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ABSTRACT system performance in high noise conditions. We propose a
new AEC architecture with the objective of maximizing the

Acoustic echo cancellation (AEC) is highly imperative for echo cancellation of the AEC algorithm. Our motivation is
enhanced communication in noisy environments such as that by maximizing echo cancellation of the AEC algorithm,
car or a conference room. In this work, we present a dualwe can make the post-processing stages milder, and thereby
structured AEC architecture that improves both the conveminimize near-end distortion and artifacts. Furthermore, the
gence time and misadjustment of a conventional adaptive sulxEC algorithm makes more use of the signal information than
band AEC algorithm in high noise environments. In this arthe post AEC algorithms as it takes into account both the
chitecture, one part performs smooth adaptation while thehase and the magnitude of the input signals; the post AEC
other part performs fast adaptation; a convergence detectafgorithms do not use the phase information of the signals.
is implemented to facilitate switching between the fast and A well known property of adaptive filtering algorithms is
smooth adaptations. We propose the momentum normalizete trade-off between adaptation time and misadjustment [3].
least mean square (MNLMS) algorithm for smooth adaptaAn effective AEC requires fast adaptation when the echo path
tion and we implement the NLMS algorithm for fast adap-changes and smooth adaptation when the echo path is station-
tation. The current architecture provides up to 3-4 dB echary. In this work, we develop a dual-structured AEC archi-
reduction improvement over a conventional adaptive subbangécture where one part of the architecture performs fast adap-
AEC algorithm and it helps minimize near-end distortion andtation, while the other part performs smooth adaptation. We

artifacts in the post-processed AEC output. propose the momentum normalized least mean square
(MNLMS) algorithm for smooth adaptation and we perform
1. INTRODUCTION fast adaptation using the NLMS algorithm. We demonstrate

through our experimental results that our proposed architec-

Acoustic echo cancellation (AEC) removes the echo capturetlire provides up to 3-4 dB gain in echo cancellation over the
by a microphone when a sound is simultaneously played thrazonventional adaptive subband NLMS based AEC algorithm.
ugh speakers located near the microphone [1]. Many high- This paper is organized as follows. In Section 2, we de-
noise environments such as noisy conference rooms or loeribe a conventional subband NLMS based AEC algorithm.
bies and hands-free telephony in cars require effective echia Section 3, we describe our proposed AEC architecture.
cancellation for enhanced communication. However, the pre$erformance results are discussed in Section 4, and conclu-
ence of noise impedes the convergence of the AEC algorithngjons are provided in Section 5.
which leads to poor echo cancellation. Furthermore, nonlin-
ear post processing techniques such as the use of a center clip- 2. SUBBAND AEC ALGORITHM
per result in noticeable distortion in the near-end speech. . ) . ) . ) )

Previous works on AEC in high noise focussed on com-We consider a typical au_dm-conferencmg environmentin which
bined noise and echo reduction ([2] and references therein}f€ far-end (speaker) signalplayed out through the speak-
One of the approaches in [2] is to preprocess the microphorfgS Produces an echo at the microphone [3]. In addition to
signal through a noise suppression (NS) algorithm and pefl® €cho from the speakers, the audio signaaptured by
form adaptation using the far-end speaker signal that has uff1e microphone is also composed of the desired speeck
dergone the same NS operations as the microphone sign(rafla.‘ckgroun(_j noIse. The AEC a'go“t_hm cancels the echo
Although, this seems favorable, our experiments revealed thi°™ the microphone signal resulting in the output signal
this technique often distorts the echo signal, which hinders the !N this paper, the conventional adaptive subband AEC al-
convergence properties of the AEC algorithm. Furthermored©rithm implements a subband NLMS algorithm. The signals
this technique requires perfect synchronization between th&® Sampled at 16 KHz and they are processed on a frame-by-

mlcrophpne and the far-end speaker -Slgll’la|S. ) 1The AEC system in this paper implies an AEC algorithm followed by
In this work, we are concerned with improving the AEC post-processing echo suppression and noise suppression algorithms.




frame basis with each frame measuring 20 ms. To compute NLMS algorithm: fast adaptation

i 4
the spectrum we use a 320-point modulated complex lapped ~ Bands 83 282
transform (MCLT) every 20 ms using a 40 ms window. The Bands 3 - 82 %

