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Abstract 

This paper combines an analysis of data on security 
vulnerabilities (published in Bugtraq database) and a 
focused source-code examination to develop a finite state 
machine (FSM) model to depict and reason about 
security vulnerabilities. An in-depth analysis of the 
vulnerability reports and the corresponding source code 
of the applications leads to three observations: (i) 
exploits must pass through multiple elementary activities, 
(ii) multiple vulnerable operations on several objects are 
involved in exploiting a vulnerability, and (iii) the 
vulnerability data and corresponding code inspections 
allow us to derive a predicate for each elementary 
activity.  

Each predicate is represented as a primitive FSM 
(pFSM). Multiple pFSMs are then combined to create an 
FSM model of vulnerable operations and possible 
exploits. The proposed FSM methodology is exemplified 
by analyzing several types of vulnerabilities reported in 
the data: stack buffer overflow, integer overflow, heap 
overflow, input validation vulnerabilities, and format 
string vulnerabilities. For the studied vulnerabilities, we 
identify three types of pFSMs, which can be used to 
analyze operations involved in exploiting vulnerabilities 
and to identify the security checks to be performed at the 
elementary activity level. A demonstration of the 
practical usefulness of the FSM modeling approach was 
the discovery of a new heap overflow vulnerability now 
published in Bugtraq.  

Key words: security vulnerabilities, data analysis, finite 
state machine modeling. 

 

1. Introduction 
Analysis of security vulnerabilities has typically 

been approached in one of two ways: (i) using real data 
to develop a classification and perform statistical 
analysis; examples include Landwehr’s study on security 
vulnerabilities [8] and Lindqvist’s study on intrusions 
[11], and (ii) providing a degree of formalism by 
modeling vulnerabilities and attack characteristics; 
representative work includes Ortalo’s Markov model of 
UNIX vulnerabilities [17] and Sheyner’s attack graph 

constructor [18].  This paper combines the two 
approaches: real data is analyzed, in conjunction with a 
focused source-code examination, to develop a finite 
state machine (FSM) model to depict and reason about 
security vulnerabilities. 

Using the Bugtraq list maintained in Securityfocus 
[13], the study first identifies leading causes of security 
vulnerabilities. 1  An in-depth analysis of the reported 
vulnerabilities shows: 

• Exploits must pass through multiple elementary 
activities – at any one of which, one can foil the 
exploit. 

• Exploiting a vulnerability involves multiple 
vulnerable operations on multiple objects. 

• Analysis of a given vulnerability along with 
examination of the associated source code allows us 
to specify predicates that need to be met to ensure 
security. 

These observations motivate the development of an 
FSM modeling methodology capable of expressing the 
process of exploitation by decomposing it into multiple 
operations, each of which includes one or more 
elementary activities. Since each elementary activity is 
simple, it is feasible (using the data and the application 
code) to develop a predicate and a corresponding 
primitive FSM (pFSM) to represent the elementary 
activity. The pFSMs can then easily be combined to 
develop FSM models of vulnerable operations and 
possible exploits.  

The proposed FSM methodology is exemplified by 
analyzing several types of vulnerabilities reported in the 
data: stack buffer overflow, integer overflow, heap 
overflow, file race condition, and format string 
vulnerabilities. These vulnerabilities include both those 
that can be exploited remotely (e.g., those impacting 
Internet servers) and those that can be exploited by local 
users (e.g., privilege escalation of a regular user to root). 
It should be noted that this family of vulnerabilities 
constitutes 22% of all vulnerabilities in the Bugtraq 

                                                 
1 CERT and Bugtraq are two of the most comprehensive databases in 
which security vulnerabilities are reported. We chose Bugtraq for this 
study because its vulnerability reports are better organized and more 
amenable to automatic processing and statistical study. 



 

database. For the studied vulnerabilities, we identify 
three types of pFSMs that can be used to analyze 
operations involved in exploiting vulnerabilities and to 
identify the security checks to be performed at the 
elementary activity level. 

An additional demonstration of the usefulness of the 
approach was the discovery of a new heap overflow 
vulnerability now published in Bugtraq crediting the 
authors [13]. The discovery was made when modeling 
another, known vulnerability.  

