

FASTDash: A Visual Dashboard for Fostering Awareness
in Software Teams

 Jacob T. Biehl1 Mary Czerwinski2 Greg Smith2 George G. Robertson2
1Department of Computer Science

University of Illinois
Urbana, IL 61801, USA

jtbiehl@cs.uiuc.edu

2Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{marycz, gregsmi, ggr}@microsoft.com

ABSTRACT
Software developers spend significant time gaining and
maintaining awareness of fellow developers’ activities.
FASTDash is a new interactive visualization that seeks to
improve team activity awareness using a spatial
representation of the shared code base that highlights team
members’ current activities. With FASTDash, a developer
can quickly determine which team members have source
files checked out, which files are being viewed, and what
methods and classes are currently being changed. The
visualization can be annotated, allowing programmers to
supplement activity information with additional status
details. It provides immediate awareness of potential
conflict situations, such as two programmers editing the
same source file. FASTDash was developed through user-
centered design, including surveys, team interviews, and in
situ observation. Results from a field study show that
FASTDash improved team awareness, reduced reliance on
shared artifacts, and increased project-related
communication. Additionally, the team that participated in
our field study continues to use FASTDash.

Author Keywords
Collaborative Programming, Awareness, Visualization,
Field Study, Large Display.

ACM Classification Keywords
H5.3 Information Interfaces and Presentation (e.g., HCI):
Group and Organization Interfaces

INTRODUCTION
As the complexity of software systems continues to
increase in parallel with a growing economic dependence
on these systems, there is an ever-greater need for software
companies to produce reliable, bug-free products. A recent
study by the National Institute of Standards and
Technology (NIST) estimates that software defects cost the

U.S. Economy $59.6 billion annually [2]. While the causes
of software defects are wide-ranging, a significant
proportion of errors are caused by a poor collective
understanding of project status and fellow team member
activities within the shared software project [14, 26-29].

Unlike other collaborative jobs where workers can observe
each other’s activities as they physically move and perform
actions within their shared workspace, programmers use
electronic tools to operate in a shared virtual environment
where other programmers’ activities are difficult (or even
impossible) to observe directly. This significantly increases
the effort for programmers to gain and maintain an
awareness of how their shared workspace is changing.

Many development teams are leveraging innovative
methodologies such as Agile [31] and eXtreme
Programming (XP) [13] to increase awareness and
cooperation among programmers. These methodologies
increase awareness and team interaction by employing
shortened, highly iterative development cycles and co-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2007, April 28–May 3, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-593-9/07/0004...$5.00.

Figure 1: FASTDash showing three programmers working in
a shared code base.

CHI 2007 Proceedings • Distributed Coordination April 28-May 3, 2007 • San Jose, CA, USA

1313

locating programmers in the same physical workspace. Yet,
from our own interviews and surveys, we found that these
programmers still lack adequate tools to support sufficient
ongoing awareness of group members’ actions. For
example, a key piece of awareness information such as who
is working with which source files is difficult to determine.

To assist software teams in gaining an ongoing awareness
of team activities, we created a new visualization tool,
called FASTDash (Fostering Awareness for Software
Teams Dashboard, see Figure 1). Designed for project
teams of 3-8 programmers, FASTDash enables immediate
access to key information for group awareness. Such
information includes which code files are changing, who is
changing them, and how they are being used. By loading
FASTDash on a large display in the shared workspace or
on a second personal display (both of which are common in
the environments we studied), programmers are provided a
common, shared source for team activity awareness.

FASTDash was developed after a series of surveys,
interviews and team observations, and then evaluated in
situ with an actual programming team. In this field study,
we found that FASTDash increased group awareness and
that programmers found value in using the tool. In addition
to the visualization tool, the contribution of this work
includes: an underlying awareness reporting system which
can be used to support a multitude of programming
environments, repository systems and future visualization
tools; a new observation coding scheme that can be more
broadly used for studies of group behavior in shared
workspaces; and results showing how a peripheral
awareness display affects group programming behavior.

RELATED WORK
In this section, we discuss previous research on group
programming practices, review existing tools for promoting
awareness within software development activities, and
situate our work within the broader arena of group
awareness research.

Studies of Group Programming Practices
Many studies have been performed to better understand the
work practices of software development teams. In their
field study, Curtis et al. [14] investigated how design
decisions were made, represented, communicated and
updated throughout the development process. They found
that teams face significant communication and coordination
breakdowns attributable to the absence of appropriate
communication tools that supported their work practices.

Similarly, Kraut and Streeter’s [26] analysis showed that
programmers lack effective informal communication tools,
especially those that promote a team-wide view of a
project’s organization. Wu et al.’s [37] work also supports
programmers’ preference for communication tools that are
lightweight. Gutwin et al.’s [22] interviews with distributed
programmers found that explicit communication methods,
like email and chat, were only effective when programmers
made a significant effort to stay committed to those tools.

