ratings of difficulty and 
participant confidence levels across the three tasks. 

Behavioral and Subjective Results 
In this section we describe the performance and subjective 
results, which provide evidence that our Difficulty manipu-
lation was effective. 

Performance Results 
We performed independent 4 (Difficulty: 0-back v. 1-back 
v. 2-back v. 3-back) × 3 (Task: letter v. image v. spatial) 
repeated measures analysis of variance (RM-ANOVA) for 
the response time and accuracy measures.  

For response time, we observed a main effect of Difficulty 
(F3,21=23.885, p<.001), with higher difficulty leading to 
longer response times. See Figure 5 (top) for a chart of the 
medians. Posthoc tests revealed that all Difficulty levels 
were significantly different from each other (p<.001), ex-
cept for the adjacent ones, the 1-back v. 2-back and the 2-
back v. 3-back. All posthoc tests we report in this paper 
were corrected using Bonferonni adjustment for multiple 
tests. We also observed a main effect of Task (F2,14=5.013, 
p=.023), driven by longer response times in the spatial task 
than the image task (means: 869.45 v. 739.11 seconds re-

spectively, p<.05). Finally, we found an interaction between 
Difficulty and Task (F6,42=3.268, p=.01), driven by re-
sponses in the 2-back and 3-back being comparatively 
slower in the spatial task than the other two tasks.  

Analysis of accuracy data revealed a main effect of Diffi-
culty (F3,21=10.824, p<.001), driven by lower accuracies in 
the 3-back than the 0-back (p=.084), 1-back (p=.049), and 
2-back (p=.062), see Figure 5 (bottom). We found no other 
main effects or interactions in the accuracy data. 

We also looked at learning effects as users progressed 
through the experiment. We found learning effects within 
the letter task, but not within any of the other tasks or be-
tween the sets of tasks. Within the letter task, response time 
showed significant effects of trial number (F5,15=7.981, 
p<.001), driven by significantly slower responses in the first 
trial than the third (p=.026), forth (p=.044), fifth (p=.010), 
and sixth (p=.003). Accuracies showed marginally signifi-
cant effects of trial within the letter task (F5,15=2.093, 
p=.07), driven by lower accuracies in the first trial than the 
fifth (p=.01) or sixth (p=.01). These results suggest that 
users were still adjusting to the task in the first trial or two. 
While dropping these from our EEG classification efforts 
might have increased our classification accuracies, we de-
cided to leave them in to get a conservative lower bound 
estimate of how well we can do, even with noisy data.  

Figure 5: Response times significantly increase (top) 
and responses become less accurate (bottom) when 

memory set size, n, increases in the n-back task.  
Error bars in all graphs represent +/- SEM.



 

 

 

Subjective Results 
At the end of each set of two blocks, we asked participants 
to rate both the perceived difficulty as well as confidence in 
their answers for each of the Difficulty levels. Participants 
responded on a 7-point Likert scale, with increasing ratings 
representing less difficulty and higher confidence in their 
answers. We ran a Friedman’s Chi-Square test on these 
subjective ratings. We observed a main effect of Difficulty 
in the perceived difficulty metric (χ2(3)=22.48, p<.001) as 
well as the confidence in answers metric (χ2(3)=21.08, 
p<.001). As expected, our higher Difficulty levels resulted 
in subjective ratings of higher difficulty (mean ratings: 
6.85, 6.7, 5.33, 2.88, for 0, 1, 2, and 3-back respectively) 
and lower confidence (mean ratings: 6.68, 6.5, 5.33, 3.1). 
At the end of the experiment, participants rated the per-
ceived difficulty and confidence across each of the three 
tasks. We found no significant effects with this data, though 
means seem to support performance results showing that 
the spatial task might have been slightly harder than the rest 
(mean ratings: 5.0, 4.5, 2.5, for the letter, image, and spatial 
tasks) and had participants less confident of their results in 
this task (mean ratings: 5.0, 5.0, 4.0). 