MCLT is a particular form of cosine modulated filter-bank H=0350r 202 el
that allows for perfect reconstruction. The frequency domain_>__| Switching N o ———]—3;]—1—(1—;—%‘——_—&————;
spectrum is divided into 320 frequency bins with a bin sepa- Decisions -
ration of 25 Hz. Bands 3 - 82 q
h=0.2,0=-09
3. PROPOSED AEC ARCHITECTURE MNLMS algorithm: smooth adaptation

The AEC algorithm performs reasonably well under low noise " '9- 1. Proposed dual-structured AEC architecture.

conditions; as the noise level increases, the adaptation is hin-
dered and the AEC performance deteriorates [3]. In addi- It was noted in our experiments that under high noise con-

tion, disturbance effects such as time-varying echo paths (Y ns anda > 0, MNLMS performs poorly in comparison

to movements in a room) further reduce the AEC's Ioerfor'With the NLMS algorithm. This is because the weight update

mance. In sutc):h S(l:en?rloT, or|1e nfot pnlﬁ_reqmres fast convegy ation is largely disturbed by high background noise; any
gence rates, but also low evels ormisa jusr'][rnent. in whi error made during the previous weight update step is prop-
We propose a dual-structured AEC architecture in which, yata4 to the future time-steps due to the momentum term.

one part performs fast_ adaptation vyhile t_he second part pefﬁterestingly, wheny < 0, the MNLMS algorithm performs
forms smooth adaptation. At any given time, a CONVErgeNnChaer in terms of misadjustment than the NLMS algorithm

detector is used to decide which of the two parts should t,’ﬁ/vhen using the same step-size for both algorithms). This

used for the final AEC output signal. In the proposed archiig pacause by using a negative the update in weights of

tecture, we use the NLMS algorithm for fast adaptation anghe previous time-step are rendered unreliable (due to high
the MNLMS algorithm for smooth adaptation. To explain our hgise) ynless there is a strong feedback in the future time-
architecture, we first describe the MNLMS algorithm. step for this weight update. This builds a smoothing effect
. . in the MNLMS algorithm which makes it more resilient to
3.1. Momentum Normalized Least Mean Square Algorithm noisy conditions than the NLMS algorithm. This motivates
The MNLMS algorithm proposed in this paper is a variantys to use the MNLMS algorithm for the smoothing part in
of the momentum LMS (MLMS) algorithm, which, was first our proposed AEC architecture, which is described next.
used in digital communication for high speed adaptive equal-

ization [4]; the MLMS algorithm was shown to provide faster -

and smoother convergence than the LMS algorithm [5]. Thg"z' Dual-Structured AEC Architecture . .
MNLMS algorithm corresponds to second-ordemdaptive We propose a dualjstructured AEC architecture as sh_own in
algorithm in that two previous weight vectors are combined™i9- 1. In this architecture, two streams of AEC algorithms

at each iteration to obtain the updated weight vector [5]: ~ OPerate in parallel. The upper stream implements the NLMS
algorithm for fast adaptation while the lower stream imple-

X(f,k)EH(f, k) ments the MNLMS algorithm for smooth adaptation; a con-
W(fk+1) = W(fk)+ 2“(5 IX(f,k)|12] + 0) vergence detector is implemented to switch between the two
Fa WK - W(f,k—-1)], (1) streams. The advantage of this architecture is that we can
switch between fast and smooth adaptation depending on room
wheref is the frequency index; is the frame index, > 0is ~ conditions. Note that both streams operate independently, i.e.,
the adaptation step-size,] < a < 1 is the momentum fac- there is no exchange of information between the two streams.
tor, X(f, k) = [X(f.k),---, X(f,k— L+1)]" is the far- It was found through experiments that the improvement in
end speaker signal vector witki(f, k) denoting the far-end AEC performance of the lower stream over the upper stream
speaker signal for subbantland frame index, L denotes was dominated by adaptation in the frequency kins 82
the regression model ord&V (f, k) = [W1(f, k), , only. Thus, in our architecture, we operate the lower stream
Wi(f k— L+ 1)]T denotes the weight vectdg,denotes an  Over only the frequency bins — 82. This helps reduce the
expectation, and > 0 is a regularization term. Alsd;(f, k)  computational cost as we do not have to implement a full-
is the AEC outputE(f, k) = Y (f, k) — WH(f,k)X(f,k), band AEC algorithm in the lower stream.
whereY (f, k) is the microphone signal anH denotes the At each framek, the AEC output signat; of the lower
Hermitian operation. The third term in the summation of (1)stream is processed by a convergence detector (described in
is called the momentum term, since by adding a fraction ofsection 3.3) to determine if the echo canceler of the lower
the weight increment of the previous time-step, we providétream has converged. If convergence is detected, wejuse
momentum to the adaptive process. Note thatfet 0, the for the bins3 — 82 of the final AEC output signal, otherwise
MNLMS algorithm reduces to the NLMS algorithm. the bins3 — 82 of the AEC output signal of the upper stream