2. Related Work 
There has been significant research in modeling, 

analysis, and classification of security problems, some of 
which is based on real data.  

Security Models of Access Control. A number of 
studies [1][2][3] have proposed models for access control 
that satisfies certain rigorously defined security 
properties. Bell and LaPadula [1] proposed a multilevel 
model and formally defined a secure system. A summary 
of the state of the art is presented in [4].  

Classification and statistical analysis of security 
vulnerabilities. Several studies have proposed 
classifications to abstract observed vulnerabilities into 
easy-to-understand classes. Representative examples 
include Protection Analysis [10], RISOS [9], Landwehr’s 
taxonomy [8], Aslam’s taxonomy [7], and the Bugtraq 
classification. Similarly, taxonomies for intrusions have 
been proposed. Examples include Lindqvist’s intrusion 
classification [11] and the Microsoft STRIDE model [12]. 
In addition to providing taxonomies, [8] and [11] 
perform statistical analysis of actual vulnerability data, 
based on the proposed taxonomies.  

Modeling security vulnerabilities and intrusions. 
Several studies focus on modeling attacks and intrusions 
with the objective of evaluating various security metrics. 
Michael and Ghosh [19] employ an FSM model 
constructed using system call traces. By training the 
model using normal traces, the FSM is able to identify 
abnormal program behaviors and thus detect intrusions. 
In [18], a finite state machine based technique to 
automatically construct attack graphs is described. The 
approach is applied in a networked environment 
consisting of several users, various services, and a 
number of hosts. A symbolic model checker is used to 
formally verify the system security. Recent studies have 
proposed stochastic models to quantitatively evaluate 
security metrics. Ortalo et al. [17] develop a Markov 
model to describe intruder behavior and evaluate system 
security in terms of METF (mean effort to failure). 
Madan [20] described a semi-Markov model to evaluate 
an intrusion-tolerant system subject to security attacks. 
Several security and reliability metrics (e.g., METF and 
availability) are defined and shown to be solvable. 
Clearly, such a model requires that parameters, e.g., 

probabilities of transitions and sojourn time, be available 
or estimated.  

There is little work on modeling of discovered 
security vulnerabilities to capture how and why an 
implementation fails to achieve the desired level of 
security. This paper uses actual vulnerability data (e.g., 
reports) and code inspection to derive FSMs to describe 
simple predicates, which are used to generate FSM 
models. The developed FSMs allow us to reason about 
the existing vulnerabilities and also seem to have the 
potential for discovering new vulnerabilities.  

3. Analysis of the Bugtraq Database 
3.1 Statistical Analysis  

As of November 30, 2002, the Bugtraq database 
included 5925 reports on software-related vulnerabilities 
[13]. Each vulnerability report2 in this database provides 
information such as version number of the vulnerable 
software, date of discovery, an assigned vulnerability ID, 
cause of the vulnerability, and possible exploits3. Figure 
1 shows the breakdown of the 5925 vulnerabilities 
among the 12 defined classes. Observe that the pie-chart 
is dominated by five categories: input validation errors 
(23%), boundary condition errors (21%), design errors 
(18%), failure to handle exceptional conditions (11%), 
and access validation errors (10%).  The primary reason 
for the domination of these categories is that they include 
the most prevalent vulnerabilities, such as buffer 
overflow (included under boundary-condition errors) and 
format string vulnerabilities (included under input-
validation errors). The remaining categories, being very 
broadly defined (e.g., access validation errors, design 
errors), are more or less all-encompassing.  
3.2 An In-depth Analysis of Vulnerability Reports 

An in-depth analysis of the data and information 
reported in Bugtraq together with a close examination of 
the associated application code is essential to 
understanding the root causes of the vulnerabilities. By 
examining the vulnerability reports and the associated 
application source codes, we made three observations: 

 Observation 1: Exploits must pass through multiple 
elementary activities – at any one of which, one can foil 
the exploit. The scenario thus can be described as a serial 
chain in which each link (which we model as an 
elementary activity) provides a security checking 
opportunity: failure at any one elementary activity can 
foil the exploit.  

