

Figure 1: Clipping Lists interface showing our study’s Quiz
task with a progress bar indicating the next quiz module is
loading, and Web page text to help users recognize them.

Clipping Lists and Change Borders: Improving
Multitasking Efficiency with Peripheral Information Design

Tara Matthews Mary Czerwinski George Robertson Desney Tan
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
tmatthew@cs.berkeley.edu,{marycz, ggr, desney}@microsoft.com

ABSTRACT
Information workers often have to balance many tasks and
interruptions. In this work, we explore peripheral display
techniques that improve multitasking efficiency by helping
users maintain task flow, know when to resume tasks, and
more easily reacquire tasks. Specifically, we compare two
types of abstraction that provide different task information:
semantic content extraction, which displays only the most
relevant content in a window, and change detection, which
signals when a change has occurred in a window (all de-
signed as modifications to Scalable Fabric [17]). Results
from our user study suggest that semantic content extraction
improves multitasking performance more so than either
change detection or our base case of scaling. Results also
show that semantic content extraction provides significant
benefits to task flow, resumption timing, and reacquisition.
We discuss the implication of these findings on the design
of peripheral interfaces that support multitasking.

Author Keywords: Information visualization, peripheral
displays, abstraction, multitasking

ACM Classification Keywords: H5.2 User Interfaces–
Graphical user interfaces. H5.m Miscellaneous.

INTRODUCTION
Information workers often balance many interruptions and
tasks. In fact, a recent study found that information workers
kept an average of 10 “working spheres,” or basic units of
work, active at once [4]. This is not surprising given the
many studies on task switching showing that users spend as
little as 3 minutes (on average) on each task before switch-
ing, and get interrupted at least once per task [2,4,13].

These studies point to several problems multitaskers con-
tinue to battle due to inadequate software support. First,
interruptions plague longer-term tasks undermining user
concentration and task progress, because users are often
unable to determine which interruptions need to be handled
immediately [2,18]. This makes it difficult for users to
maintain current task flow. Second, successful task comple-
tion requires knowing when to step out of the current task
and return to a paused task, which we call resumption tim-
ing. For example, Czerwinski et al. [2] found that people
often set aside tasks while waiting for some external event
(e.g., an email to arrive from a co-worker), but wanted to
resume as soon as the event occurred. Third, people have
trouble getting back on task after shifting their attention
away (i.e., it is difficult to reacquire tasks) [2].

We believe that providing relevant task information in a
glanceable, low-attention manner is critical to solving these
multitasking problems. However, little is known about what
information is needed and how to provide it to best improve
a user’s ability to maintain current task flow, manage task
resumption, and reacquire tasks in multitasking situations.
In this paper, we explore abstraction in peripheral inter-
faces, studying the performance effects when these inter-
faces convey varying types of task information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2006, April 22–28, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

Figure 2: Clipping Lists with Borders shows an email inbox
and indicates with a green border that new email arrived.

Peripheral displays convey information in a low-attention
way outside of a focal task. They often employ abstraction
to reduce the fidelity of raw information so that is easier to
read at a glance. Abstraction is a design mechanism for
reducing the amount of information shown and/or trans-
forming the information to a different form. Although sev-
eral researchers have argued that abstraction improves
glanceability and enables people to more quickly under-
stand information [15,16], existing research has not estab-
lished strong guidelines for what types of abstraction lead to
easier understanding without losing too much information.
In our work we explore this issue by examining two types
of abstraction, semantic content extraction and change de-
tection, in multitasking situations.

Semantic content extraction refers to selecting and display-
ing only pieces of information from an original window that
are relevant to task flow, resumption timing, and task reac-
quisition. In our interfaces, we show in the periphery lists of
rectangular window “clippings,” which we call Clipping
Lists (see Figure 1). Change detection provides one extra bit
of information to the user, signaling when a change has
occurred within a window. In our interfaces, we use
Change Borders, colored highlights that appear around pe-
ripheral windows, to indicate changed content (see Figure
2). We conducted a lab study comparing four interfaces that
introduced these abstraction types to the Scalable Fabric
task management system [17]. In performing these com-
parisons, we were not interested in which form of abstrac-
tion shows more information, but rather which shows the
most relevant task information in a glanceable way.

The main contribution of this paper is an empirical demon-
stration that semantic content extraction is more effective
than both change detection and our baseline case of scaling
peripheral windows in improving multitasking efficiency.
We show that since our implementation of semantic content
extraction significantly reduces task time, task switches,
and window switches, it benefits task flow, resumption tim-
ing, and reacquisition. We use these findings to discuss how
to design peripheral displays that aid multitasking and task

flow, so that users focus their cognitive resources on the
task at hand, instead of on task management.

RELATED WORK
Central to the notion of multitasking is a concept known in
psychology as prospective memory [3], or remembering to
remember. Successful prospective memory requires effec-
tive task resumption timing, or recalling tasks at appropriate
times, and can help dramatically in reacquiring tasks.

A number of studies have shown prospective memory fail-
ures to be a major issue for information workers who multi-
task [1,10,14,19,21]. In fact, other studies have examined
how users remind themselves about tasks [6,9], such as
creating Web pages with “to do” lists and emailing remind-
ers. Clearly, people spend a great deal of time devising so-
lutions to multitasking problems. These studies indicate that
users need better software support for prospective memory
when doing multiple tasks, which we study in our designs.

We assert that one of the reasons software support is inade-
quate for multitasking is that it is isolated to a single appli-
cation (e.g., the “to do” list in a software calendar).
However, tasks span multiple applications. In a diary study
of information workers, Czerwinski et al. [2] found that
users wanted an overarching application to keep track of
tasks across applications. We address this issue by using
Scalable Fabric [17], a system for organizing task windows
across applications, as a basis for our designs.