(i.e., e2) are used. The frequency bins 83-282coflways Here, A is an exponential weighting factor generally set as
correspond tes i.e., to the frequency bins 83-282 of the AEC 0.95 < A < 1 for slowly time varying signals. Using (2),

output signal of the upper stream. we define the average cross correlation (ACCH@g k) =

To further improve the performance of the AEC system% Z'L—_Ol pi(f, k). For reliable convergence decisions, the ACC
we implement the AEC algorithm of the upper stream with;g coln;puted only for the frequency bins 13-82 (325 Hz - 2.05
two step-sizes, i.e..1=0.35 andu»=0.2, that were chosen KHz) where speech signal is dominantly present.
through rigorous experimentation with real data. We use At each framek, we comparep(£, k) to a thresholdpr,
for fast adaptation anp!g when smooth adaptation is requi_re_,\d for £=13,11;--,82. If the inequalityp(f, k) < pry is met
but the MNLMS algorithm has not converged. The decisionyg, more than half of the total frequency bins considered (i.e.,
to switch betweep; andy., is made using a separate conver-70/2=35) we declare that the AEC has converged, otherwise
gence detector that is bl_JlIt into the AEC aIgonthm of the firstye geclare that either the AEC has not converged or the echo
stream. The AEC algorithm of the lower stream implement$, o has changed. The convergence threshold is typically set

an MNLMS algorithm with a step-size gé. ~to be slightly larger thap(f, k) in its steady state [6].
To summarize, we begin the adaptation process with the
AEC algorithm of the upper and lower streams operating with 4. EXPERIMENTS AND RESULTS

step-sizes ofy; and uo, respectively. Initially, the AEC al-
gorithms of both the streams will be in the learning phaséVe tested the performance of our proposed AEC architecture
(i.e. not converged). However, as the upper stream convergé¥8 real data collected from a small office-room (10x8x10ft).
faster than the lower stream, we combineandes to obtain ~ The data was recorded at 16 KHz sampling rate. To evalu-
e during the initial phase. Furthermore, upon convergence dite the AEC performance quantitatively, we consider only the
the AEC algorithm in the upper stream, is reduced tqu, single talk case; the double talk case was evaluated through
to perform smooth adaptation. When the AEC algorithm inlistening tests. We analyzed the algorithm’s performance quan-
the lower stream converges, ande; are combined to obtain titatively on the basis of echo return loss enhancement (ERLE)
e. Finally, whenever a change in the echo path is detectedh dB, which is given as, ERL&) = 10log;, [%}
we switch to the faster adaptation stream and continue usingor the single talk case, the far end speaker signal was first
it until the AEC algorithm in the lower stream reconverges. recorded under low noise conditions; at 16.5ks=£ 825)
movements were introduced in the room to cause a change
3.3. Convergence Detector in the echo path. Office background noise was collected and

An important component of our proposed architecture is to bEhen synthetically added to the far-end signal to produce the
able to switch between fast and smooth adaptation depen@ticrophone signal at an echo-to-noise ratio of 7 dB. After
ing on the convergence conditions of the AEC algorithm. TdProcessing the microphone signal through the AEC, the back-
achieve this, we use the orthogonality property of adaptiv&round noise was subtracted from the AEC output signal and
algorithms: when the echo canceler has converged, the AEe result compared with the noise-free microphone signal.
output signal must be orthogonal to the speaker signal [3]'!'his was done to evaluate the true performance of the pro-
This property was used to develop a double talk detector iR0sed architecture unhindered by noise. Thus, the tgtkis

[6]. We adopt the double talk detection algorithm of [6], butande(k) in the ERLE formulation correspond to the noise-
use it only as a convergence detector. Further, instead of opdfee microphone and AEC output signals, respectively.

ating the convergence detector in the time domain, we operate
it in the subband domain; this is explained next.