                                                 
2 Note that Bugtraq refers to all vulnerabilities as errors, although these 
may not be error in the sense defined in [6]. 
3 Certain vulnerability reports in Bugtraq include exploits. For example, 
an exploit associated with vulnerability #5960 is provided in 
http://online.securityfocus.com/bid/5960/exploit  



•Access Validation Error: an operation on an object outside its 
access domain.
•Atomicity Error: code terminated with data only partially modified 
as part of a defined operation.
•Boundary Condition Error: an overflow of a static-sized data 
structure: a classic buffer overflow condition.
•Configuration Error: a system utility installed with incorrect setup 
parameters.
•Environment Error: an interaction in a specific environment 
between functionally correct modules. 
•Failure to Handle Exceptional Conditions: system failure to handle 
an exceptional condition generated by a functional module, device, 
or user input. 
•Input Validation Error: failure to recognize syntactically incorrect 
input.
•Race Condition Error: an error during a timing window between 
two operations.
•Serialization Error: inadequate or improper serialization of 
operations.
•Design Error and, Origin Validation Error: Not defined.

Configuration 
Error
5%Failure to 

Handle 
Exceptional 
Conditions

11% Environment Error
1%

Atomicity Error
0%

Serialization Error
0% Access 

Validation Error
10%

Unknow n
6%

Origin Validation 
Error
3%

Race Condition 
Error
2%

Boundary 
Condition Error

21%

Design Error
18%

Input Validation 
Error
23%

Figure 1: Breakdown of Vulnerabilities and Definitions of Vulnerability Categories 

We illustrate this observation using data from three 
signed integer overflow vulnerabilities given in Table 1. 
Here the analysts have used three different activities as 
reference points to classify the same type of vulnerability 
into three categories, although there is nothing in the data 
to indicate the specific elementary activity corresponding 
to the observed vulnerability. Thus #3163 has been 
classified as input validation error, #5493 as a boundary 
condition error, and so on. The existence of three 
categories for the signed integer overflow vulnerabilities 
suggest that the code executions of the corresponding 
applications contain at least three activities: (1) get an 
input integer, (2) use the integer as the index to an array, 
and (3) execute a code referred to by a function pointer or 
a return address.  

Data on buffer overflow vulnerabilities also indicates 
the existence of at least three potentially vulnerable 
activities: (1) get input string (#6157: interpreted as an 
input validation error), (2) copy the string to a buffer 
(#5960: interpreted as a boundary condition error), and 
(3) handle data (e.g., return address) following the buffer 
(#4479: interpreted as a failure to handle exceptional 
conditions). Again, each elementary activity provides an 
opportunity to apply a security check. For example, 

programmers can either check the input length in 
elementary activity 1, use boundary-checked string 
functions (e.g., getns, strncpy) in elementary activity 2, 
or deploy return address protection techniques, such as 
StackGuard [15] and split-stack [16], in elementary 
activity 3. 

Similarly, an analysis of format string vulnerabilities 
(i.e., user’s input strings containing format directives, 
such as %n, %x, %d) reinforces the validity of our 
observation: format string vulnerabilities are classified as 
input validation error (e.g., #1387 wu-ftpd remote format 
string stack overwrite vulnerability), access validation 
error (e.g., #2210 splitvt format string vulnerability), or 
boundary condition error (e.g., #2264 icecast 
print_client() format string vulnerability). Therefore, 
format string vulnerabilities also involve at least three 
elementary activities. 

Observation 1 forms the basis of our FSM model. As 
we will see in Section 4, each elementary activity can be 
modeled as a primitive finite state machine (pFSM) 
defined by a predicate which, if violated, results in an 
exploit. Multiple activities performed on the same object 
form an operation, which is modeled as a FSM consisting 
of multiple pFSMs in series. 

Table 1: Example of Ambiguity among Vulnerability Categories 
Vulnerability Description Elementary activity Assigned Category 

#3163 Sendmail debugging 
function signed integer overflow* 

A negative input integer accepted as an 
array index 

Get an input integer Input validation error 

#5493 FreeBSD System Call 
Signed Integer Buffer Overflow 
Vulnerability 

A negative value supplied for the 
argument allowing exceeding the 
boundary of an array 

Use the integer as the 
index to an array 

Boundary condition 
error 

#3958 rsync Signed Array Index 
Remote Code Execution 
Vulnerability 

A remotely supplied signed value used as 
an array index, allowing the corruption of 
a function pointer or a return address. 