Singer [33] conducted a series of interviews with
programmers across a variety of corporate and government
software teams. Through these interviews, she found that
programmers rarely use formal documentation, as it is too
often outdated and inconsistent. The code base itself was
found to be the de facto source programmers used to gain
and maintain an understanding of program functionality.

More broadly, several studies have investigated the overall
breakdown of a programmer’s time. These studies report
that maintaining an awareness of a project’s status
consumes a significant proportion of a programmer’s time
[27-29]; one study reports programmers spend as much as
40% of their work day communicating about code [27].

Our work builds on the findings and lessons of these
previous studies. FASTDash specifically seeks to enhance
awareness of other programmers’ actions within the team’s
shared code base – their primary information source for
project status. The tool is also lightweight, automatically
collecting a broad range of activity information and
providing this information in a single view. Programmers
who have used FASTDash indicated that the tool improved
their awareness of other developer’s actions.

Awareness Tools for Software Development Activities
Several tools have been created to enhance an individual’s
awareness and understanding of large software code bases.
SeeSoft [18] and its variants [24, 25, 32] provide a line-
based view of the code. Each line of code is mapped to a
thin row in a column which represents a code file; rows are
colored to represent a particular attribute of the code line.
For example, lines that have recently changed appear red.
CodeThumbnails [16] provides miniaturized views of code
files that can be arranged spatially. Highlights are shown on
the sections of files that the programmer has open in the
code editor. Programmers can click on the thumbnails to
navigate within the code base.

TeamTracks [15] provides information about how fellow
developers have navigated a code base in the past. This
enables programmers to build on the actions of others, and
to better understand and navigate the code themselves.

While these tools focus on improving understanding and
navigation of a large code base (e.g., what files contain
which classes and methods, or what sections of code have
changed in the past), FASTDash focuses on providing a
real-time awareness of fellow team members’ activities
within the shared code base (e.g., who has which file open,
or what files are currently being edited).

Augur [19] provides a line-oriented view like SeeSoft, but
combines activity information as one of the visualization
attributes. Augur provides a per-line level view of activity,
good for learning specific changes within a single or small
set of code files. However, this line-oriented view has
difficulty accommodating large code bases. In contrast,
FASTDash’s file-oriented view allows code bases of well
over a hundred source files to be seen in a single view.

CHI 2007 Proceedings • Distributed Coordination April 28-May 3, 2007 • San Jose, CA, USA

1314

Similarly, Palantír [30] and Jazz [12] provide visualizations
of programmers’ actions within a source control repository
(e.g., who is checking in a file). FASTDash includes source
repository activity and more. With FASTDash, one can see
fellow programmers’ ongoing local file activities that occur
outside of a source repository. For example, FASTDash
allows developers to maintain an awareness of which files
are opened (but not necessarily checked out) by a fellow
programmers, which method or class a programmer is
currently editing, or if a programmer is debugging code.

SeeSys [7] visualizes the historical evolution of changes for
an entire code base. Using a space-filling representation of
the code base (similar to a Treemap), the visualization
highlights changes using animations of different code
snapshots over time. In contrast, FASTDash is designed to
allow programmers to quickly determine and maintain an
awareness of the activities currently taking place within the
code base and to aid programmers in coordinating their
ongoing activities within a shared code base.

Group Awareness
Group awareness, the understanding of who you are
working with, what is being worked on, and how your
actions affect others, is essential to effective collaboration
[17]. A common method for gaining and maintaining this
awareness is through the use of shared artifacts [34].

Several tools have been created to convey status of shared
artifacts. Tools like Community Bar [36] and others [3, 6,
9] allow collaborators to share views of artifacts currently
open on their screens with other collaborators. Tools like
SEAPort [10] extend the capabilities to gain artifact
awareness when working within a physical workspace
composed of multiple shared and personal devices. Systems
such as CoWord [38] and Network Text Editor [23] enable
users to collaboratively work inside a shared document.

FASTDash is different from these existing tools in two
ways. First, it provides a holistic view of the entire shared
workspace. Second, it does not replicate a collaborator’s
local workspace to remote users, but rather extracts and
visualizes just the key individual activity information
useful in an overview of workspace activity.

While designed for software development activities, in
principle FASTDash is applicable to any work environment
where many shared artifacts exist within the workspace,
where those artifacts are usually accessed by multiple
users, and where there is a need for collaborators to
maintain awareness of how those artifacts are being used.

STUDY OF EXISTING PRACTICES
Following a user-centered design process, we started by
conducting a survey and interviews with programmers to
learn more about their awareness needs.

Motivation and Methodology
Building off the work of [20, 27, 37] and others, we sought
specifically to understand the types of information used by
programmers to establish group awareness, the methods

used to gain and exchange this information, how often this
information was consulted, how often it changed, and how
those methods differed across different programming
methodologies (e.g., traditional, Agile, SCRUM) employed
at Microsoft Corporation, a large software company.

