
A Parameterizable Processor Architecture for Large

Characteristic Pairing-Based Cryptography

Gary C.T. Chow

Department of Computing

Imperial College London, UK

cchow@doc.ic.ac.uk

Ken Eguro

Embedded and Reconfigurable Computing Group

Microsoft Research, Redmond, WA, USA

eguro@microsoft.com

Abstract. Cryptographic pairing (bilinear mapping) is a core algorithm for var-

ious cryptography protocols. It is computationally expensive and inefficiently

computed with general purpose processors. Although there has been previous

work looking into efficient hardware designs for pairing, most of these systems

use small characteristic curves which are incompatible with practical software

designs. In this paper, we propose a novel processor architecture for pairing-

based cryptography applications using large characteristic curves. The architec-

ture is parameterizable to fields with different bit-widths and different pairing

algorithms. It takes advantage of some unique FPGA features such as huge ag-

gregated memory bandwidth and massively parallel computation logic to

achieve high performance and high energy efficiency. An example 512-bit pair-

ing processor with this architecture can verify 9.6K pairings/second on a Xilinx

Virtex-6 FPGA. It is 18.7x faster than a single threaded software version run-

ning on a 2.5 GHz Xeon E5420 CPU. The per-pairing energy consumption of

the FPGA processor is estimated to be at least 6.0x better than its CPU counter-

part. The proposed architecture is ideal for server-side applications requiring

flexibility, performance and energy efficiency.

Keywords: Parameterizable processor, field programmable gate array (FPGA),

power-aware cryptography, pairing-based cryptography, elliptic-curve crypto-

graphy (ECC), arithmetic, large characteristic.

1 Introduction

Pairing-based cryptography protocols utilize bilinear mapping. It allows some impor-

tant features such as identity-based cryptographic schemes and short signature

schemes. These are not readily available using traditional cryptography techniques

[1]. Furthermore, in recently years there has been a paradigm shift from traditional

computing to “Cloud Computing”. Instead of computing with local infrastructure,

computations are provided as a service over the Internet (“The Cloud”). This gene-

rates huge demand for pairing-based cryptography computations to maintain system

integrity. Despite improvements in clock frequency and the level of parallelism of

CPUs, software implementations of pairing-based cryptography protocols remain

insufficient, both in terms of performance and energy efficiency. This problem is

exacerbated in server-side applications where pairing computation requirements scale

proportionally to the number of clients. The situation has driven research into hard-

ware accelerators for cryptographic pairings.

Although efficient hardware pairing implementations were proposed in [2-7], they

may not be suitable for use in practical systems for two reasons. First, they lack flex-

ibility, targeting particular pairing algorithms using specific curves with pre-defined

bit-widths (e.g. Modified Duursma-Lee Algorithm for Tate pairing over). Rigid

implementations such as these make it difficult to explore the design space for use in

different systems or to accommodate different modes of use. Second, they all target

curves with small characteristics. Although, as will be discussed in more detail in

Section 2.2, small characteristics curves are naturally very amenable for execution on

dedicated hardware, they are more difficult to operate on using conventional proces-

sors compared to large characteristic curves. Furthermore, since somewhat less is

known about pairing over small characteristic curves, it may be difficult to find ellip-

tic curve / Galois field combinations for a reasonable pairing implementation.

This work differs from previous hardware designs in three major ways. First, we

target large characteristic pairings that are comparatively well-understood and more

compatible with client-side software. Second, instead of implementing a pairing ker-

nel for a specific algorithm and curve, we take a higher-level approach and design a

novel architecture that is parameterizable to different bit-widths and capable of im-

plementing different pairing algorithms. Finally, the proposed architecture takes ad-

vantage of modern FPGA features to provide flexibility for system scaling.

To demonstrate the potential advantages of this design philosophy, we imple-

mented a specialized pairing processor on a FPGA and achieved 18.7x greater

throughput over a software implementation running on a conventional desktop pro-

cessor. We also examine the per-pairing energy consumption of this FPGA imple-

mentation. The prototype reconfigurable processor is, evaluated very conservatively,

6.0x more energy efficient than its conventional software-based counterpart. To best

of our knowledge, this is the first time power consumption has been considered in

cryptographic pairing designs.

2 Background

2.1 Overview of Cryptographic Pairing

We only give a brief overview of pairing and refer readers to [8] for a more compre-

hensive introduction.