Several other projects have proposed systems that allow
users to manage tasks by interacting with information
across applications. Hutchings and Stasko [8] and Tan et al.
[20] presented techniques for selecting a rectangular portion
of a window so that only the window’s relevant information
is visible (a form of semantic content extraction). Hutchings
and Stasko’s shrinking windows operation replaced an ex-
isting window with the user-selected portion. Tan et al.’s
WinCuts created a new window with the user-selected por-
tion, leaving the original window for the user to use or
minimize. These two projects allowed users to extract se-
mantic content, much like our Clipping Lists interface. We
extend this work by studying the effects of semantic content
extraction on multitasking efficiency in conjunction with
change detection.

Because we believe that users will benefit the most from
information that does not divert attention from the focal
task, we intentionally avoid distracting notifications and
explore our designs within peripheral displays. Peripheral
display design has been explored in many projects (see [12]
for a survey). For example, Kimura [11] uses a peripheral
display to help users keep track of multiple tasks. In their
system, a task is represented as a montage of images (e.g.,
application windows and notification icons) gathered from
past activities. Montages are displayed on a large, digital
white board on which users can interact. Much like our de-
signs, Kimura provides constant, visual reminders about
various tasks. One improvement in our system is that our

Red Change Border Green Change BorderRed Change Border Green Change Border
Figure 3: Scalable Fabric with Change Borders: (left) showing upload in progress; (right)
indicating a quiz module has finished loading. Peach and pink window borders indicate to
which task the window belongs.

peripheral windows are live and updating. This provides an
environment for monitoring new task information. We ex-
tend this work by empirically comparing live window dis-
plays that abstract information differently.

Pederson’s AROMA project [15] distinguished three types
of abstraction in peripheral displays: degradation (e.g.,
pixelation, thresholding), feature extraction (i.e., singling-
out certain parts of an information source for display), and
radical abstraction (i.e., extracting features from an infor-
mation source and displaying it in a new, symbolic form).
AROMA specifically explored the use of “radical abstrac-
tion” to support remote awareness. AROMA combined
audio and video streams into a single “bustle factor” bit
aimed at providing users with a general sense of how much
activity was happening in another location. Since no formal
evaluation was reported, we cannot conclude how useful
radical abstraction was for AROMA’s design goals.

Plaue et al. [16] compared three forms of electronic infor-
mation to see how quickly each conveyed information: text-
based, Web portal, and pictorial displays. The pictorial dis-
play, InfoCanvas, is a peripheral display that uses pictures
to represent multiple streams of information, such as
weather, traffic, and stock prices. After staring at each dis-
play for 8 seconds, users were tested for their immediate
recall of the focally displayed information. Results showed
that the pictorial display enabled users to recall significantly
more information. In contrast, we compare the effectiveness
of our abstracted interfaces to convey information periph-
erally, in a more realistic usage scenario.

FOUR INTERFACE DESIGNS
Here we present four interfaces that instantiate our ideas
around semantic content extraction and change detection.

First we describe Scalable
Fabric, a task management
system which we used as our
baseline and augmented to
include different types of
abstraction. Next, we describe
Clipping Lists, which replaces
the scaling techniques used in
Scalable Fabric with semantic
content extraction. Finally, we
present Change Borders, a
change detection technique,
which we apply to both
Scalable Fabric and Clipping
Lists. For each interface, we
explicitly designed updates to
be subtle, as we are interested
in comparing the abstraction
techniques rather than how
well each interface attracts
user attention (e.g., through
distracting notifications).

Scalable Fabric
Scalable Fabric [17] provides task management support by
spatially organizing shrunken versions of windows into
tasks in the periphery and enabling window management on
a task level. Users interact with windows in a central focus
area of the screen in a normal manner, but when a user
moves a window into the periphery, it shrinks. The window
“minimize” action is redefined to return the window to the
user-chosen location in the periphery, rather than hiding the
window. Placing a set of windows near each other in the
periphery dynamically creates a task composed of them.
Clicking on a minimized task’s name restores all its win-
dows into the central focus area. This is the equivalent of
switching rooms in the Rooms system [7]. Clicking again
on the focal task’s name minimizes all its windows to the
periphery. Windows from all tasks are visible at all times
(either in the focus area or as shrunken, peripheral win-
dows), enabling easier task switching.

Scalable Fabric provided the baseline comparison within
our study. In a previous study, Scalable Fabric was found to
perform as well as Windows [17] and was qualitatively
preferred. Comparing our three new interfaces to Windows
would not have been a fair comparison, as they introduce
task management support in addition to abstraction. By
comparing them to Scalable Fabric, which uses a simple
abstraction technique (i.e., scaling or shrunken windows),
we gained additional insights about abstraction.

We compare scaling as a baseline to semantic content ex-
traction and change detection. A shrunken peripheral win-
dow enables users to see the general layout of the window,
major color schemes, and graphics, but virtually none of the
content is legible. The benefits of shrunken windows are
that they convey the window’s spatial layout, they may

enable easy recognition of windows for reacquiring tasks,
and large updates are visible.

Clipping Lists
Our Clipping Lists interface uses semantic content extrac-
tion, replacing the shrunken peripheral windows of Scalable
Fabric with vertical lists of window “Clippings.” Here, se-
mantic content extraction refers to selecting and displaying
Clippings, rectangular sub-regions of relevant information
from the original window. For example, Figure 1 shows
Clippings of a progress bar and Web page text for a Quiz
task. This enables users to monitor the progress bar so they
know when they can return, and to easily identify Web
pages by their title text. We also place an application icon
next to Clippings to further aid identification (e.g., Figure 1
shows Internet Explorer icons next to Web page Clippings).

To create a custom Clipping, the user hits a modifier se-
quence (‘Windows-Key + Z’) at which time a red rectangle
appears. The user drags or resizes the rectangle over their
desired Clipping. To capture the Clipping, the user hits the
modifier sequence again. From then on, the Clipping will
appear in the periphery whenever the window is minimized.
This interaction was inspired by the WinCuts system [20].