Our survey was distributed electronically using the
corporate network. The survey contained over 30 questions
about programmers’ existing practices. Questions inquired
as to how often programmers collaborate with fellow team
members, what types of information they use to acquire
awareness, and which existing tools are used for acquiring
awareness. Most of the questions were free form response,
while some were agreement/disagreement rating questions.
90 employees responded. Respondents’ responsibilities
included creating code, testing code, and/or project
management. Respondents ranged across product teams,
project sizes, and experience with different development
methodologies. Respondents received no remuneration.

Thirteen of the survey respondents, comprised of both
Agile and traditional programmers, were selected for one
hour follow-up interviews. During these interviews we
asked them to demonstrate or explain how they attain and
maintain awareness of fellow programmers’ actions. These
interviews provided a contextual depth to complement the
breadth of our survey results. Interviewees were provided a
free dinner coupon for their participation. In addition, since
Agile programmers reported that they often used large,
projected displays in their environment, we chose to
investigate this group further to understand how a tool like
FASTDash might be integrated into their current practices.

Results
From our surveys and interviews, we found the following:

• Programmers use a key set of information items to form
an awareness of others’ activities. Overwhelmingly, we
found that work items (e.g., which tasks are assigned to
which people), bug descriptions, and the status of the
shared code base (which files are checked out and being
edited) to be the most common information items sought.

• Programmers use many sources to acquire their key set
of information items. Programmers used both informal
tools (e.g., whiteboards, sticky notes) and formal tools
(e.g., bug databases, design documents). Supporting
Singer [33], we also found source code and source code
repositories to be a frequently used information source.

• While most information items change on a weekly or
monthly basis, the most often used are those that change
on a daily, hourly or minute-by-minute basis. We found
that the key information items used to gain awareness are
also the items that change frequently. Our interviews
found that programmers would keep the tools for
acquiring these key information items open, often
configured to be visible on their screens.

• Little differences in the methods used to gain awareness
were seen across programming methodologies. We

CHI 2007 Proceedings • Distributed Coordination April 28-May 3, 2007 • San Jose, CA, USA

1315

found that the teams following the Agile methodologies
communicated verbally more often, and communicated
more quickly and frequently when the default
information gathering method failed or provided
insufficient or conflicting information. Otherwise we
found their methods and use of tools for gathering key
information items to be consistent with the other
programming methodologies.

• Programmers saw great potential for large shared
displays to be used for awareness, but their existing tools
were not effective for this use. Though we found the use
of large shared displays to be sporadic, we did discover
that when used, the information displayed and the
communication that resulted were crucial to the ongoing,
collaborative activity of the team. We also discovered
that sharing information on the large display was
cumbersome and tedious, since only one programmer’s
information could be viewed at a time.

Design Implications
Based on our interviews, we determined that programmers
could significantly benefit from a tool that enabled quick
acquisition and maintenance of workspace awareness. We
specifically targeted source code activity as the principal
information item that our tool would provide. While other
information items were found to be important, we chose
source code activity for three important reasons: 1) it was
the information item that changed most frequently; 2) it
was what programmers spent the most effort acquiring; and
3) it was the universal referent around which most of the
other information items (work items, bug status, feature
requests, and more) were focused.

FASTDASH
The dashboard is implemented in three components: the
front-end visualization runtime, a plug-in for Visual Studio
(a commonly used integrated development environment),
and a SQL database. FASTDash also uses a source control
management (SCM) system for source file data. The
current implementation supports two existing SCM systems

Figure 2: The FASTDash visualization runtime showing the active file and source code repository activities for a project with
two active programmers. Call-outs explain individual features.

CHI 2007 Proceedings • Distributed Coordination April 28-May 3, 2007 • San Jose, CA, USA

1316

(an internal system used at Microsoft and Team Foundation
Server [4]), but the design of the plug-in allows it to be
easily extended to support alternative repository systems
(e.g., CVS [1] or SVN [5]).

Visualization Runtime
The visualization runtime provides programmers with
several pieces of key information to enhance awareness of
group programming activities (Figure 2). At the foundation
is a spatial representation of the project’s code base,
implemented using a modified version of the Squarified
Treemap algorithm [11]. Within the representation, folders
are visualized as nested rectangles; the size of each
rectangle is based on the number of files contained in the
folder. Files are represented in the visualization by a textual
label of the file’s name and icon. Representing files and
folders in this way allows the layout to remain spatially
stable as items are added and removed from the code base.