Execute a code referred 
by a function pointer or a 
return address 

Access validation 
error 

*  #3163 denotes the vulnerability with ID 3163 in Bugtraq. The original information about this vulnerability can be found at 
http://online.securityfocus.com/bid/3163.  Other Bugtraq vulnerabilities are also denoted in this way. 



Observation 2: Exploiting a vulnerability involves 
multiple vulnerable operations on several objects. Let 
consider again the example #3163 Sendmail debugging 
function signed integer overflow. This vulnerability 
involves two operations: (a) manipulate the input integer 
(the object of this operation), consisting of elementary 
activity 1 (get an input integer) and elementary activity 2 
(use the integer as the index to an array), and (b) 
manipulate the function pointer (the object of this 
operation), consisting of elementary activity 3 (execute a 
code referred by a function pointer).  

Similarly, the vulnerability #5774 Null HTTPD 
remote heap overflow vulnerability involves three 
operations performed on three objects: (i) copying the 
oversized user input (the object) to a buffer allocated on a 
heap memory, which permits overwriting pointers 
following the buffer, (ii) freeing the buffer (the object), 
which allows writing a user-specified value to a user-
specified location (e.g., function pointer), and (iii) 
executing the malicious code pointed to by the function 
pointer (the object). Aside from the heap overflow and 
signed integer overflow vulnerabilities shown here, stack 
buffer overflow and format string vulnerability also 
require multiple vulnerable operations. Thus following 
observation 1, since each operation can have multiple 
pFSMs, multiple operations will then be a chain of such 
pFSMs. 

Observation 3: For each elementary activity, the 
vulnerability data and corresponding code inspections 
allow us to define a predicate, which if violated, results in 
a security vulnerability. For example, in the vulnerability 
#3163 Sendmail debugging function signed integer 
overflow, an integer index x is assumed to be in the range 
[0,100], but the implementation only checks to guarantee 
that x ≤ 100, hence the problem (the vulnerability): 
allowing x to be a negative index and underflow an array. 
The correct predicate to eliminate this vulnerability would 
be 0 ≤ x ≤ 100.  

4. State Machine Approach to Vulnerability Analysis 
Our purpose in this section is to use our observations 

to develop an FSM characterization of the vulnerable 
operations. The goal of this FSM is to reason whether the 
implemented operation, or more precisely each elementary 
activity within the operation, satisfies the derived 
predicate. To this end, we take three steps: (1) we 
represent each elementary activity as a primitive FSM 
(pFSM) expressing a predicate for accepting an input 
object. The predicate is first checked with respect to the 
specification and then with respect to the implementation. 
(2) We model an operation on an object as a series of 
pFSMs. (3) We cascade the operations to model the 
vulnerable implementation. While our objective here is to 
reason that a vulnerability (violation of a derived 
predicate) is not present in the implementation, we shall 

see that the process of this reasoning can allow us to 
uncover a previously unknown vulnerability.  

In order to show how a vulnerability can be analyzed 
using an FSM, consider the Sendmail Debugging Function 
Signed Integer Overflow Vulnerability (#3163). A signed 
integer overflow condition exists in writing the array 
tTvect[100]  in the function tTflag() of Sendmail 
application. As a result, an attacker can overwrite the 
global offset table (GOT) entry4 of the function setuid()5 to 
be the starting point of attacker-specified malicious code 
(Mcode). Two operations are involved in exploiting this 
vulnerability: (1) writing debug level i to array location 
tTvect[x]  (i and x are specified by the user) and (2) 
manipulating the GOT entry of function setuid (represented 
as addr_setuid for convenience in our description). The 
first operation consists of two pFSMs (activities): (i) 
pFSM1 – get i and x, and (ii) pFSM2 – write i to tTvect[x] . 
The second operation consists of a single pFSM3  – call the 
function referred by addr_setuid. Recall that a pFSM 
represents a predicate for accepting an input object with 
respect to the specification and implementation. This is 
explicitly defined as follows: 