In our system, users manually create Clippings because it is
not currently technically feasible to automatically determine
what window content is most relevant to a user. However,
we believe future research might enable useful and mean-
ingful automation.

When users do not manually create a Clipping, a 200 x 32
pixel Clipping is automatically made of the top-left of a
window, usually including a file and application name. We
chose this default area since it most consistently identifies
the window contents.

Semantic content extraction provides a more readable form
for peripheral task information, which may help users de-
termine when to resume a task and recognize windows for
easier task reacquisition. However, it may also increase the
cognitive overhead of monitoring the periphery by provid-
ing too much information. In addition, it removes spatial
layout information about a given window, the relative im-
portance of which we examine in our study.

Change Borders
We chose to visually represent changes with Change Bor-
ders, colored borders that appear around peripheral win-
dows or Clippings when the system detects that the window
content has changed. The borders are red while changes are
happening (i.e., window pixels have changed recently) and
green when changes are complete (i.e., no window pixels
have changed for a certain period of time). We added
Change Borders to both Scalable Fabric and Clipping Lists,
as described below.

Scalable Fabric + Change Borders
Our third interface adds change detection to Scalable Fabric
using Change Borders. To illustrate, Figure 3a shows a red

Change Border around an upload tool, indicating a docu-
ment upload is in progress. Figure 3b shows a green
Change Border around a quiz tool, indicating that a quiz
module has finished loading. Here, Change Borders may
help users know when the upload or quiz loading is done
and they can resume either task.

Clipping Lists + Change Borders
Our fourth interface combines change detection and seman-
tic content extraction, using both Change Borders and Clip-
ping Lists. Figure 2 shows an email has arrived: the Change
Border allows the user to easily glance and see that an
email has arrived and the Clipping allows the user to deter-
mine if it is important to read.

In general, knowing when a change has occurred within a
particular window can be useful in helping users know
when to resume a paused task. There are many situations in
which knowledge of changes would be useful: when wait-
ing for email, documents to upload, files to be checked in to
a version control system, a compiler build to complete, a
large file or Web page to finish loading, etc. However, Web
pages and other windows might change because of ads,
which may render change detection less useful. Given that
only one bit of information is conveyed (i.e., that a change
has occurred), we assert that the cognitive overhead caused
by change detection interfaces is low. In our study, we ex-
amined whether change detection provides enough informa-
tion to also improve multitasking performance, or whether
it would be considered annoying.

IMPLEMENTATION
All interfaces were implemented on top of our Scalable
Fabric implementation [17]. For Change Borders, we de-
tected changes with a pixel-based image difference of two
window images, taken 1 second apart. The images were
sampled (e.g., every 10th pixel), and if any of the sampled
pixels changed, the window was flagged as having a change
in progress. This caused a red border to appear around the
window. Five seconds after these changes stopped, the win-
dow was flagged as having completed changes, causing the
border to turn green.

Though the image differencing method could potentially be
fairly accurate, we wanted to test this with 100% accuracy
in our lab study. Therefore, we implemented message pass-
ing between task windows and Scalable Fabric. Whenever a
change occurred in the study tasks, the task window (which
we controlled) sent a message to Scalable Fabric indicating
a change was in progress or completed. We used messages
rather than image differencing during the study.

For Clipping Lists, we made two changes to the Scalable
Fabric baseline: (1) we enabled user selections of a window
region and then rendered only that portion of the window in
the periphery; and (2) rather than allowing user arrange-
ment of peripheral windows, we automatically arranged
Clippings to be left justified and stacked vertically (users
could still change the vertical position of a Clipping). This

modification was important because we could not allow
windows to overlap, as every part of a selected Clipping is
considered relevant to users.

USER STUDY
We conducted a user study comparing our four interfaces,
Scalable Fabric, Clipping Lists, Scalable Fabric with
Change Borders, and Clipping Lists with Change Borders,
in a simulated multitasking situation. The study tasks simu-
lated real office knowledge work (e.g., monitoring email,
uploading files, filling out web forms, and arranging images
to make a nice graphic layout). We hypothesized that Clip-
ping Lists would be more useful than Scalable Fabric in
multitasking work because the interface extracted the se-
mantic information that would allow users to stay in their
current task flow longer, while also knowing the optimal
time to switch to a high priority task. We also hypothesized
that change detection, as we designed it, would be a light-
weight, glanceable method that would further increase mul-
titasking effectiveness while preserving current task flow.

Participants
We recruited 26 users (10 female) from the greater Seattle
area who had moderate to high experience using computers
and were intermediate to expert users of Microsoft Office-
style applications, as indicated through a well validated
screener. Users ranged in age from 23 to 53, with an aver-
age of 38. They had used a computer for an average of 18
years. Users received software gratuities for their time.

Equipment
We ran the study on a 2.8 GHz Pentium 4 Compaq PC with
2G of RAM and two NEC MultiSync LCDs 1880SX set at
1024 x 768 display resolution. Users provided input with a
Compaq keyboard and Microsoft Intellisense mouse.

Tasks
To simulate multitasking, users performed three tasks and
also read email. Two tasks were higher priority (Quiz and
Upload) and involved waiting for updates. We instructed
users to work on the third, lower priority task (a Puzzle)
while waiting for high priority updates, to monitor the Quiz
and Upload tasks in the periphery, and to return to them as
soon as updates were complete. Email provided necessary
documents and information for priority tasks, and distracter
email, in order to mimic the real world and test how well
our interfaces enabled users to ignore irrelevant informa-
tion.

We told users to complete all three tasks as quickly as pos-
sible and that they were being timed. Study timing software
was run on the top of the left monitor. Users stopped timers
for each task by clicking on labeled “task done” buttons.