Classification Methodology 
With the above results suggesting that our task was working 
as expected, we move to classification of the EEG data. In 
this section we describe the different phases of our classifi-
cation methodology. First, we perform basic signal process-
ing to remove extraneous data and transform the time series 
data into a time independent data set. Next, we compute a 
set of features based on prior neurophysiological evidence, 
some of which we mathematically combine. Then, we use a 
novel feature selection process to prune the feature set, 
keeping only those that add the most information to the 
classifier without over-fitting, representing uninteresting 
artifacts such as drift, or overlapping with each other. Fi-
nally, we use these features to build a Naïve Bayes density 
model and perform classification. We describe each of 
these phases in the following subsections.  

Basic Signal Processing 
We measured EEG data for training and classification dur-
ing each block of n-back trials excluding the 4-12 second 
pre-loading period in which it is difficult to reason about 
the user’s cognitive load. This provided us with 4800 sec-
onds (80 minutes) of useful 32-channel data for each par-
ticipant: 2880 seconds in the letter task, and 960 seconds 
each in the image and spatial tasks. While we could have 
discarded data from erroneous responses or used event-
related potentials (e.g. [17]) to derive more signal, we feel 
that detecting and linking behavioral responses as well as 
discrete stimuli presentation to the data may not always be 
possible. As a result, we do not demarcate any data as being 
special in our analysis. 

As the recording rate of 2048 Hz is higher than required 
given our intended feature set, we down-sampled the data 
using a low pass filter to obtain a 256 Hz signal. We then 

divide the EEG signal into multiple overlapping windows, 
as done in previous work [15], and transform data from 
each window into the frequency domain using power spec-
tral density (PSD) estimation. Each of these windows is 
treated as a semi-independent data-point. 

Feature Generation 
Adopting select features used in previous work [7,15], we 
compute the following for each instance: signal power in 
each of the standard six EEG frequency bands for each 
channel as well as phase coherence (similarity in mean 
phase angle) in each band across select pairs of channels. 
Additionally, we calculated signal powers from the 4-13 Hz 
band in 1 Hz intervals, from 13-31 Hz in 2 Hz intervals, and 
from 32-50 Hz in 4 Hz intervals. We projected that this 
would provide higher resolution estimates and more distinct 
features in these smaller power bands, where we expected 
the most information. Since prior work provides evidence 
of elevated theta powers and depressed alpha powers with 
increasing cognitive load, we also included theta/alpha and 
theta/(alpha+beta) features for each channel. This led to 
anywhere from a few hundred to over a thousand features 
depending on the number of channels considered. 

Feature Selection and Classification 
Once we have generated our full set of features, we apply 
an efficient feature selection process to select the most pre-
dictive and robust features. To do this, we use a relative 
information gain criteria evaluated for each feature. Infor-
mation gain is estimated by discretizing each feature into 15 
equally spaced bins and calculating mutual information 
based on a Naïve Bayes density model [16]. We label the 
information gain that represents how predictive the features 
are of the Difficulty condition, IGc. 

EEG data is often affected by device and physiological 
drift. This observation is not new, and many researchers are 
working on carefully modeling device and physiological 
drift so that they can somehow subtract it, leaving only use-
ful signal [13]. Unfortunately, modeling the drift accurately 
is difficult in controlled settings, and even more so in the 
uncontrolled settings such as a typical office environment. 
We propose selecting features that have not been corrupted 
by slowly varying signal noise which initially appear pre-
dictive of the Difficulty condition. 

To do this, we use the same process for calculating IGc to 
calculate the information gain that represents how predic-
tive the features are of a particular contiguous sequence of 
n-back trials, IGs. Due to the randomized block design, in 
which sequences of trials would be repeated a number of 
times in random order throughout the experiment, we can 
distinguish between robust and spurious correlations. Since 
we would like to maximize how predictive the features are 
of any condition and minimize how predictive they are of 
contiguous sequence, we use the ratio IGc/IGs to obtain our 
final information gain metric. We found that our gain met-



 

ric was also able to automatically remove features which 
were corrupted by muscle artifacts such as eye blinks. 