Primitive FSM (pFSM). The primitive FSM consists of 
four transitions and three states. The transitions 
SPEC_ACPT and SPEC_REJ depict the specification 
predicates of accepting and rejecting objects (e.g., a user or 
a request), respectively. The transition IMPL_REJ 
represents the condition under which the implementation 
rejects what should be rejected according to the 
specification. This transition depicts the expected or correct 
behavior, i.e., the implementation conforms to the 
specification. A dotted transition IMPL_ACPT represents 
the condition under which an object that should be rejected 
according to the specification is accepted in an actual 
implementation. This transition is a hidden path 
representing a vulnerability. Three states are identified: (1) 
the SPEC check state (where an object is checked against 
the specification), (2) the reject state  – transition to 
reject state indicates that the object is insecure, according to 
the specification, and (3) the accept state  – transition to 
accept state indicates that the object is considered as secure 
object. See Figure 2. 

Since each elementary activity is simple, it is feasible 
(using the data and the application code) to develop a 
predicate and a corresponding pFSM. The pFSMs can then 
be easily combined to depict FSM, modeling vulnerable 
operations and possible exploits. 

                                                 
4 The GOT entry is a function pointer to a specific function. Usually, in 
position-independent codes, e.g., shared libraries, all absolute symbols 
must be located in the GOT table, leaving the code position-independent. 
A GOT lookup is performed to decide the callee’s entry when a library 
function is called. 
5 The published exploit chooses setuid() as the target function of GOT 
entry corruption, although the targets could be other functions. 
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Figure 2: Primitive FSM (pFSM) 

Figure 3 uses the semantic of the primitive FSMs and 
depicts the complete model of the process of exposing the 
Sendmail Debugging Function Signed Integer Overflow 
Vulnerability. As in a canonical FSM, we associate a label 
Condition♦Action with each transition. (Canonical FSM 
uses Condition/Action instead of the symbol ♦. Our 
modification is made because some of our examples need 
the slash symbol to represent filenames.) Condition refers 
to the condition for taking the transition, and Action is the 
action performed by the transition.  

In the example (#3163), in Operation 1, elementary 
activity 1, the user inputs strings str_x and str_i, which are 
converted to signed integers x and i. The predicate of 
pFSM1 specifies that if str_x represents an integer larger 
than 231, it should be rejected, i.e., pFSM1 reaches the 
reject state, because signed integer x (4-byte variable) 
cannot correctly represent an integer larger than 231. (The 
signed integer i can also overflow, although it may not 
cause consequences as severe as an overflow of x.) The 
real implementation does not check str_x, i.e., the 
transition of IMPL_REJ (marked by ?) does not exist, and 
the dotted transition (IMPLE_ACPT) is taken, allowing 
any str_x to arrive at the accept state of pFSM1. At the 
object accept state, str_x and str_i are converted to signed 
integers x and i, which may become negative integers if 

overflow occurs. The error exposed in pFSM1 is that the 
system neglects checking the input str_x.  

In Operation 1, pFSM2 depicts the elementary activity 
write i to tTvect[x] . The predicate represented in pFSM2 is 
the same as in the example in Observation 3, i.e., if an 
integer index x is in the range [0,100], accept the x. 
However, the implementation checks only for the condition 
x ≤ 100. As a result, negative x can be accepted and used in 
the operation tTvect[x] =i (arrive at termination state ). A 
potential security violation in Operation 1 is that the 
attacker can overwrite the GOT entry of setuid()  so that it 
points to the location of a malicious code Mcode.  
Summarizing, Operation 1 consists of two pFSMs, each 
offering a security check, each, if provided, can foil an 
attack. 