To attain high external validity, it was important for the
tasks to mimic real world tasks, including multitasking,
tasks of varying importance, and interruptions. Also, the
tasks needed to be engaging enough that users would not
mind repeating slight variations of them for each interface.

After the study, users indicated that we had successfully
captured the sorts of task and email juggling they do in a
typical work day. Though a lab study necessarily reduces
realism by simplifying work contexts, our study succeeded
in drawing out important issues that peripheral display de-
signers can use. Next, we describe the details of each task.

Quiz
The Quiz task was labeled a high priority task, and it in-
volved waiting for updates. The task was composed of 5
windows: a Quiz Tool and 4 Web pages containing graph-
ics (all of which were open and pre-arranged).

Users used our Quiz Tool to answer Web-based, Wikipe-
dia-derived questions, as might be indicative of a typical
research project. Answers were not known by any of our
participants (e.g., what is the length of the Amazon River).
A quiz included 4 modules, each with a different topic (e.g.,
Cats, Asia, Apples, and the Amazon River). Each module
had 2 questions about its topic. We provided the answers in
the Web page titled with the topic name. Within the Web
page, answers were bolded and easy to find so that locating
them was neither cognitively nor mechanically challenging.

Each module also had a bonus question about a different
topic not answered in any of the provided Web pages. Users
clicked a button to request the answer via email from their
co-worker Jane Morgan (which arrived between 12 and 90
seconds later). When all three module questions were an-
swered, users clicked the “Submit” button. After the first
three modules, this caused the next module to load, during
which time a progress bar indicated the loading time (be-
tween 30 and 120 seconds). While waiting for the next
module to load or for an email, users could work on other
tasks, but we instructed them to return to the Quiz as soon
as possible (e.g., when the bonus answer had arrived in
email from Jane Morgan).

After the last module was complete, clicking “Submit” dis-
played the message, “Task complete. Stop task timer.” Us-
ers would then stop the Quiz task timer.

Uploads
Like the Quiz, the Upload task was labeled high priority,
and it involved waiting time. The task included 4 windows:
an Upload Tool and 3 text-based documents (1 Word, 1
Excel, 1 Notepad).

Users used our Upload Tool to upload 5 documents in a
pre-specified order. The Upload Tool allowed users to use a
browse dialog box to find documents, a progress bar to
monitor the upload, and a text box listing already uploaded
documents. While uploading, the progress bar indicated the
waiting time (30 - 120 seconds). Users started the task with
3 of the documents. The other 2 were missing and would
arrive via email from a co-worker, Jane Morgan. The 3
open documents had the upload order specified in their first
line (e.g. “Document 1”). This forced users to interact with
the open documents to some degree (in order to determine

Average Task TimesAverage Task Times

540

560

580

600

620

640

660

680

700
A

ve
ra

ge
 T

im
e

in
 S

ec
on

ds

SF Clippings
+ Change

ClippingsSF +
Change

540

560

580

600

620

640

660

680

700
A

ve
ra

ge
 T

im
e

in
 S

ec
on

ds

SF Clippings
+ Change

ClippingsSF +
Change

Average Task TimesAverage Task Times

540

560

580

600

620

640

660

680

700
A

ve
ra

ge
 T

im
e

in
 S

ec
on

ds

SF Clippings
+ Change

ClippingsSF +
Change

540

560

580

600

620

640

660

680

700
A

ve
ra

ge
 T

im
e

in
 S

ec
on

ds

SF Clippings
+ Change

ClippingsSF +
Change

Figure 5: Average task time (i.e., time to complete all tasks)
per interface. Clipping List interfaces were significantly
faster. Error bars represent standard errors.

Average Time to Resume Quiz

90

Average Time to Resume Quiz

90

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 T
im

e
in

 S
ec

on
ds

SF Clippings
+ Change

ClippingsSF +
Change

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 T
im

e
in

 S
ec

on
ds

SF Clippings
+ Change

ClippingsSF +
Change

Average Time to Resume Quiz

90

Average Time to Resume Quiz

90

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 T
im

e
in

 S
ec

on
ds

SF Clippings
+ Change

ClippingsSF +
Change

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 T
im

e
in

 S
ec

on
ds

SF Clippings
+ Change

ClippingsSF +
Change

Figure 4: Average time to resume the Quiz task after up-
dates per interface. Users reacted to updates quicker using
Clipping List interfaces (without significance).

what document to upload next), which more closely mod-
eled real work. The 2 emailed documents were named with
their order number (e.g. “2.doc”). We programmatically
timed emailed documents to arrive 30 - 120 seconds after
their preceding document had finished uploading.

While waiting for documents to upload or for email to ar-
rive, users were instructed to work on other tasks, but to
return as soon as possible. After all 5 documents had been
uploaded, a message to stop the task timer appeared and
users would stop the Upload task timer.

Puzzle
Users were instructed to only work on the Puzzle task when
they were waiting for both Quiz and Upload. Though we
recorded the Puzzle task time, we stopped 8 users before
they completed the puzzles in order to conclude the session
in a reasonable amount of time and always made it clear to
users that the Quiz and Upload tasks were higher priority.

This task included 4 windows: 2 with images and 2 with
square pieces from the 2 images mixed together. Users first
dragged pieces for each picture into one document. Then
they rearranged the pieces to resemble the 2 model images.

The Puzzle task turned out to be extremely engaging, (as
witnessed by users’ focus on this task and by their com-
ments after finishing it) probably because the pictures were
designed to be challenging to reassemble. This was impor-
tant since an engaging task would be more realistic and
enable us to see bigger differences between users’ ability to
monitor the periphery with different peripheral interfaces.

Email
In addition to receiving task-relevant email (quiz answers
and documents to upload, both from Jane Morgan), users
received distracter email from different people on a variety
of topics (again, in an effort to mimic the real world). Dis-
tracters were sent programmatically, at random rates be-
tween 20 and 90 seconds apart. Users received an average
of 12 distracter emails per interface. They differentiated
task-relevant email by the sender: Jane Morgan was the

only person who sent email of importance. The presence of
distracters enabled us to see if any interfaces performed
poorly with the presence of uninteresting updates.