We then use the 30 features with the highest IGc/IGs values 
to train our classifier. This number was empirically chosen 
from pilot data, but the models do not seem sensitive to 
this. Classification uses the same discretized Naïve Bayes 
density model to select the maximum a posteriori class. 

Classification Results 
We evaluated the classification accuracy using a cross vali-
dation scheme that accounted for the block design of the 
experiment. With traditional cross validation, random sam-
ples are held out from the training set and used to test the 
accuracy of the model. Unfortunately, doing this would 
provide training instances that occur adjacent to test in-
stances. This produces significantly overestimated accuracy 
estimates and would not be representative of real world, 
real time use in HCI settings. We caution readers to be 
aware of this when comparing results between studies. In 
our block cross validation scheme, we hold out an entire 
contiguous sequence of trials for testing in each fold. This 
is more representative of performance if a new sequence 
were recorded and tested. In this experiment, we conducted 
a 24-fold block hold out cross validation for the letter task. 
In this section we report on the classification accuracies for 
within-task training and testing using the letter task, fol-
lowed by the cross-task results in which we train on the 
letter task and test on the image and spatial tasks. 

Within-Task Results 
We present the within-task classification accuracies as a 
series of parametric results, varying temporal window size, 
amount of training, and the number of EEG channels used. 
Calculating and presenting all permutations of these factors 
would require an inordinate amount of time and space and 
would not yield much more information than we present 
here. Hence when we were not explicitly varying a particu-
lar factor we defaulted settings to 10 second window size, 8 
channels, and 5 blocks worth of training data. Since we 
present results from classifications with different numbers 
of Difficulty levels, we should note that 5 blocks of training 
data is 20 minutes in a 2-way classification, 30 minutes in a 
3-way classification, and 40 minutes in a 4-way classifica-
tion. We highlight these parameters where it makes sense in 
all graphs of the within-task classification accuracies. 
Likewise, rather than presenting classification results for all 
11 tests we ran, which included six pairwise classifications, 
four 3-way classifications, and the 4-way classification, we 
choose two 2-way, two 3-way, and the 4-way classification. 
Other tests we ran suggest that these numbers are represen-
tative of the space and that logical extensions can be made 
to draw legitimate conclusions. 

Window Size. The first factor we vary is the window size, or 
the amount of temporal data that we transform into the fre-
quency domain and treat as a single data instance. We 
chose window sizes of 2, 4, 10, 20, 30, 60, and 120 sec-

onds, where 120 seconds is the length of the entire n-back 
sequence. 

First, as shown in Figure 6, we were able to replicate classi-
fication accuracies reported in previous work (e.g. our accu-
racies of 92.3% accuracy at 30 seconds is comparable to 
Gevins’ 2-way accuracy of ~95% using 27.5 second win-
dows [7]). The interesting thing about this is that because of 
the robustness of our feature selection process, we were 
able to attain these accuracies without performing any ex-
plicit artifact rejection. For example, Gevins et al. report 
using both automatic and manual artifact detection and 
throwing away nearly 20% of their data before training and 
classifying. We were also able to attain these results with 
far less training data than previously used. For the above 
data point, we use 20 minutes worth of training data com-
pared to several days’ worth as reported in previous work. 
As we will show, we could drastically reduce this amount 
of training data without affecting classification very much.  

Second, we demonstrate the tradeoff that exists between 
window size and classification accuracy. This is important 
as the window sizes imply lag if the classification is operat-
ing in real time, as they might be in many HCI applications. 
As one might expect, the curves rise much more steeply as 
smaller window sizes increase to medium, and then seem to 
mostly plateau at the larger window sizes. The other inter-
esting thing to note is how all the classifications, even the 
3-way and 4-way ones, seem to converge at greater than 
90% accuracies as the window sizes get larger. We are not 
aware of previous work that has shown accuracies for more 
than a 2-way classification.  