Operation 2 depicts the manipulation of the GOT entry 
corresponding to setuid() (i.e., addr_setuid).  When 
Sendmail is started, addr_setuid is loaded to the memory. 
When setuid() is called, the value of  addr_setuid is used as 
the function pointer to setuid(). Following the predicate 
depicted by pFSM3, the system should check whether the 
value of addr_setuid is unchanged since it was loaded to 
the memory. If this is not the case (i.e., the addr_setuid has 
been tampered), the program should not call to the location 
indicated by the corrupted addr_setuid. However, the 
corresponding implementation of Sendmail does not 
perform the check on the addr_setuid (IMPL_ACPT=-♦- 
in pFSM3), and accepts any value of addr_setuid. As a 
result, the program again makes the hidden (dotted) 
transition and the control jumps to the malicious code 
(Mcode) when setuid() is called. 
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Figure 3: Sendmail Debugging Function Signed Integer Overflow Vulnerability 



The FSM model introduces a notation of propagation 
gate (the triangle between FSMs) to depict the causality 
of the exploitation of the vulnerabilities in the two 
operations. For example, in Figure 3, exploiting 
operation 1 (overwrite the addr_setuid) is the 
precondition of exploiting operation 2 (execute Mcode), 
which is denoted by the upper propagation gate. The 
lower propagation gate (denoted as Execute MCode) can 
be the precondition for the exploitation in other 
operations. 

5. Modeling Various Vulnerabilities Using an FSM  
This section provides examples of applying the FSM 

approach to analyze security vulnerabilities. In each case, 
the predicates related to the elementary activities are 
determined by examining the vulnerability data and the 
corresponding source code of the applications in 
question.  
5.1 Example 1: NULL HTTPD Heap Overflow 

Vulnerability  
Null HTTPD is a multithreaded web server for Linux 

and Windows platforms. This software was chosen as an 
example because in the process of constructing the FSM 
model for the known vulnerability of NULL HTTPD, we 
discovered a new, as yet unknown vulnerability (Bugtraq 
ID 6255). Discovery of the new heap overflow 
vulnerability demonstrates an additional potential of the 
FSM-based approach. 

Null HTTPD 0.5 heap overflow is modeled as a 
series of four pFSMs shown in Figure 4a. pFSM1 and 
pFSM2 depict the buffer manipulation in the function 
ReadPOSTData (the function source code is shown in 
Figure 4b), which allocates a buffer (PostData, source 
code Line 1) and copies a user specified string from a 
socket (source code Line 4), which is marked as input in 
Figure 4a. One of the input parameters (contentLen) 
provides the length of input, which, by the specification6, 
should be a non-negative integer. However, Null HTTPD 
allocates (by calling calloc in source code line 1) a buffer 
for PostData with size 1024+contentLen without 
checking whether contentLen is non-negative. A buffer 
overflow occurs when the attacker provides a negative 
contentLen (e.g., contentLen = -800) to make PostData a 
buffer with only 224 bytes. This results in buffer 
overflow (denoted by pFSM1) because Null HTTPD 
always copies at least 1024 bytes arriving from the 
socket to PostData (source code Line 4). 

A New Vulnerability. Version 0.5.1 of Null HTTPD 
fixed the above overflow vulnerability by imposing the 
appropriate check to block a negative contentLen value 
before calling the function ReadPOSTData (this check is 
not shown in the source code of Figure 4b). Note that the 

                                                 
6 Although a well-defined specification does not exist, this 
particular specification can easily be deduced from the 
application. 

socket programming style requires the users to specify 
the contentLen and input separately, because the socket 
has no way of determining the length of the input. The 
programmer must ensure that the length of input does not 
exceed the supplied contentLen.  

We now describe how constructing the FSM model 
for the known vulnerability leads to discovery of a new 
vulnerability for the same operation. pFSM1 depicts the 
predicate to check contentLen against the specification. 
Similarly, pFSM2 – the predicate to check the actual 
length of the supplied input – should reject input if its 
length is larger than allocated buffer size, i.e., it takes the 
transition marked “?” . Source code Line 11 controls the 
termination condition of recv (source code Line 4). 
However, due to a logic error (|| should be && in source 
code Line 11), recv never terminates before the entire 
input string is read from the socket. Thus, the outgoing 
transition (marked with a “?” ) from state X does not 
exist, and instead the hidden transition to the accept state 

 is taken. A malicious user can supply right contentLen 
but an arbitrary length string input to overflow the buffer 
PostData. Thus, constructing the FSM allowed us to 
uncover this new vulnerability.  