Interface Setup
The user interfaces being studied were presented on both
the left side of the left monitor and the right side of the right
monitor. Tasks were preset to include the correct windows
and arranged in the periphery to allow maximal visibility of
all windows. Window height and width were scaled to 25%
of their original size (the default for Scalable Fabric). To
maintain consistency across users, we disabled several
Scalable Fabric functions during the study: clicking on a
task name to restore or minimize all task windows, drag-
ging windows into the periphery, moving windows in the
periphery, and moving tasks in the periphery.

For Clipping Lists interfaces, we pre-selected Clippings.
Since we designed the tasks and knew exactly how the tasks
would be optimally completed, we were able to select the
most useful Clippings. We believe that context awareness
and document processing techniques could be combined to
aid the user in at least semi-automating this task.

Measures
Dependent variables collected during the course of the
study included task time, task resumption time, the number
of task switches, the number of window switches within
each task, user satisfaction ratings, and overall interface
preference. Other than satisfaction ratings and preferences,
all other measures were automatically collected via logging
tools installed on the user’s machine.

Design
The study design was a 2 (Semantic Content Extraction:
Scalable Fabric v. Clipping Lists) x 2 (Change Detection:
No Change Borders v. Change Borders) x 2 tasks, within
subjects design. We counterbalanced the presentation order
of all conditions and task sets across users (4 isomorphic

Average Task SwitchesAverage Task Switches

40

42

44

46

48

50

52

54

56
A

ve
ra

ge
 #

 o
f S

w
itc

he
s

SF Clippings
+ Change

ClippingsSF +
Change

40

42

44

46

48

50

52

54

56
A

ve
ra

ge
 #

 o
f S

w
itc

he
s

SF Clippings
+ Change

ClippingsSF +
Change

Average Task SwitchesAverage Task Switches

40

42

44

46

48

50

52

54

56
A

ve
ra

ge
 #

 o
f S

w
itc

he
s

SF Clippings
+ Change

ClippingsSF +
Change

40

42

44

46

48

50

52

54

56
A

ve
ra

ge
 #

 o
f S

w
itc

he
s

SF Clippings
+ Change

ClippingsSF +
Change

Figure 6: Average number of task switches per interface.
Clipping List interfaces significantly reduced task switches;
Change Borders increased them for Scalable Fabric.

task sets were rotated through the conditions so that users
were not performing the same task in each user interface).

Procedure
Users were run in pairs with an experimenter present in the
room. After greeting the users, the experimenter presented
the overall study procedure and then walked the users
through a set of practice tasks using their first interface
(counter-balanced across users). Once users completed the
practice tasks (approximately 30 minutes), they began the
study proper. Users completed the Quiz, Upload, and Puz-
zle tasks using a single interface and then completed a satis-
faction questionnaire about it before moving on to the next
interface. In between each interface, we explained how to
use the next interface.

At the end of the session, we debriefed the users, provided
the software gratuities, and escorted them out of the build-
ing. Total session time was approximately 2 hours.

Results
We used a 2 (Semantic Content Extraction) x 2 (Change
Detection) RM-ANOVA to analyze the data presented
throughout this section, unless otherwise stated.

Task Times
As is standard practice for time data, all task times were
transformed into log times in order to render the distribu-
tions normal to deal with skew and outliers in the original
data. We analyzed the data for each of the priority tasks
(Quiz and Upload) together. A data file for one user was
missing due to logging errors.

We found significant main effects for the influence of Se-
mantic Content Extraction, F(1,25)=9.0, p=.006. We did not
observe any other significant main effects or interactions in
the task time data.

These results show that having Clipping Lists, a form of
semantic content extraction, in the periphery allowed users
to perform their tasks significantly more efficiently (aver-
age time for Scalable Fabric = 649.7 seconds v. Clipping

Lists = 615.6 seconds). Also, it shows that our implementa-
tion of change detection did not significantly improve us-
ers’ efficiency. These results are shown in Figure 5.

Time to Resume
Again, we transformed the time to resume data to log times
for analysis. We collected this data by measuring the time
from which the user completed an update on the quiz or
upload tools and when the user responded to the update by
clicking on the tool.

We observed no significant main effects or interactions at
the p=.05 level in this data. However, Figure 4 shows a
trend toward a significant effect for the Quiz task only,
F(1,24)=2.7, p=.115: interfaces with Clipping Lists im-
proved resumption times, on average (Scalable Fabric =
66.0 seconds v. Clipping Lists = 45.0 seconds).

Task Switches
We counted a task switch as a user starting on a window in
one task (e.g., Upload) and then clicking on a window in a
second task (e.g., Quiz). Data from three subjects were
missing due to logging errors.

We observed a significant main effect of Semantic Content
Extraction, F(1,23)=13.0, p=.002, indicating that Clipping
Lists reduced the number of task switches, enabling users to
better maintain their task flow. These results are shown in
Figure 6. We did not observe any other significant main
effects or interactions in the task switch data.

We also examined task switches caused by distracter email,
which indicate inopportune switches to the email task. To
do this, we analyzed the proportion of switches to email
that occurred after distracters arrived, over the total number
of distracters received. Logging of switches due to distrac-
ters was affected by an error, so we lost small amounts of
data from 11 users. Therefore, we chose not to include these
users in this analysis. We report these findings anyway be-
cause the results are intriguing, but caution should be taken
until they are replicated.

We found a significant main effect of Semantic Content
Extraction, F(1,15)=42.9, p<.001, as well as Change Detec-
tion, F(1,15)=6.3, p=.024. This means that when Clipping
Lists were present, users were significantly less likely to
switch away from their current task due to spam email.
When Change Borders were present, users were signifi-
cantly more likely to switch away from their current task
due to spam email. This negative effect of Change Borders
was particularly strong with Scalable Fabric.