A cryptography pairing is a bilinear mapping from two groups to another group.

The following equation gives a Tate pairing as an example. Following the notation of

[8]:

Although there are different pairing algorithms, such as the Tate pairing and the Eta

pairing, they can all be divided into two computational stages: the Miller loop (or a

modified Miller loop) and the final exponentiation. A Tate pairing algorithm is pre-

sented in Algorithm 1 to illustrate the two stages. Step 4 and 5 represent the Miller

loop and final exponentiation, respectively.

Algorithm 1: Tate pairing

Input:

Output:

1) let the binary representation of r be r = (rt, …r1, r0)2

2) select a point

3) set

4) for i from t down to 0 do:

a) let l be the tangent line through T, and let v be the vertical line through 2T.

b)

c)

d) If ni = 1 then

i. let l be the line through T and P, let v be the vertical line through T+P.

ii.

iii.

5) Return()

2.2 Classification of Cryptographic Pairing

We divide cryptographic pairings into two groups: “hardware-friendly” and “soft-

ware-friendly”. Hardware-friendly pairings have Galois fields with small characteris-

tics (i.e. binary or ternary fields) and their security strength comes from the large

power in their extension fields (i.e. small p and large m in). They are preferred in

dedicated hardware designs because operations in these fields have short carry-chains

and the computation of different coefficients in the polynomial can be independently

evaluated (thus, it is easy to accelerate them through parallel computation). Converse-

ly, software-friendly pairings use Galois fields with large prime numbers and small

powers in their extension field (i.e. large p and small m in). Operations in these

fields have long carry-chains and straightforward parallelization of the arithmetic

operations is generally not possible.

Although hardware-friendly curves favor dedicated hardware computation, they

may not suitable for traditional desktop processors. This is because traditional CPUs

are optimized towards large native word widths (e.g. 32-bit or 64-bit). Thus, compu-

ting over hardware-friendly curves may require wasting computational power calcu-

lating small pieces of data (e.g. 1-3 bits) with wide arithmetic units. As many more

coefficients are required with hardware-friendly curves to achieve the same security

level as one over a software-friendly curve, it requires disproportionately more time to

compute using a conventional processor. Furthermore, in the “Cloud Computing”

paradigm, client-side computers are usually inexpensive, making dedicated hardware

for cryptographic pairing infeasible. Employing hardware-friendly curves in such a

paradigm would significantly penalize clients’ performance and should be avoided.

Another reason for using software-friendly curves is the fact that cryptographic

pairings are relatively restrictive algorithms and there is simply much more research

on curve / field combinations for software-friendly pairings. For example, a family of

combinations (Barreto-Naehrig curves) has been discovered [9]. Such a family of

curves is important because it allows a potential system developer to adaptively select

different curves based upon criteria such as requisite security strength or the availabil-

ity of computational resources.

2.3 Introduction to FPGA

Field programmable gate arrays (FPGAs) are high performance hardware devices

with the flexibility of software. They are constructed from programmable logic and

memory elements embedded in a programmable interconnect network. This pro-

grammability allows them to be specialized to particular computations. This specia-

lization leads to resource efficiency, which can be used for parallel computation to

achieve high throughput.

Energy efficiency is another advantage of using FPGAs over general purpose pro-

cessors. As the circuits can be specialized for particular computations, energy over-

head is reduced. This is especially important for server-side applications where power

consumption and cooling are critical issues.

3 Parameterizable Finite Field Arithmetic Unit

Our pairing-based processor is divided into two parts. The finite field arithmetic unit

(ALU) carrying out computation in , and a control unit specialized for pairing algo-

rithms. In this section we introduce the finite field arithmetic unit parameterizable to

 arithmetic of different bit-widths.

3.1 Multiple-Precision Arithmetic

Although finite field arithmetic of both the base field () and the extension field

() is required in pairing, the extension field arithmetic can be decomposed and

only base field arithmetic has to be supported. In software-friendly pairing, the prime

number q is usually large in order to provide sufficient security strength (i.e. 256-bit).