Informed by our study of existing practices, we selected
two types of development activities to overlay on the
spatial representation: active file actions and source
repository actions. Active file actions are based on the
programmer’s activity within his or her current Visual
Studio session(s). File action information is useful because
it helps convey the presence and interest of a programmer
within areas of the shared code base. Active file
information includes (with reference to Figure 2):

• Which files are open and by whom (e and g),
• Which files are currently being edited (f),
• Which file a programmer has in focus (a and d),
• What development modality (edit or debug) the

programmer is in (a and d),
• If available and appropriate, which method or class the

programmer is currently editing/viewing/debugging (c).
Source repository actions are based on the programmer’s
activity within the project’s source repository system.
Repository actions are useful because they allow fellow
programmers to understand how the code base is currently
changing. Source repository information includes:

• Which files are checked out and to whom (f and i),
• Which checked out files are different from the current

version in the repository (i),
• Where there are potential checkout conflicts; e.g. where

two programmers have the same file checked out (b).
In addition to the development activities, the visualization
also allows programmers to attach comments to specific
files. Markers for existing comments are shown as flags
near the file’s name (h). Programmers can view or edit a
comment by clicking on its flag (Figure 3). New comments
can be added by right-clicking on a particular file and
selecting the Add Comment option.

The visualization runtime queries the SCM system at
startup to build the source file hierarchy, and subsequently

begins polling the central SQL database for team activity.
As an independent executable, the visualization runtime
can easily be placed on a shared screen in a group’s
workspace (e.g., a hallway display or projected display in a
common work area), on an individual programmer’s
workstation, or on a small peripheral display.

Visual Studio (VS) Plug-in and SQL Database
The Visual Studio plug-in is responsible for providing
activity data to the central SQL server for use by the
visualization runtime. It uses the standard VS plug-in API
to monitor which files are open, the current development
modality (edit or debug), which file the programmer is
currently working in (file in focus), and which method or
class he or she is working on. Each running instance of the
plug-in maintains a connection to the central SQL database
and reports its active files to this server, identifying itself
by machine name, user, and process ID. Plug-ins also
periodically poll the SCM system for file checkout status
and use hash signatures of the local and repository files to
determine if a checked out file has been changed.

Multiple instances of the plug-in for a given workstation
cooperate so that only one takes responsibility for reporting
these source repository actions to the central server at any
given time. In order to keep all of the active file and source
repository state consistent and current, the server maintains
a list of reporting processes and periodically cleans up after
processes that have unexpectedly stopped reporting. All of
the plug-in’s polling and server communication is done on
a background thread to avoid interfering with the
programmer’s user interface experience.

FIELD STUDY
To better understand FASTDash’s impact on users’
awareness of fellow programmers’ activities, we performed
an observational study of a software team’s collaborative
behavior before and after the introduction of our tool.

An observational approach was chosen because we felt it
better addressed our goal of gaining an overall
understanding of how FASTDash affects group
programming behavior. We felt that allowing programmers
to work on their own projects, in their own workspace over
a period of several days would provide more useful and
representative data compared to a controlled lab study.
Further, our in situ approach allowed us to understand how

Figure 3: A comment box as it would appear when a

programmer is viewing, updating or adding a comment.

CHI 2007 Proceedings • Distributed Coordination April 28-May 3, 2007 • San Jose, CA, USA

1317

the use of our tool might fit into the real-world
methodologies and practices used by programmers.

Observation Coding Scheme
Many coding schemes exist for the capture and
categorization of user behavior, and our investigation led us
to consider three widely used schemes. Interaction Process
Analysis (IPA) [8] enables experimenters to capture and
categorize both task-oriented and social-emotional
leadership roles within a group. Gutwin et al.’s mechanics
of collaboration [21] codes the basic mechanisms of
teamwork. Olson et al.’s work on analyzing collaboration
[28] provides a reliable set of categories within which to
classify activities that take place during design meetings.

However, the existing schemes did not cover the complete
set of activities that we found to be essential to our study
and that would be effective for our workspace and group
configuration. Further, many schemes lacked classifications
that could be easily quantified and compared across
different conditions. As a result, we leveraged the earlier
work to develop a new coding scheme (summarized in
Table 1) that was a synthesis of the most relevant parts of
existing schemes and our basic requirements.

Our coding scheme is divided into five main categories:
communication, shared display use, shared artifact use,
collaboration type, and collaboration configuration.
Communication is broken down into eight categories, each
representative of a different contextual class of
communication. For example, an advice/instructional
communication event would be coded when a programmer
was heard providing instruction or advice on how to
complete a task; agreement was coded when a programmer
made a verbal agreement with the communication or action
of another programmer.

Because our initial study of existing practices showed that
inter-group communication rarely occurred outside of the
verbal communication channel, we designed our coding
scheme to focus on capturing verbal exchanges between co-
located group members. For non-verbal communication
behaviors (e.g., email or instant messaging), the
collaboration type and configuration used were noted.