Window Switches
We analyzed the number of window switches for each pri-
ority task (Quiz and Upload) separately. Window switches
were counted as the number of switches to a different win-
dow within a single task (Quiz or Upload). Data from three
subjects were missing due to logging errors.

Average Quiz Window SwitchesAverage Quiz Window Switches

16.5

17

17.5
18

18.5
19

19.5
20

20.5
21

A
ve

ra
ge

 #
 o

f
S

w
itc

he
s

SF Clippings
+ Change

ClippingsSF +
Change

16.5

17

17.5
18

18.5
19

19.5
20

20.5
21

A
ve

ra
ge

 #
 o

f
S

w
itc

he
s

SF Clippings
+ Change

ClippingsSF +
Change

Average Quiz Window SwitchesAverage Quiz Window Switches

16.5

17

17.5
18

18.5
19

19.5
20

20.5
21

A
ve

ra
ge

 #
 o

f
S

w
itc

he
s

SF Clippings
+ Change

ClippingsSF +
Change

16.5

17

17.5
18

18.5
19

19.5
20

20.5
21

A
ve

ra
ge

 #
 o

f
S

w
itc

he
s

SF Clippings
+ Change

ClippingsSF +
Change

Average Upload Window SwitchesAverage Upload Window Switches

0
2
4
6
8

10
12
14
16
18
20

A
ve

ra
ge

 #
 o

f S
w

itc
he

s
SF Clippings

+ Change
ClippingsSF +

Change

0
2
4
6
8

10
12
14
16
18
20

A
ve

ra
ge

 #
 o

f S
w

itc
he

s
SF Clippings

+ Change
ClippingsSF +

Change

Average Upload Window SwitchesAverage Upload Window Switches

0
2
4
6
8

10
12
14
16
18
20

A
ve

ra
ge

 #
 o

f S
w

itc
he

s
SF Clippings

+ Change
ClippingsSF +

Change

0
2
4
6
8

10
12
14
16
18
20

A
ve

ra
ge

 #
 o

f S
w

itc
he

s
SF Clippings

+ Change
ClippingsSF +

Change

Figure 7: Average number of window switches per interface
for the (top) Quiz and (bottom) Upload tasks. Clipping List
interfaces significantly reduced window switches.

We found significant main effects for the influence of Se-
mantic Content Extraction for both tasks, Quiz F(1,23)=4.6,
p=.042, and Upload F(1,23)=51.9, p<.001. These results
show that Clipping Lists significantly reduced the number
of window switches within both priority tasks, which may
improve task flow. These results are shown in Figure 7.

Satisfaction
We ran a 2 (Semantic Content Extraction) x 2 (Change De-
tection) x 13 (Questionnaire Item) RM-ANOVA on the
satisfaction questionnaire ratings. We chose to not include
surveys from two users who did not complete all questions.

We found significant main effects for Semantic Content
Extraction, F(1,24)=11.3, p=.003, Change Detection,
F(1,24)=9.5, p=.005, and Questionnaire Item,
F(14,336)=34.6, p<.001. User interfaces with Clipping Lists
were rated significantly better than interfaces without. In
addition, interfaces with Change Borders were rated signifi-
cantly better that interfaces without. All of the average sat-
isfaction ratings for the user interfaces in the study are
shown in Figure 8.

When asked to choose their preferred interface, 17 out of 25
users who responded chose Clipping Lists with Change
Borders (significant by chi square test), 4 chose Scalable
Fabric with Change Borders, 2 chose Clipping Lists, and 2
chose the baseline Scalable Fabric.

User Comments
User comments supported and explained our quantitative
results. They explained why the scaling used in Scalable
Fabric needed improvement. In particular, they needed
more obvious visual cues that tasks had updated (such as
Change Borders) and clearer identifying information visible
for windows in order to recognize them. One user said, “It
was impossible to know when something was ready to use
and I had to open all the windows for a particular project, to
tell which window contained the item I needed. It just
didn’t feel efficient.” Users also needed more context about
a task in order to switch to the correct task: “[For] text
based documents… it is better to be able to just read a little
bit of the text, because that gives enough context informa-
tion to be able to switch to the proper task.”

Users explained why Change Borders were useful, “…the
border made monitoring the two main tasks pretty easy and
didn't require a lot of mental action.” They also explained
why Change Borders caused problems for email, “…the
majority of emails are irrelevant to the tasks being per-
formed here, and therefore will have a negative effect if [I]
check email every time the color changes.” Users thought
frequent emails were realistic: “In my real-life job… [I] can
expect to receive an e-mail every few minutes.”

User feedback favored the Clipping List interfaces. They
thought Clippings made it easier to distinguish documents,
determine to which task or window to switch, and improved
monitoring ability by exposing updating content (which

they especially liked for email). One user said, “This dis-
play allowed me to see all of the data that I needed at a
glance.”

Additionally, users pointed out a few improvements that
could be made. One suggested that the area under the
mouse on shrunken windows enlarge as if the mouse were
“a magnifying glass.” One user wanted “something more
obvious than the green border, to show a task complete.”
Another user wanted the Clippings to be interactive: “the e-
mail [Clipping] is… difficult to follow. I would rather be
able to scroll the peripheral display to a particular message
and click on that to open the desired e-mail.” A few users
thought the aesthetics of the Clipping Lists could be im-
proved with “more uniformity in the... text type,” and by
making all the Clippings the same width.

DISCUSSION
Our results enable us to examine the effects of our imple-
mentations of scaling, change detection, and semantic con-
tent extraction on task flow, task resumption timing, and
reacquisition.