Straightforward integer arithmetic circuits fail to achieve good performance with such

large numbers due to the long carry chains. A common solution to the problem is

multiple-precision arithmetic. Instead of computing a finite field arithmetic operation

in a single clock cycle, we break it down into multiple limbs and process them se-

quentially. Throughout the paper, we use N to represent the total number of bits of the

finite field, W to represent the width of each limb and be the number of

limbs in each word. We represent each limb of a variable A with coefficients ai using

the following relationship:

Fig. 1 shows the system architecture of the parameterizable finite field arithmetic

unit. Three integer datapaths (a multi-purpose integer unit, a multiplication unit and a

unit to assist with division) are constructed with W-bit integer arithmetic circuits.

They are each controlled by a parameterizable controller and they share access to a

segmented N-bit finite field register file. A master instruction unit controls sequences

of the W-bit integer arithmetic to carry out modular arithmetic. The design of the

ALU is mostly independent to the bit-width of underlying base field. Only minor

changes are required in the datapath controllers to customize the ALU for different

bit-widths (i.e. different number of iterations (k)). This approach eliminates most

ALU modifications and maintains the architecture’s consistency for fields with differ-

ent bit-widths.

Although the performance of an individual ALU is limited because of limb seriali-

zation, the aggregated performance of all ALUs on the same FPGA is maximized by

operating at high clock frequency. We achieve this by using a relatively small W and

keeping carry chains short.

bit-width

dependent

(variable k)

fintie

field

instruction

unit

finite field

registers file
finite field

register file

4 big number

datapaths
4 big number

datapaths

integer

datapath

(fixed W)

4 big number

datapaths
4 big number

datapaths
datapath

controller

Finite Field

ALU

Fig. 1. Architecture of finite field arithmetic unit

3.2 Multi-Purpose Integer Datapath

Fig. 2 shows the simplified block diagram of the multi-purpose integer datapath in our

ALU. The datapath can perform any computation required in modular addition, sub-

traction, negation, copying and inversion. It has two inputs connected to register files

A and B, and an input connected to a ROM storing the modulus prime number. An

inverter and a shifter are also included in the datapath to perform 2’s complement

subtraction and division by two. Table 1 shows all the possible operations of the mul-

ti-purpose datapath.

As an example, modular addition is computed in two passes using the multi-

purpose datapath. During the first pass we test if the sum of two inputs is within the

base field by configuring the datapath as (regA + regB – prime). Depending upon the

result of the first pass, we can reconfigure the datapath as (regA + regB). Modular

subtraction, negation and copying are computed with similar techniques. The algo-

rithms used can be found in [10, ch. 14]. Modular inversion is computed using the

binary extended Euclidean algorithm [10]. All computations required in the algorithm

can be performed by the multi-purpose datapath with no additional circuitry.

+ / -

inverter

+ / -

prime / 0

regA / 0 regB / 0

sum1

>> 1

sum2

out

W W

W

W

W

W W

Fig. 2 Multi-purpose integer datapath

Table 1 Possible operation of multi-purpose datapath
node Possible output

sum1

regA

regB

regA + regB

regA – regB

sum2

sum1

sum1 + prime

sum1 – prime

prime – sum1 (using inverter and 2’s complement)

out
sum2

sum2 / 2 (using left shifter)

3.3 Modular Multiplication

Modular multiplication is the most time consuming operation in the ALU. It requires

an N-bit multiplication and a reduction process to reduce the 2N-bit output back to the

prime field. We use the division by multiplication technique for the reduction [11].

Table 2 shows the five stages of our modular multiplication algorithm with the de-

tailed computation steps and the corresponding datapath.

Due to its easy adaptation to FPGAs, the proof-of-concept system described here

utilizes long multiplication. However, the same basic system architecture can be

adapted if more advanced multiplication techniques are desired. The integer multipli-

cation datapath is constructed with partial product generators (PPGs) and an adder

tree. The PPGs generate partial products . The adder tree sums the partial

products to the final product with the following equation:

 . (1)

Fig. 3 shows the block diagram of the partial product generator. One of the input

registers of the PPG is loaded with a particular limb of data B (bi). Limbs of data A

are fed to the other input beginning from the lower words, and the partial product is

computed in (k+1) clock cycles. We use dedicated embedded multipliers within the

FPGA to realize W-bit multiplication. This increases the clock frequency of the data-

path and reduces the use of flexible programmable logic.