Shared display behaviors include categories for describing
how a large projected or wall mounted public display is
used, and what types of information are displayed on it.
Shared physical artifact use refers to whiteboards, sticky
notes, and other physical artifacts that are used as shared
communication tools. When new artifacts were created, we
classified these as create events. When an existing artifact
was modified or updated, it was classified as a
modify/update event. We coded any and all types of shared
artifact use, including (but not limited to) design diagrams,
code segments, to-do lists, and requirements.

Collaboration type and group configuration coding
allowed us to determine the types of collaborations that
were taking place within the group space, and how the

developers configured themselves (i.e., whether or not the
programmers could see all of the displays in which work
was being performed) and their devices and tools for
performing the shared tasks (i.e., what types of devices
were used, and how they were controlled).

While this coding scheme was created to satisfy our
particular study requirements, it can be re-used in
subsequent field studies that seek to learn more about how
co-located users collaborate within a technology rich
workspace, such as in a multiple display environment.

Methodology
Below we discuss the experimental methodology that we
followed to evaluate the effectiveness of FASTDash and its
impact on group programming behavior.

Subjects
We selected one product group composed of 6 experienced
programmers from our previous survey respondents who
volunteered to be observed. Individual roles included a
program manager, a product manager, a documentation and
usability expert, and 3 developers. The group had an
average of 12.3 years of experience (SD=7) with 2.6 years
on average tenure at Microsoft. Their average age was 35
(SD=6.6).

As a team that followed Agile development methodologies
[31], they were an ideal group for a rapid field study. The
group completes a full iteration on their code every week,
which allowed us to observe and test our visualization
within an entire development cycle. Team members were
co-located in the same workspace (see figure 4), allowing
us to code behaviors more easily and with higher accuracy.

Category Classification
Advice/instructional
Agreement
Collaboration request
Disagreement
Information/bottleneck
Orientation/understand
Status

Communication

Other
Load information
Connect device
Transfer control

Shared display use

Visual scan
Create
Modify/update

Shared physical artifact use

Deictic reference
Co-located with shared visual workspace
Co-located without shared visual workspace

Collaboration type

Distributed
Multiple personal devices
Single device, single control
Single device, shared control
Shared display only

Collaboration configuration

Shared and personal devices used

Table 1: Coding category and classifications used in our
observation study.

CHI 2007 Proceedings • Distributed Coordination April 28-May 3, 2007 • San Jose, CA, USA

1318

Design
Our study was a pre/post observation design; we carried out
two observations before the introduction of FASTDash and
then two observations after it had been introduced. Before
performing the actual observations, two researchers
performed 170 minutes of pilot observation to allow for
refinement and eventual validation of our coding scheme.
After coding the pilot observation, the two coders discussed
the coding results and iteratively adjusted the coding
scheme until agreement was reached.

Through this pilot process, we found that the large number
of dimensions within the coding scheme required that we
use two independent coders to efficiently collect and
transcribe the data. One coder was responsible for coding
the Communication events while a second coded the events
from the remaining categories. Coders periodically sampled
each other’s data to check for consistency with the agreed
upon coding scheme. Assigning coding responsibilities in
this way allowed us to balance the ability to code a large
amount of behavior, while minimizing the disruption of
having coders present in the subjects’ workspace.

In addition to the coding scheme, we developed a pre- and
post-visualization survey to collect subjective satisfaction
data and gauge each programmer’s situational awareness of
the ongoing activities of fellow programmers. Among
many existing measures, we used Taylor’s classic situation
awareness rating test (SART) [35] in our survey. Figure 5
summarizes the process that we followed in this field study.

Workspace configuration
The room was laid out as shown in Figure 4. All

programmers were located in the same physical space,
configured in two rows of desks facing each other. All
programmers had a dual-monitor configuration and state-
of-the-art systems. In addition, there was a shared high
resolution projected display that was located at the front of
the room; which everyone in the room could view. This is
where we placed the visualization when it was introduced,
in addition to installing it on their personal workstations.
There were also many whiteboard surfaces in the room.

Observations were carried out by two experimenters at a
time, with three total experimenters used for the study. One
coder was responsible for the communication events, while
the other coded the remaining events, such as group
configuration and shared artifacts. The coding scheme was
implemented as an Excel spreadsheet which automatically
time-stamped entries as the coder recorded them. Figure 6
shows a segment of the observation log from one of our
observation sessions.

Observations were conducted over the course of four days;
with each session lasting several hours. Two afternoon
sessions were conducted before FASTDash was introduced
(610 observation minutes) and two afternoon sessions with
FASTDash running in the workspace (443 observation
minutes). Between the two conditions, we installed and
configured the visualization runtime and the VS plug-in on
the programmers’ machines. The team was given an
overview of the features of the system and was encouraged
to investigate and ask questions about the visualization’s
functionality. We gave the programmers about an hour to
use the tool before we started our observations.