Maintaining Task Flow
Users switched tasks significantly less often with Clipping
Lists interfaces, which used semantic content extraction,
indicating that it improved task flow. We informally ob-

SF SF + Change Clippings Clippings + ChangeSF SF + Change Clippings Clippings + Change

0 1 2 3 4 5

Ease of use

Learnability

Performance

Satisfaction

Intention to use

Peripheral
awareness

Task
reacquisition

Question Subject
(Higher is better)

Visible content

Preference over
Windows

Understanding in
a glance

0 1 2 3 4 5

Ease of use

Learnability

Performance

Satisfaction

Intention to use

Peripheral
awareness

Task
reacquisition

Question Subject
(Higher is better)

Visible content

Preference over
Windows

Understanding in
a glance

0 1 2 3 4 5(Lower is better)

Task switching
mental demand

Physical demand

Monitoring mental
demand

Frustration level

Interruption

0 1 2 3 4 5(Lower is better)

Task switching
mental demand

Physical demand

Monitoring mental
demand

Frustration level

Interruption

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Task switching

Monitoring mental

0 1 2 3 4 5 6 7

Task switching

Monitoring mental

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Task switching

Monitoring mental

0 1 2 3 4 5 6 7

Task switching

Monitoring mental

SF SF + Change Clippings Clippings + ChangeSF SF + Change Clippings Clippings + Change

0 1 2 3 4 5

Ease of use

Learnability

Performance

Satisfaction

Intention to use

Peripheral
awareness

Task
reacquisition

Question Subject
(Higher is better)

Visible content

Preference over
Windows

Understanding in
a glance

0 1 2 3 4 5

Ease of use

Learnability

Performance

Satisfaction

Intention to use

Peripheral
awareness

Task
reacquisition

Question Subject
(Higher is better)

Visible content

Preference over
Windows

Understanding in
a glance

0 1 2 3 4 5(Lower is better)

Task switching
mental demand

Physical demand

Monitoring mental
demand

Frustration level

Interruption

0 1 2 3 4 5(Lower is better)

Task switching
mental demand

Physical demand

Monitoring mental
demand

Frustration level

Interruption

0 1 2 3 4 5

Ease of use

Learnability

Performance

Satisfaction

Intention to use

Peripheral
awareness

Task
reacquisition

Question Subject
(Higher is better)

Visible content

Preference over
Windows

Understanding in
a glance

0 1 2 3 4 5

Ease of use

Learnability

Performance

Satisfaction

Intention to use

Peripheral
awareness

Task
reacquisition

Question Subject
(Higher is better)

Visible content

Preference over
Windows

Understanding in
a glance

0 1 2 3 4 5(Lower is better)

Task switching
mental demand

Physical demand

Monitoring mental
demand

Frustration level

Interruption

0 1 2 3 4 5(Lower is better)

Task switching
mental demand

Physical demand

Monitoring mental
demand

Frustration level

Interruption

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Task switching

Monitoring mental

0 1 2 3 4 5 6 7

Task switching

Monitoring mental

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Task switching

Monitoring mental

0 1 2 3 4 5 6 7

Task switching

Monitoring mental

Figure 8: Survey result averages (Likert scale 1-7). UIs
with Clipping Lists performed significantly better than
those without, as did interfaces with Change Borders.

served that users glanced more quickly at Clipping Lists
and returned to their focal task, implying less detriment to
task flow. We feel adding Clipping List-style interfaces to
peripheral displays could significantly enhance information
workers’ ability to remain in task flow, while efficiently
responding to important task updates

Knowing When to Resume a Task
Our results showed that the Clipping Lists interfaces, using
semantic content extraction, were most effective at making
users aware of when to resume a paused task. First, task
times were significantly faster for Clipping Lists, indicating
more efficient multitasking. Though not significant, re-
sumption times for Clipping Lists were faster, suggesting
that users might have known when to return to tasks—a
trend that deserves further attention. Finally, task switches
were significantly fewer, implying that users did not have to
manually check if peripheral tasks were ready.

Change Borders (a version of change detection), when used
without Clipping Lists, had a negative effect on users’ abil-
ity to resume email at appropriate times. From user feed-
back, it is clear that the one bit of information was not

enough; users needed more information to determine if an
email was important.

Having relevant task information drawn out in Clipping
Lists enabled these effects. This suggests that semantic con-
tent extraction is important for giving users enough infor-
mation to know when to resume a task.

Task Reacquisition and Recognition
Clipping Lists (semantic content extraction) were also most
effective at enabling users to easily get back into tasks and
recognize task-relevant windows. Qualitatively, users told
us that Clippings made it easier to distinguish between win-
dows. Quantitatively, window switching results showed that
Clipping List interfaces significantly reduced the number of
window switches within both priority tasks. This indicates
that Clipping Lists better enabled users to recognize win-
dows and get back to resumed tasks. We informally ob-
served that users seemed to spend less time staring at
peripheral tasks when switching.

Design Implications and Future Work
Our results show that Clipping Lists were effective and
users told us this was because they provided the most rele-
vant task information (i.e., they used semantic content ex-
traction). Clipping Lists improved task times by 29 seconds
on average; Clipping Lists with Change Borders improved
task times by 44 seconds on average. These task switching
improvements are cumulative, adding up to a sizeable im-
pact on daily multitasking productivity.

Presumably, the higher detail shown in Clippings required
more attention to process, but Clipping Lists were still more
efficient than scaling and Change Borders. Peripheral dis-
play designers have focused much effort on highly ab-
stracted information and non-text based UIs. The fact that a
detailed portion of a window, as long as it shows relevant
information, offers improved task performance is quite in-
teresting. Though liked by users, Change Borders did not
provide as much of a performance benefit. We assert this
was because change detection did not provide enough in-
formation to help users recognize windows, reacquire tasks,
or to determine if an update was worthy of interruption.
Specifically, more relevant task information is needed.