As indicated earlier, each elementary activity offers 
an independent opportunity for checking. If the checks 
corresponding to the predicates depicted by pFSM1 and 
pFSM2 (in Figure 4a) are not in place, the impact of this 
vulnerability is further analyzed using pFSM3, which 
describes the operation manipulating the heap layout (as 
shown in the left of Figure 4a). The buffer PostData is 
allocated on the heap, followed by a free memory chunk  
(chunk B). Free chunks are organized as a double-linked-
list by GNU-libc. The beginning few bytes of each free 
chunk are used as the forward link (fd) and the backward 
link (bk) of the double-linked list. In this case, since free 
chunks A, B and C are in the list, B->fd=A, B->bk=C. 
The predicate defined in pFSM3 provides a check so that 
B->fd and B->bk are not overwritten to an arbitrary value 
(i.e., pFSM3 does not transit to the reject state), due to the 
overflow of the buffer PostData described in the pFSM1 
and pFSM2. However, when the PostData is freed, the 
actual implementation does not check the pointer B->fd 
and B->bk, causing the transition from the reject state to 
the accept state (the hidden or dotted transition in 
pFSM3), which allows the attacker to write an arbitrary 
value to an arbitrary memory location. Specifically, in 
this example, the attacker exploits this vulnerability and 
overwrites the GOT entry of the function free() so that it 
points to the location of malicious code MCode 7 .

                                                 
7 Note that the assignment B->fd->bk=B->bk is executed when 
PostData is freed. We denote the GOT entry of free() as 
addr_free. The attacker sets B->fd=&addr_free – (offset of the 
field bk) and B->bk=Mcode, in order to make the GOT entry of 
free() pointing to Mcode. 



 

Figure 4: a) NULL HTTPD Heap Overflow Vulnerabilities                    b) Source Code, Reading input 

The pFSM4 depicts the consequence of the corruption 
of the GOT entry of free() (i.e., addr_free), which is similar 
to the scenario depicted by pFSM3 in the Sendmail 
vulnerability shown in Section 4. Finally, when the free() is 
called again, Mcode is executed. 

In summary, this model consists of three operations. 
First operation encompasses two activities, each described 
by an independent pFSM (pFSM1 and pFSM2). Operation 2 
and operation 3 consist of a single pFSM each. Cascading 
these four pFSMs allows us to reason through this entire 
vulnerable code. 

The purpose of the next set of examples is two-fold: 
(1) show that FSM approach can analyze a broad class of 
vulnerabilities (specific examples relate to input validation 
errors, file race condition errors, stack buffer overflow and 
format string vulnerability), and (2) provide additional 
examples of different types of pFSMs that broadly model 
the studied vulnerabilities. 
 
5.2 Example 2: xterm Log File Race Condition  

The program xterm emulates a terminal under the X11 
window system. A file race-condition8 exists when xterm 
writes messages to the user log file [1]. Figure 5 illustrates 
two pFSMs required to describe this vulnerability. Consider 
an example scenario: xterm needs to log Tom’s messages to 
the log file /usr/tom/x. The predicate, which defines this 
operation is depicted in pFSM1, i.e., if Tom has no write 

                                                 
8 File race conditions are also referred as time-of-check-to-time-
of-use vulnerabilities. 

permission or the provided filename is a symbolic link, the 
pFSM should reach the reject state . The real 
implementation follows pFSM1, i.e., the reject condition of 
the predicate matches the implementation, hence this check 
is secure.  

Writing the log file of user Tom

Tom appends his own data 
to the file /etc/passwd

Tom has the write permission 

and the file is not a symbolic 

link ♦-

Tom does not have write permission to 

the file or the file is a
 symbolic link ♦-

Create symbolic link from 
/usr/tom/x to /etc/passwd

/usr/to
m/x is a 

symbolic li
nk ♦-

-♦ open “/usr/tom/x” 
with write permission

-♦-
-♦-

Tom does not have write permission to 

the file or the file is a
 symbolic link ♦-

A

Possibility of creating 
symbolic links

-♦ get the filename 
of Tom’s log file

/usr/tom/x is not a 

symbolic link ♦-

pFSM1

pFSM2

 
Figure 5: xterm Log File Race Condition 

There is however a problem, which is analyzed in 
pFSM2. In state A, Tom can delete the file /usr/tom/x and 
create a symbolic link from /usr/tom/x to /etc/passwd, so 
long as Tom creates the symbolic link before the system 
opens the file, i.e., a race condition exists. This timing 
problem is translated into a condition check in PFSM2, 
which depicts the condition that Tom cannot create a 
symbolic link until the open operation is complete. As 
illustrated in this model, although there is no hidden path in 
pFSM1, i.e., the implementation corresponding to pFSM1 is 
secure, there is a hidden path in pFSM2, indicating the 
possible race condition and the associated exploit: Tom 
appends his own data to the file /etc/passwd.  