To reduce variability in our results, we coordinated with the
team we studied to pick days and times where work tasks,
group activities, and number of team members present in
the room would remain relatively consistent across
observation sessions. In our analysis, we did not observe
any major variations across observation sessions.

Results
In the sections below we discuss the various results from
our observational study.

Figure 6: Segment of observation log. Figure 4: Work environment for development team observed
during the study. Note the location of FASTDash visualization

runtime running on the team’s large shared display.

Figure 5: A high-level flowchart of the stages of our study.

CHI 2007 Proceedings • Distributed Coordination April 28-May 3, 2007 • San Jose, CA, USA

1319

Configuration and Use of FASTDash
In addition to having FASTDash displayed on the team’s
large shared display, the visualization was also installed on
each programmer’s workstation. We did not require the team
to have the visualization running, but instead left it for each
programmer to decide how to best display and use the tool.
We believe this allowed us to gain a more realistic
understanding of how programmers valued FASTDash as it
did not change the team’s existing practices.

Through the course of our observations we found that four
out of the six programmers would consistently have the
visualization running on their local workstation. Two
programmers often configured the visualization to be
displayed on their second monitor, while the other two would
leave the visualization window open and bring it into focus
occasionally to consult or use the annotation feature. The
other two programmers often made visual scans of the shared
projected display that showed the visualization. When asked
about it in post-observation discussions, these programmers
confirmed that they would glance at the display at natural
breakpoints in their task.

Coded Behavior
Figure 7 shows the number of communication activity
occurrences within the Communication category (see Table
1) for both the pre- and with-FASTDash conditions. Overall,
the results show that programmers communicated more often
with the FASTDash visualization present. Specifically, there
was a 58% increase in instruction/orientation
communications, a 15% increase in information/bottleneck
communications, and 33% increase in status
communications.

Use of shared physical artifacts (e.g., whiteboards, post-it
notes) decreased considerably between the two conditions.
Figure 8 shows creations were down 250%, modifications
were down 117%, and references were down 160%.

The number and distribution of collaboration types was
consistent across conditions. Overall, ¾ of collaborations
were co-located with a shared visual workspace.

We observed collaborations across all coded configurations
except for the more elaborate configuration where both
shared and personal devices are used in tandem to perform
the task. The predominant configurations were the single
device with shared control and the single device with
personal control.

Overall, these are promising results. The communication
increases may indicate that increased awareness from the
FASTDash display motivated more interventions when and
where needed. FASTDash also reduced the need for shared
artifacts—this is promising because it could mean that the
display was a useful summarization of team activity. Also,
less reliance on shared artifacts may help un-clutter existing
shared spaces and communication pathways.

Situation Awareness Rating Test (SART)
From the six participants in our study, we received four sets
of completed pre- and post-visualization SART ratings. Two
programmers’ data were excluded from the analysis because
they did not complete the survey immediately following each
condition (we received their surveys four days after
FASTDash was introduced).

We analyzed the ten individual questions and the overall
SART category averages to get a better picture of the
influence of the FASTDash visualization. All survey
questions were on a scale of 1-7, with 1=less and 7=more.
Paired Wilcoxon Signed Ranks tests for a question on
Division of Attention showed a 30% reduction in attentional
demands when the visualization was present (pre-FASTDash
µ=4.0, SD=0; post-FASTDash µ=2.8, SD=0.6; z=-1.89,
p=0.059). Subjects’ ratings on the Instability of the Situation
was also reduced by over 30% (pre- µ=3.0 SD=0; post-
µ=2.0, SD=0; z=-2.0, p=0.046). These two individual
questions showed the largest delta between pre- and post-
surveys, though many of the other questions trended in a
similar way. We felt it was encouraging we were able to
obtain significant findings for such a small sample size and
short-term use of FASTDash.

Satisfaction
FASTDash was generally positively received by the
programmers who tested it. Five out of the six programmers

Figure 8: Use of shared artifacts.
Figure 7: Communication category distribution for pre- and

post- conditions.

CHI 2007 Proceedings • Distributed Coordination April 28-May 3, 2007 • San Jose, CA, USA

1320

felt the tool improved their awareness of the actions of their
fellow programmers. Three programmers said they were
likely to continue using the tool while the remaining three
were undecided.

Programmers appreciated having an entire view of the code
base combined with activity information. One programmer
commented “It is great to have all the files being displayed on
the shared display along with the status. It makes it easier to
verify if no item has been checked out by anybody else in the
entire tree before making a build for the final release.”
Another commented that he “liked the real time info… and to
know what developers are working on.” Potential conflict
detection was also well liked, as one programmer said, “The
visualization of possible conflicts was the most useful.”

The programmers also saw value in the ability to post
comments into the visualization: “We usually make
comments on several situations, but those ‘verbal’ comments
are often lost. Placing [flags] with the comment on the context
where it applies is cool.”