Unfortunately, at this time, semantic content extraction re-
quires extra effort from users (e.g., to select relevant task
information) or from designers (e.g., to design peripheral
elements with pre-selected data). Given that semantic con-
tent extraction is more effort for either users or designers, is
it worth it? We argue that the results of this study suggest it
is. Results showed significant performance benefits as well
as user preference for interfaces using semantic content
extraction. Neither scaled windows nor change detection
seemed to provide the right information to improve multi-
tasking performance. Extracting relevant task information
seems a crucial part of designing peripheral displays for
multitasking, and clipping small pieces of window content
proved an effective way to semantically extract content.

These results help us direct future design and research ef-
forts. Because semantic content extraction is so important,
we will direct more effort toward developing interfaces and
algorithms for selecting relevant task information from win-
dows. To automate some of this burden, more research is
needed to correctly extract relevant content. In addition,
since we knew how to best perform the study tasks and ex-
tracted optimal content in our study, we cannot comment on
how this would generalize to less well-constructed or less
predictable tasks. More research is needed to explore and
identify relevant content in a diverse set of real-world tasks.

CONCLUSION
We set out to improve multitasking efficiency, focusing on
helping users maintain task flow, know when to resume
tasks, and more easily reacquire tasks. In an empirical
study, we compared four peripheral interfaces using differ-
ent types of abstraction that provided varying types of task
information: scaling (showing a window’s layout over-
view), change detection (whether or not a change had oc-
curred), and semantic content extraction (displaying a small
piece of the most relevant window content).

The main contribution of this paper is a set of results show-
ing that semantic content extraction is more effective than
both change detection and scaling in improving multitask-
ing efficiency. We also show that semantic content extrac-
tion significantly benefits task flow, resumption timing, and
reacquisition. These findings provide a better understanding
of how to design peripheral displays that aid people who
multitask, so that they focus their cognitive resources on the
task at hand, instead of on task and windows management.

ACKNOWLEDGMENTS
We are grateful to Greg Smith and Brian Meyers for their
technical expertise. We also thank Krzysztof Gajos, Gonzo
Ramos, Amy Karlson, and Johnny Lee for study assistance.

REFERENCES
1. Czerwinski, M. and Horvitz, E. “Memory for daily

computing events.” People and Computers XVI, Proc. of
HCI, 230-245, 2002.

2. Czerwinski, M., Horvitz, E., Wilhite, S. “A diary study
of task switching and interruptions.” Proc. of CHI, 175-
182, 2004.

3. Ellis, J. & Kvavilashvili, L. Prospective memory in
2000: Past, present and future directions. Applied Cogni-
tive Psychology, 14, 1-9, 2000.

4. Gonzalez, V.M., Mark G. “‘Constant, constant, multi-
tasking craziness’: managing multiple working spheres.”
Proc. of CHI, 113-120, 2004.

5. Grudin, J. “Partitioning digital worlds: focal and periph-
eral awareness in multiple monitor use.” Proc. of CHI,
485-465, 2001.

6. Gwizdka, J. “Timely reminders: a case study of tempo-
ral guidance in PIM and email tools usage.” Extended
abstract of CHI, 163-164, 2000.

7. Henderson, D.A. Jr. and Card, S. “Rooms: the use of
multiple virtual workspaces to reduce space contention
in a window-based graphical user interface.” ACM
Transactions on Graphics, 5, 3, 211-243, 1986.

8. Hutchings, D.R., Stasko, J. “Shrinking window opera-
tions for expanding display space.” Proc. of AVI, 350-
353, 2004.

9. Jones, W.P., Bruce, H. and Dumais, S.T. “Keeping
found things found on the web.” Proc. of CIKM, 119-
126, 2001.

10. Lamming, M.G. and Newman, W.M. “Activity-based
information retrieval: technology in support of personal
memory.” Information Processing, 92, 3, 68-81, 1992.

11. MacIntyre, B., Mynatt. E.D., Voida, S., Hansen, K.M.,
Tullio, J., Corso, G.M. “Support for multitasking and
background awareness using interactive peripheral dis-
plays.” Proc. of UIST, 41-50. 2001.

12. Matthews, T., Rattenbury, T., Carter, S., Mankoff, J.,
Dey, A. “A peripheral display toolkit.” U.C. Berkeley
Tech Report, CSD-03-1258, 2003.

13. Mark, G., Gonzalez, V.M., Harris, J. “No task left be-
hind?: examining the nature of fragmented work.” Proc.
of CHI, 321-330, 2005.

14. O’Connail, B. and Frohlich, D. “Timespace in the
workplace: dealing with interruptions.” Extended Ab-
stracts of CHI, 262-263, 1995.

15. Pedersen, E.R., Sokoler, T. “AROMA: abstract repre-
sentation of presence supporting mutual awareness.”
Proc. of CHI, 51-58, 1997.

16. Plaue, C., Miller, T., Stasko, J. “Is a picture worth a
thousand words?: an evaluation of information aware-
ness displays.” Proc. of GI, 117-126, 2004.

17. Robertson, G. Horvitz, E., Czerwinski, M., Baudisch, P.,
Hutchings, D.R., Meyers, B., Robbins, D., Smith, G.
“Scalable Fabric: flexible task management.” Proc. of
AVI, 85-89, 2004.

18. Schneiderman, B., Bederson, B.B., “Maintaining con-
centration to achieve task completion.” Proc. of DUX,
To Appear, 2005.

19. Sellen, A.J., Louie, G, Harris, J.E. and Wilkins, A.J.
“What brings intentions to mind? An in situ study of
prospective memory.” Memory, 5(4), 483-507, 1996.

20. Tan, D.S., Meyers, B., Czerwinski, M. “WinCuts: ma-
nipulating arbitrary window regions for more effective
use of screen space.” Proc. of CHI, 1525-1528, 2004.

21. Terry, W.S. “Everyday forgetting: data from a diary
study.” Psychological Reports, 62, 299-303, 1988.