Table 2 Five stages in modular multiplication
Stage Computation steps Remarks Datapath

1 Compute product of inputs Long multiplication

2
Multiple P1 with the pre-

computed division constant
Long multiplication

3a
H(T1) is the upper 2N-bit of T1 Division

3b

4 Compute second product Long multiplication

5
Compute remainder, result of

modular multiplication
Multi-purpose

x

 +

bi

a0a1
...

2W 2W

W

W

W-bit
higher

bi x A

W-bit
lower

Fig. 3 Block diagram of partial product generator

We connect four partial product generators in the configuration shown in Fig. 4.

The A inputs are connected through shift registers such that the partial products are

aligned for summation. Fig. 5 shows the four-input adder tree connected to the PPGs’

outputs. The multiplication takes k/4 passes to compute the product. The first four

limb outputs in each pass are transferred back to the main register file as result. The

remaining k-limb partial sum is stored in a temporary memory and added with the

partial products of next pass. All the outputs are transferred to the register file in the

last pass.

The addition, subtraction and shifting operations needed in the reduction stage of

the multiplication are computed with a specialized datapath, shown in Fig. 6. The (N-

1)-bit shift operation is reduced to an M-bit shift where M = N-1 (mod W). It takes a

single pass to compute output e using the datapath. Although M is depending on the

number of bits in the base field, a unified design for variable bit-width shifting is

used. Thus, it is easy to customize the datapath to different base fields.

PPG0

PPG1

PPG2

PPG3

b0

b1

b2

b3

...

...

...

...

0

0

0

a0

a1

...

a3b0 a2b0 a1b0 a0b0

a2b1 a1b1 a0b1 0

a1b2 a0b2 0 0

a0b3 0 0 0

clk 0clk 1clk 2clk 3

Fig. 4 Partial product generators configurations

PPG0 PPG1 PPG2 PPG3

+

W W

+

W W

+

W+1 W+1

temporary

memory

+

W+2W

W+3

+

lower

W-bit

upper k

limbs lower

4

limbs

W

higher

3-bit

Fig. 5 Adder tree for summation

regB (T1)

regA (P1)

>> 1

+

>> M
W

W

W

W

W

T1

T2

e
W

Fig. 6 Division datapath

4 Specialized Pairing Processor

While the parameterizable ALU provides flexibility for fields of different bit-widths,

it needs to be incorporated into a programmable processor to accommodate different

curves and pairing algorithms. In this section we illustrate how to realize such a pro-

cessor efficiently by leveraging the reconfigurability of FPGAs.

There are two common approaches to constructing a pairing processor using a fi-

nite field ALU. The first approach is to use hardwired state machines. Although such

an approach provides compact and efficient designs, it is difficult to customize the

controller for different curves and algorithms to explore the design space. Another

approach is to combine the ALU with a general purpose processor such as the Xilinx

MicroBlaze [12]. This approach allows the modification of the curve and pairing

algorithm through software. However, most general purpose processors offer functio-

nality unnecessary for pairing functions. Thus, they impose unnecessary overhead and

limit the performance of the whole system. We solve these problems by designing a

specialized pairing processor and leveraging FPGAs’ reconfigurability.

Despite variations between different curves and pairing algorithms, we note that

the basic operation of all pairing is data independent. In the Miller loops of every

pairing algorithm, branching only depends on a constant binary sequence related to

the pairing order. Similar dependence can be observed in final exponentiation – the

sequence is related to the constant exponent. We take advantage of such observations

to design a processor specialized for pairing. We encode the branching sequences into

a circular shift and use a special instruction (Jump and Shift Register) to carry out

these data independent branchings. Whenever a JSR instruction is encountered, the

processor will examine the most significant bit of the shift register and decide the

branching direction. The register is then shifted circularly by 1 bit. As the number of

JSR instructions is fixed in every pairing algorithm, the shift register is restored to its

initial value after each pairing is completed.

By using the JSR instruction, we minimize the non-finite field control instructions

that would normally be necessary to implement loops. The set of control instructions

in our processor is shown in Table 3. By simplifying the control aspect of the design,

this system has considerably less overhead as compared with a general-purpose pro-

cessor. The use of the JSR instruction also reduces the number of instructions in a

pairing program. Although the binary sequence of the whole pairing could be very

long, shift registers are abundant and inexpensive in FPGAs. For instance, a 1024-bit

shift register can be implemented with 64 logic elements in a Xilinx FPGA (0.1% of

even the smallest modern device). The size and initial value of the circular shift regis-

ter is only dependent upon the curve and pairing algorithm used. It can be changed by

reconfiguring the FPGA. Fig. 7 shows the block diagram of the pairing processor.