ERLE Comparison of NLMS and MNLMS algorithms on AEC output
T T T T T

The cross correlation between the AEC output f, k) of sl | NMs 035
the lower stream at framieand the speaker signal( f, k—1) L nvsos
atframek—i (i =0, --- , L—1) for frequency binf is defined sl
as

. P Jk & 10l
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where Pz, (f,k), Pk (f,k), and Py (f, k) are updated us- [k
ing an exponential weighting recursive algorithm [6]: 0 KZ
P%l(f,k) = )‘Pél(kafl)+(17)‘)|El(f7k)|2 St ) ) ) ) ) )
‘P;((f,k)‘Q — )\|P§<(f,k}— 1)‘2+(1—)\)|X(f,k‘—i)|2 100 200 g?:mes 400 500 600
Pyp,(f,k) = APxp,(f,k=1)+(1-X)- Fig. 2. ERLE comparisons for NLMS and MNLMS algo-

X(f k=B (f k). (3) rithms on the AEC output.
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Fig. 3. Comparison of the real part of the first tap weight for
the NLMS and MNLMS algorithms.
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Fig. 4. ERLE difference between the the proposed archite

ture and the conventional subband adaptive AEC algorithm

on the AEC output in room noise.

In this work, we usei; = 0.35, s = 0.2, anda = —0.9.
Fig. 2 depicts the ERLE curves for the NLMS (with and
u2) and the MNLMS (using:» anda) algorithms. It can be

seen that the adaptation is fastest with NLMS,0.35, followed

by NLMS,0.2, and MNLMS,0.2. However, as we approach
k = 500, the ERLE is largest for MNLMS,0.2, followed by
NLMS,0.2, and NLMS,0.35.

Fig. 3 compares the real part of the first tap weight for the?

NLMS and MNLMS algorithms to demonstrate the difference

between the two adaptive algorithms. It can be seen that the

tap weight for the NLMS algorithm fluctuates more rapidly

than that for the MNLMS algorithm. This suggests that thel4]

MNLMS algorithm is more resilient to noisy conditions than
the NLMS algorithm. The difference in evolution of the tap
weights for the MNLMS and NLMS algorithms is the primary

reason to operate the AEC algorithms in the upper and lowds]

streams independently for frequency bins 82
We compare the results of our proposed AEC architec

ture with that of a conventional adaptive subband AEC algo-
rithm described in Section 2 using a step-size of 0.35. Fig. 4
shows the ERLE difference on the AEC output between our
proposed architecture and the conventional AEC algorithm.
The dashed line indicates the switching decisions along time;
avalue of 1 indicates that the upper stream is processed while
a value of -1 indicates that the lower stream is processed.

Initially, the AEC algorithms in both streams are converg-
ing; however, as the upper stream converges faster, we use
its output as the final AEC output (during frame indices 1-
363). Furthermore, as the conventional AEC algorithm also
implements a step-size of 0.35, its output is equivalent to the
output of our parallel AEC architecture. As a result, we do
not see an ERLE gain between our AEC architecture and the
conventional AEC algorithm. At abodt= 321, the AEC al-
gorithm of the upper stream converges; consequently, the step
size of the AEC is changed to 0.2 for smoother convergence.
This results in an ERLE gain between the parallel architec-
ture and the conventional AEC algorithm during the frame
indices321 — 363. At k = 364, the lower stream also con-
verges. At this stage, we switch to the lower stream i.e., we
usee; for frequency band3—82 of e. This leads to an ERLE
gain of up to 4 dB over the conventional AEC algorithm. At
aroundk = 825, there is a movement in the room, which is
detected by the convergence detector. At this time, we shift
to the upper stream. Eventually, when the AEC in the lower
stream reconverges, we shift back to the lower stream. Thus,
the parallel architecture helps to obtain both fast adaptation
and low misadjustment, which results in the improved per-
formance of our proposed architecture over the conventional
subband adaptive AEC algorithm.

5. CONCLUSIONS

new dual-structured architecture for the AEC system is pro-
posed to improve both the convergence time and misadjust-
ment of a conventional AEC algorithm in high noise envi-
ronments. The architecture provides up to 3-4 dB improve-
ment in echo reduction over the conventional subband adap-
tive AEC algorithm for a small computational overhead.
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