Discussion
Overall, this evaluation of the FASTDash visualization was
positive for a first iteration design. Our observations showed
FASTDash was used by all team members and that it did
indeed alter their behaviors, e.g. leading to decreased
reliance on shared artifacts. Further, we found that the
visualization increased intra-group communication. This was
a surprising result since we anticipated the visualization
would actually decrease the number of communication
occurrences. Based on our observations and the comments
we received from the questionnaire and post-observation
discussions, we found evidence which suggests that the
awareness provided by FASTDash enables communications
to be more opportunistic and context relevant. An increase
may therefore lead to greater efficiency for the team. We
plan to investigate the impact of increased communication
and productivity in a future long-term study with multiple
teams. Such a study would also allow us to better understand
which awareness cues in FASTDash are the most and least
useful to programmers, and how the awareness cues
complement the use of existing programmer tools.

The SART questionnaire showed situational awareness
trends that suggest that the display decreased attentional
demands in the environment and that the workroom seemed
more stable. This could be indicative of reduced cognitive
load, which could in fact lead to better decision making
while programming. Again, this requires further
experimental confirmation, and we intend to follow up with
quantitative productivity measures in a controlled study.

Despite these promising findings we did observe several
opportunities to improve the design of FASTDash. For
instance, the space allocation algorithm in the visualization
runtime is currently limited to considering only the file count
in each folder. As we scale FASTDash to larger code bases,
it may be more effective to use file activity itself as the
metric, devoting more space to more active areas of the tree.

We could then develop visualizations to represent aggregated
activity in folders or subtrees that do not have room be fully
displayed. Further, allowing the programmer to dynamically
zoom and interactively navigate the visualization throughout
the code tree, including exploring historical activity data,
might prove to be valuable.

Finally, we plan to explore ways of extending the
visualization to include work information items such as bug
descriptions and build reports. With the addition of this
information, programmers could more easily associate these
items to files in the code base. This would provide a more
complete single view of the team’s activities, and establish a
stronger overall awareness of project state.

CONCLUSION
We have presented FASTDash, a peripheral visualization
designed to enhance team awareness while working on
software projects. We have evaluated the design, and
provided initial evidence that there is a significant
contribution in the visualization’s ability to improve
programmers’ sense of awareness and their feelings of
stability of their environment. We also demonstrated that the
visualization altered the developers’ practices after using the
visualization for only a short time. Further, the team of
programmers who used FASTDash voluntarily continued to
use it after the field study was complete.

In addition to these contributions, we presented a new coding
scheme that can be used to quantify team work in real time.
Other researchers in the HCI community can adapt and use
the scheme for their studies, or extend it to be useful in other
domains. For example, it could be useful while performing
observational studies of multiple display environments and
collaborative work.

Our work with FASTDash provides an important step
towards understanding how to design interactive
visualizations that can help groups acquire and maintain
better awareness during collaborative programming and
other problem solving activities.

ACKNOWLEDGMENTS
We would like to thank the Patterns & Practices Team for
their willingness to allow us to observe them and insert
FASTDash into their environment. We also thank Andrew
Ko and Daniel Robbins for their help with our field study.

REFERENCES
1. Concurrent Versions System (CVS).

http://www.nongnu.org/cvs/.
2. National Institute of Standards & Technology. The

Economic Impacts of Inadequate Infrastructure for
Software Testing. Planning Report 02-3. May 2002.

3. Microsoft NetMeeting.
http://www.microsoft.com/windows/netmeeting/.

4. Microsoft Team Foundation Server.
http://msdn.microsoft.com/vstudio/teamsystem/team/.

5. Subversion (SVN). http://subversion.tigris.org/.
6. Windows Live Messenger. http://messenger.live.com/.

CHI 2007 Proceedings • Distributed Coordination April 28-May 3, 2007 • San Jose, CA, USA

1321

7. Baker, M.J. and Eick, S.G. Space-Filling Software
Visualization. Journal of Visual Languages and
Computing, 6 (1995), 119-133.

8. Bales, R.F. Interaction Process Analysis: A Method for
the Study of Small Groups. Addison-Wesley,
Cambridge, MA, 1950.

9. Berry, L., Bartram, L., and Booth, K.S.. Role-Based
Control of Shared Application Views. in Proc. UIST,
2005, 23-32.

10. Biehl, J.T. and Bailey, B.P. Improving Interfaces for
Managing Applications in Multiple-Device
Environments. in Proc. AVI, 2006, 35-42.

11. Bruls, M., Huizing, K., and van Wijk, J.J. Squarified
Treemaps. in Proc. Visualization, 2000, 33-42.

12. Cheng, L.T., Hupfer, S., Ross, S. and Patterson, J.,
Jazzing up Eclipse with collaborative tools. in OOPSLA
Workshop on Eclipse Technology eXchange, 2003, 45-
49.