Table 3 Integer arithmetic and jump instruction set in the pairing processor
Instruction Example Functionality

JUMP JUMP &addr Unconditional jump

LOAD LOAD cnt, val Load specific loop counter with an immediate value

JDEC JDEC cnt, &addr Decrease the loop counter cnt by 1, branch if zero

JSR JSR Branch if the most significant bit of the circular shift

register is 1, right shift circularly by 1 bit afterward

instruction

decoder

instruction

memory

loop counters file

circular shift

register

finite field

ALU

Fig. 7 Architecture of the specialized pairing processor

5 Results and Comparison

To evaluate the potential of the proposed processor architecture, we mapped the 512-

bit “Type A” pairing from the well-known PBC library [13] to a Xilinx FPGA. We

compared our system to the traditional software implementation running on a desktop

processor. Both performance and energy efficiency were evaluated.

5.1 Software Benchmark

The “Type A” pairing is constructed on the curve over for a 512-

bit prime q = 3 mod 4. This pairing has an embedded degree k = 2, and thus the pair-

ing result are in . PBC utilizes the GMP multiple precision library to provide large

integer arithmetic [14]. The GMP library is heavily optimized to most commercial

CPUs using inline assembly language. We believe this combination fairly represents

one of the fastest possible software-based implementations of a given pairing algo-

rithm. To provide a baseline for comparison, PBC was compiled with the default

options on two different 64-bit Linux machines. Table 4 shows the parameters of

these systems.

Table 4 Parameter of the software-based benchmarking systems
 CPU1 CPU2

Model Intel Xeon E5420 AMD Phenom x4 9650

Max Clock Frequency 2.5 GHz 2.3 GHz

Technology Node 45 nm 65 nm

Integer Unit Bit-Width 64 64

Number of Cores 4 4

Power Consumption

(Thermal Design Power)
80 W 95 W

5.2 FPGA results

We synthesized, placed, and routed this 512-bit pairing processor to two different

Xilinx FPGAs. The specifications of these two devices are shown in Table 5. The

Virtex-6 device was selected because it represents a state-of-the-art modern FPGA.

However, for practical purposes we also needed to map the system to an older-

generation Virtex-5 device. Although fully functional FPGA designs can be compiled

for any device using the Xilinx development tools, actual execution requires the phys-

ical device itself – the Virtex-5 device was the platform available to us. This system

contained 16 parallel pairing cores. Correctness of the system was verified with over

60 million Monte Carlo test vectors running over a period of two days.

 Virtex-5 Virtex-6

Model xc5vlx110t xc6vlx760

Technology Node 65 nm 40 nm

 Per core resource utilization

Look Up Table (LUT) 1471 1850

Registers 2207 1947

DSP Slices

(embedded multipliers)
4 4

Block Memory (18-Kbit) 4 4

Max Clock Frequency 208 MHz 399 MHz

Table 5 FPGA results of the benchmarking processor

5.3 Comparison and Analysis

Table 6 shows the performance and energy efficiency of the software and FPGA

pairing systems. The Virtex-5 results come directly from the 16-core prototype de-

sign. The Virtex-6 resource requirements were estimated based upon the total re-

source count available on the device divided by the per core requirements. We esti-

mated the Virtex-6 power consumption by using XPower, a tool provided by the ven-

dor. We also estimate the power consumption of the CPUs by using their thermal

design power (TDP) specifications. As CPU-based systems require peripherals such

as the Northbridge chipset, hard drive and main memory, our comparison likely dras-

tically underestimates their power consumption. Conversely, the FPGA designs are

fully self-contained and do not require any peripherals. Thus, their estimations are

more accurate.

Although we tried to make a fair comparison between the software and hardware

systems using the same algorithmic optimizations, the software implementation has

two advantages over the hardware processor. First, our processor uses long multipli-

cation with O(N
2
) complexity. The GMP library uses multiplication algorithms with

far lower complexity (e.g. Karatsuba). Second, our processor uses division by multip-

lication for reduction while the PBC library employs Montgomery reduction. Thus,

the FPGA needs to perform more integer multiplications for the same operation. We

would like to introduce Karatsuba and Montgomery multiplication in future versions

to improve overall performance.