Amount of Training Data. The second factor we vary is the 
amount of training data used to build the model. We picked 
levels of 1, 2, 3, 4, and 5 training blocks, using a 10 second 
window and 8 channels of EEG data. We added training 
blocks starting from the first one the user performed and 
progressing in time. We believe that this is a conservative 
estimate of accuracies given that the behavioral results sug-
gest that participants were still learning the task in the first 
block or two. However, boosting our accuracy results by 
eliminating data or starting from the last block would be 

Figure 6: Classification accuracy increases as windows 
size (lag) increases. Interestingly, accuracies converge 

at very high levels with long enough windows. 



 

 

 

artificial, possibly masking the fact that participants would 
still need to be trained with initial blocks before attaining 
that level of expertise. 

Surprisingly, we see a much smaller reduction in accuracy 
than we had expected as we reduce the available training 
data. As seen in Figure 7 (top), with only 4 minutes worth 
of training data (58 training instances), we are able to attain 
75.7% accuracy for the 0-back vs. 3-back classification, a 
drop of only about 9% when training with 5 times as much 
data. Figure 7 (bottom) shows this same classification accu-
racy data plotted against time rather than the number of 
blocks. These results suggest that our classification meth-
odology allows us to attain relatively high accuracies with 
very little training data, a result that is extremely important 
if this is to be used in HCI settings. 

Number of EEG Channels. The third factor we vary is the 
number of EEG channels used. We tested our classification 
scheme with 1, 2, 8, 16, and 32 channels of EEG data, cor-
responding to commonly used sets that propose uniform 
distribution balanced across hemispheres. For a list of 
channels used, see Table 1. Again somewhat surprisingly, 
while much previous work has utilized relatively high 
channel EEG systems with complex schemes to eliminate 
inter-channel noise (e.g. Laplacian spatial filtering), we 
found that using unfiltered data from 2-channels was nearly 

as good as using all 32 channels. See Figure 8 for a graph of 
these results. Various simple filtering schemes either did 
not improve classification much, and even sometimes hurt 
it. This implies that using our feature selection and classifi-
cation schemes allow us to use small numbers of channels, 
and potentially inexpensive off-the-shelf EEG systems. 

Cross-Task Results 
While we have shown accurate classification results for 
training and testing on the same task, there exist scenarios 
in which we would like to train the system on one task and 
classify on another. For example, this would be useful since 
we could not train on the same task if we were trying to 
profile the user’s load as they learn a brand new task. Train-
ing and classifying across tasks also allows us to evaluate 
the generality of the models that we are building.  

In order to validate the cross-task classification we selected 
features and trained on the letter task and then used this 
model to classify data collected from the image and spatial 
tasks. To keep presentation brief, we report accuracies for 
the 0-back vs. 3-back classification using a 10 second win-
dow, 8 EEG channels, and 20 minutes of training data. As 
can be seen in Figure 9, the accuracy within the letter task 
does not fall significantly when applied to cross-task classi-
fication (means: 84.0% vs. 80.4% and 77.04% for within-
task vs. testing with the image and spatial tasks, respec-
tively). Further analysis shows that the average cross-task 
tradeoff curves look very similar to the within-task ones. 
For example, with 4 second windows, 4 minutes of training, 
and 2 EEG channels, the 0-back vs. 3-back accuracy falls to 
62.5%, compared to 69.4% with 10 second windows, 12 

Table 1: Channels selected for use in each analysis. 

Figure 7: Classification accuracy increases marginally 
as more training data is added. This is seen both with 
number of blocks (top) as well as with raw training 

times (bottom). 

Figure 8: Classification accuracy increases drastically 
from up to 2 channels but seems to plateau with the 

addition of more channels. 



 

minutes of training, and 8 EEG channels, or 70.1% when 
we increase that to 30 second windows.  