13. Cockburn, A. and Williams, L. Extreme Programming
Examined. Succi, G. and Marchesi, M. eds., Addison-
Wesley, 2001, 223-243.

14. Curtis, B., Krasner, H., and Iscoe, N. A Field Study of
the Software Design Process for Large Systems. CACM,
31, 11 (1988), 1268-1287.

15. DeLine, R., Czerwinski M., and Robertson, G. Easing
Program Comprehension by Sharing Navigation Data.
in Proc. VL/HCC, 2005, 241-248.

16. DeLine, R., Czerwinski, M., Venolia, G., Drucker, S.,
and Robertson, G. Code Thumbnails: Using Spatial
Memory to Navigate Source Code. in Proc. VL/HCC,
2006, 11-18.

17. Dourish, P. and Bellotti, V. Awareness and
Coordination in Shared Workspaces. in Proc. CSCW,
1992 , 107-114.

18. Eick, S., Steffen, J., and Sumner, E. SeeSoft: A Tool for
Visualizing Line-Oriented Software Statistics. IEEE
Transactions on Software Engineering, 18, 11 (1992),
957-968.

19. Froehlich, J. and Dourish, P. Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Development Teams. in Proc. ICSE, 2004, 387-396.

20. Gutwin, C. and Greenberg, S. The Importance of
Awareness for Team Cognition in Distributed
Collaboration. Salas, E. and Fiore, S.M. eds. Team
Cognition: Understanding the Factors That Drive
Process and Performance, 2004, 177-201.

21. Gutwin, C. and Greenberg, S. The Mechanics of
Collaboration: Developing Low Cost Usability
Evaluation Methods for Shared Workspaces. in IEEE
Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2000, 98-103.

22. Gutwin, C., Penner, R., and Schneider, K. Group
Awareness in Distributed Software Development. in
Proc. CSCW, 2004, 72-81.

23. Handley, M. and Crowcroft, J. Network Text Editor
(Nte): A Scalable Shared Text Editor for the Mbone. in
Proc. SIGCOMM, 1997, 197-208.

24. Hannemann, J. and Kiczales, G. Overcoming the
Prevalent Decomposition in Legacy Code. in Workshop
on Advanced Separation of Concerns held at ICSE,
2001.

25. Jones, J.A., Harrold, M.J., and Stasko, J. Visualization
of Text Information to Assist Fault Localization. in
Proc. ICSE, 2002, 467-477.

26. Kraut, R.E. and Streeter, L.A. Coordination in Software
Development. CACM, 38, 3 (1995), 69-81.

27. LaToza, T.D., Venolia, G., and DeLine, R.. Maintaining
Mental Models: A Study of Developer Work Habits. in
Proc. ICSE, 2006, 492-501.

28. Olson, G.M., Olson, J.S., Carter, M.R., and Storrøsten,
M. Small Group Design Meetings: An Analysis of
Collaboration. Human-Computer Interaction, 7, 4
(1992), 347-374.

29. Perry, D.E., Staudenmayer, N.A., and Votta, L.G.
People, Organizations, and Process Improvement. IEEE
Software, 11, 4 (1994), 36-45.

30. Sarma, A., Noroozi, Z. and Hoek, A.v.d., Palantír:
Raising Awareness among Configuration Management
Workspaces. in Proc. ICSE, 2003, 444-454.

31. Schwaber, K. and Beedle, M. Agile Software
Development with Scrum. Prentice Hall, 2002.

32. Shonle, M., Neddenriep, J., and Griswold, W.
AspectBrowser for Eclipse: A Case Study in Plug-in
Retargeting. inOOPSLA Workshop on Eclipse
Technology eXchange, 2004, 78-82.

33. Singer, J. Practices of Software Maintenance. in Proc.
Software Maintenance, 1998, 139-145.

34. Tang, J.C. Findings from Observational Studies of
Collaborative Work. International Journal of Man-
Machine Studies, 34, 2 (1991), 143-160.

35. Taylor, R.M. Situational Awareness Rating Technique
(SART): The Development of a Tool for Aircrew
System Design. Situational Awareness in Aerospace
Operations, AGARD-CP-478, 1989.

36. Tee, K., Greenberg, S., and Gutwin, C. Providing
Artifact Awareness to a Distributed Group through
Screen Sharing. in Proc. CSCW, 2006, 99-108.

37. Wu, J., Graham, T.C.N., and Smith, P.W. A Study of
Collaboration in Software Design. in Proc. Empirical
Software Engineering (ISESE), 2003, 304-313.

38. Xia, S., Sun, D., Sun, C., Chen, D., and Shen, H.
Leveraging Single-User Applications for Multi-User
Collaboration: The CoWord Approach. in Proc. CSCW,
2004, 162-171.

CHI 2007 Proceedings • Distributed Coordination April 28-May 3, 2007 • San Jose, CA, USA

1322

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