216 of the proposed processors running in the Virtex-6 FPGA are 18.7x faster than

a single-threaded software implementation running on a 2.5 GHz Xeon. Although the

speed up drops to 4.7x when comparing with a 4-thread version, the estimated energy

efficiency (J/pairing) is 6.0x better in our FPGA design. As discussed earlier, the

improvement in energy efficiency of the FPGA-based system is expected to be even

higher in real-life scenarios.

Table 6 Performance and energy efficiency comparison of software and FPGA pairing

system.
 Intel Xeon

E5420

AMD Phenom

x4 9650

Virtex-5

(xc5vlx110t)

Virtex-6

(xc6vlx760)

 Single core result

Throughput per core

(pairings / second)
511.8 463.6 23.1 44.3

Latency (ms) 1.954 2.157 43.3 22.6

Clock Frequency 2.5 GHz 2.3 GHz 208 MHz 399 MHz

 Multiple core aggregated result

of cores 4 4 16 216

System Throughput

(pairings / second)
2047.2 1854.4 369 9568.8

Average Latency (ms) 0.49 0.54 2.7 0.10

System Power

Consumption (W)
80 95 5.42 62.2

Energy / pairing

(mJ / pairing)
39.1 51.1 14.6 6.5

6 Conclusion

In this paper we presented a novel processor architecture for large characteristic

pairing-based cryptography. The processor is parameterizable to different curves/

pairings and optimized for modern FPGAs. Hence, it is suitable for cryptosystems

requiring variable strength security. We demonstrated an example 512-bit processor

that provides superior throughput while offering better energy efficiency compared

with traditional software-based pairing systems. To best of our knowledge, this is the

first time that energy efficiency has been considered in pairing-based cryptography.

Our results suggest that the proposed pairing processor is suitable for server-side

applications in a datacenter environment where energy efficiency and cooling are

critical issues.

Reference

[1] Menezes , A.: An Introduction to Pairing-Based Cryptography. Unpublished manuscript,

2005. http://www.math.uwaterloo.ca/∼ajmeneze/publications/pairings.pdf

[2] Shu, C., Kwon, S., Gaj, K.: FPGA Accelerated Tate Pairing based Cryptosystems over

Binary Field. In Field Programmable Technology, pp. 173 –180 (2006).

[3] Kerins, T., Marnane, W., Popovici, E., Barreto, P.: Efficient Hardware for the Tate Pairing

Calculation in Characteristic Three. In CHES, pp 412-426 (2005).

[4] Kerins, T., Popovici, E., Marnane, W.: Algorithms and Architectures for Use in FPGA

Implementations of Identity Based Encryption Schemes. In FPL, pp. 74-83 (2004).

[5] Grabher, P., Page, D.: Hardware Acceleration of the Tate Pairing in Characteristic Three. In

CHES, pp. 398-411 (2005).

[6] Beuchat, J., Brisebarre, N., Detrey, J., Okamoto, E.: Arithmetic Operators for Pairing-Based

Cryptography. In CHES, pp. 239-255 (2007).

[7] Ronan, R., Eigeartaigh, C., Murphy, C., Terins, T., Barretto, P.: A Reconfigurable Processor

for the Cryptographic ηT Pairing in Characteristic 3. In the International Conference of Infor-

mation Technology, pp. 11-16 (2007).

[8] Dutta, R., Barua, R., Sarkar, P.: Pairing-Based Cryptographic Protocols: A Survey. In Cryp-

tology ePrint Archive, Report 2004/064.

[9] Barreto, P., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In Selected Areas

in Cryptography – SAC, pp. 319-331 (2005).

[10] Menezes, A.J., Oorschot P.C.V., Vanstone, S.A.: Handbook of Applied Cryptography

CRC Press, 1996.

[11] Granlund,T., Montgomery, P. L.: Division by Invariant Integers using Multiplication. In

ACM SIGPLAN, pp. 61-72 (1994).

[12] Xilinx inc, MicroBlaze Soft Processor Core. http://www.xilinx.com/tools/microblaze.htm.

[13] Lynn, B.: The Pairing-Based Cryptography Library. http://crypto.stanford.edu/pbc/

[14] Torbjörn Granlund et al.: GNU Multiple Precision arithmetic library 5.0.1.

http://gmplib.org/ (2010).