Summary of Classification Results 
We have presented results showing that we are able to at-
tain relatively high classification accuracies for memory 
load using our feature selection and classification scheme. 
Within this scheme, we have also shown the tradeoffs that 
exist between accuracy and window size, which translates 
into classification lag when using this with real-time HCI 
applications. Furthermore, results show that our accuracies 
are not significantly reduced when we reduce the amount of 
training data or the number of EEG channels, suggesting 
that our classification methodology could lead to lower 
equipment and time overhead than previously articulated. 
Additionally, we have shown that our models transfer rea-
sonably well to different variants of the n-back task. These 
results, when combined, bring us closer to being able to 
utilize EEG technologies in HCI work. 

DISCUSSION AND FUTURE WORK 
In this work, we have presented a methodology that yielded 
high classification accuracy for working memory load, both 
within task as well as across related tasks. We specifically 
tailored our methodology as well as our experiment and 
validation so that the results represent the potential for us-
ing these techniques in HCI research. However, this is just a 
first step and much future work remains. 

In the experiment, we have assumed that increasing the 
number of items a user had to remember uniformly in-
creased the working memory load for the entire period. This 
provided ‘ground truth’ for our memory load measurements 
and allowed us to cleanly label the data and test the classi-
fier. However, while this might be true on average, it is 
almost certainly not true in all instances, especially when 
the temporal windows used were relatively small. In some 
of those cases, we may actually be classifying the load cor-
rectly even though it may not match the label we have as-
signed based on the average task difficulty. In future work, 
we aim to validate the temporal resolution that we can at-
tain with our classification. We hope that this validation 

would alleviate the need for collecting ground truth in real 
applications and provide a measure that would allow us to 
continuously monitor how working memory load varies, 
even within a single task. 

The stimuli used in the task variants for cross-task valida-
tion were fairly different perceptually, and possibly cogni-
tively. However, the task structure was the same across all 
of them. While it is encouraging that we are able to classify 
across these similar tasks, a significant amount of work 
remains to explore how much task variation we can ac-
commodate. We would also eventually like to develop a set 
of canonical classification tasks that researchers can use for 
various cognitive measures. 

Cursory explorations into cross-user classification indicate 
that a naïve implementation in which we trained on several 
users and tried to apply the model to a new user did not 
work very well. Given the individual differences we saw 
across users, this is not altogether surprising. While we 
would have liked to have found a set of features that could 
robustly be used across users, analysis on features that were 
selected by our system suggest that these in fact differed 
quite drastically. However, our feature selection process 
provides us with the ability to evaluate entirely new fea-
tures that may generalize across users. Another approach 
that may yield interesting results is one that first tries to 
cluster people who exhibit similar characteristics in their 
signal and then apply different models to classify their load. 
Exploring both of these approaches remains future work. 

CONCLUSION  
In this paper, we have described our EEG classification 
methodology, including a novel feature selection scheme 
that maximizes information gain while minimizing the ef-
fects of drift. This seems to eliminate the need to build 
complex models and understanding of any drift that exists 
in the data. We have also described an experiment explor-
ing the use of an EEG to classify working memory load. In 
this experiment, we show that we are able to attain high 
memory load accuracies for 2-way, 3-way, and 4-way clas-
sifications. We also demonstrate the tradeoffs that exist 
between the accuracies and temporal window size, amount 
of training data, and number of EEG channels. Results sug-
gest that we can attain relatively high classification accura-
cies even with shorter windows, less training data, and a 
smaller number of channels than previously reported. This 
is encouraging and is a step towards using these technolo-
gies in HCI environments, due to a reduction in costs and 
complexity of application and analysis. Finally we show 
that the models we build transfer across variants of the task, 
again providing encouraging evidence of the generality of 
our techniques.  
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Figure 9: Classification accuracy remains relatively 
high even when training on one task variant (letter) 

and testing on the others (image or spatial). 
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