[15] Barreto, P., Kim, H., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based Crypto-

Systems. In Crypto, LNCS, vol. 2442, pp. 354-368 (2002).

[16] Duursma, I., Lee, H.: Tate Pairing Implementation for Hyperelliptic Curves y2 = xp – x +

d. In Asia Crypto, LNCS, vol 2894, pp. 111-123 (2003).

[17] Galbraith, S., Harrison, K., Soldera, D.: Implementing the Tate pairing. In ANTS, LNCS,

vol. 2369, pp. 324-337 (2002).

[18] Granger, R., Page, D., Stam, M.: Hardware and Software Normal Basis Arithmetic for

Pairing Based Cryptography in Characteristic Three. IEEE Transactions on Computers, 54, pp.

852-860 (2005).

[19] Chatterjee, S., Sarkar1, P., Barua, R.: Efficient Computation of Tate Pairing in Projective

Coordinate over General Characteristic Fields. In Information Security and Cryptology –

ICISC, pp. 168-181 (2004).

[20] Fan, X., Gong , G., Jao, D.: Efficient Pairing Computation on Genus 2 Curves in Projec-

tive Coordinates. In Selected Areas in Cryptography - SAC, LNCS, vol. 5381, pp. 18--34

(2009).

[21] Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras, D.,

Ascheid, G., Mathar, R.: Designing an ASIP for Cryptographic Pairings over Barreto-Naehrig

Curves. In CHES, pp. 254-271 (2009).

 [20] Hankerson, D., Menezes, A., Vanstone, S, “Guide to Elliptic Curve Cryptography,”

Springer Professional Computing, Springer, 2004.

[21] C. McIvor, M. McLoone, J. McCanny, “Fast Montgomery Modular Multiplication and

RSA Cryptographic Processor Architectures,” in Signal, System and Computers, 2003, pp. 379-

384.

http://crypto.stanford.edu/pbc/
http://gmplib.org/

Appendix 1, Related work

Research looking into improving cryptographic pairing performance can be divided

into two categories: algorithmic optimizations and hardware acceleration.

Algorithmic improvements include works of Barreto et al. [15], Duursma and Lee

[16], Galbraith et al. [17] and Granger et al. [18]. These authors lowered the com-

plexity of computing pairing functions by deleting unnecessary operations in the

original Miller algorithm. Chatterjee et al. [19] and Fan et al. [20] use projective

coordinate techniques to improve pairing performance by avoiding divisions. These

techniques are general, applicable to most curves and most computing platforms.

Some algorithmic optimization techniques are pairing dependent and they are only

applicable to pairings on certain fields or elliptic curves. For instance, some pairing

optimizations are made based on the fact that squaring and cubing is inexpensive in

characteristic 2 and 3, respectively. Other optimizations include choosing field or

subgroup order with low Hemming weight or other special properties.

Most hardware pairing accelerators are based on curves with binary or ternary

fields. They usually target a specific pairing algorithm and a specific curve / field

combination. A hardwired implementation of Tate pairing over the binary fields

and can be found in [2]. A hardwired pairing implementation using the Duur-

sam-Lee algorithm on a curve defined over is presented in [3], a similar design

using pairing can be found in [6]. In [5], a finite field arithmetic unit is combined

with a general purpose soft processor for pairing using the Duursma-Lee algorithm.

However, it is unclear how the architecture would be used to execute pairing on other

curve / field combinations other than . Furthermore, the use of a general-purpose

processor with an ancillary finite field unit imposes unnecessarily overhead and limits

the performance of the system. This is because a general-purpose processor generally

offers much more functionality than is necessary to control the finite field unit, mak-

ing it slower and more complex. A configurable processor is presented in [7]. In this

system, designers can vary different parameters for trading off parallelism and per-

formance. In this way, the best implementation for a particular situation might be

found. However, while the level of parallelization in this system is configurable, the

processor only targets Eta pairing over .

An application specific instruction-set processor (ASIP) appears in [21]. It com-

putes pairing defined over a specific 256-bit BN curve using optimal Eta pairing. It is

not clear if the ASIP is parameterizable to other curves and it is not optimized for use

with FPGAs, as it targeted towards embedded systems using application specific

integrated circuits (ASIC).