Size
(PostD

ata)
<len

gth
(in

put
) ♦

-

Allocate and free the buffer PostData

Free chunk A

Used chunk PostData

Free chunk B
fd=A
bk=C

Free chunk C

−♦−

−♦−

−♦−

contentLen<0 ♦−

contentLen>=0 ♦−

−♦−

length(input) <= Size(PostData) ♦-

Read postdata from socket to 
an allocated buffer PostData

−♦get (contentLen, input)
contentLen is an integer,
input is an text string to be 
read from a socket

-♦Calloc PostData[1024+contentLen]
-♦ Copy input from the socket 
to PostData by recv() call

-♦ B->fd=A
B->bk=C

B->fd=&addr_free-(offset of field bk)
B->bk=Mcode♦-

B->fd=&addr_free-(offset of field bk)
B->bk=Mcode

-♦ When buf is freed, 
execute B->fd->bk = B->bkB->fd and B->bk

unchanged ♦-

.GOT entry of function 
freepoints to MCode

addr_freechanged ♦-

addr_free
unchanged ♦-

-♦ Execute addr_free when 
function free is called

Mcode is executed

Note: addr_free is the .GOT 
entry of function free

X
?

Calloc is called

-♦ Load addr_free
to the memory during 
program initializationManipulate the 

.GOT entry  of 
function free
(i.e., addr_free)

pFSM1

pFSM2

pFSM3

pFSM4

Heap Layout

Operation 1:

Operation 2:

Operation 3:

 

  
1: PostData = calloc(contentLen  

+1024,sizeof(char));x=0; rc=0; 
 2: pPostData= PostData; 
 3: do {  
 4:     rc=recv(sock, pPostData, 

1024, 0); 
 5:     if (rc==-1) {    
 6:           closeconnect(sid,1); 
 7:           return;  
 8:     }  
 9:     pPostData+=rc; 
10:     x+=rc; 
11: }  while  ((rc==1024) || 

(x<contentLen)); 



 

5.3 Example 3: Solaris Rwall Arbitrary File Corruption 
Vulnerability  
Rwall is a UNIX network utility that allows a user to 

send a message to all users on a remote system (see [8] and 
CA-1994-06 in [14]). The file /etc/utmp on a remote system 
contains a list of all currently logged in users. Rwall 
daemon on the remote system uses the information in 
/etc/utmp to determine the users to which the message will 
be sent. A malicious user can edit the /etc/utmp file on the 
target system and add the entry “ ../etc/passwd” . When the 
malicious user issues the command: “ rwall hostname < 
newpasswordfile” , Rwall daemon writes the message (the 
newpasswordfile) to all terminals and to the file 
/etc/passwd.   

In Figure 6, pFSM1 checks if a given user has root 
privileges. The predicate dictates accepting the root user 
and rejecting a regular user (not having root privilege). In 
the real implementation, the write permission of the file 
/etc/utmp is set on, allowing a regular user to write this file 
(transition to the accept state). Specifically, as denoted by 
the propagation gate, a malicious user can add a 
“ ../etc/passwd”  entry to the file /etc/utmp.  

Write to /etc/utmp regular user ♦-

-♦ user request of 
writing /etc/utmp root ♦-

-♦-

non-terminal file ♦-

-♦ Get a file from 
/etc/utmp terminal ♦-

-♦-

Add “../etc/passwd”  entry to the file /etc/utmp

Rwall daemon writes user message 
to regular file /etc/passwd

Rwall daemon writes messages

-♦ Open /etc/utmp for the user

-♦ write user message to 
the terminal or file

pFSM2

Operation 1:

Operation 2:

pFSM1

 
Figure 6: Solaris Rwall Arbitrary File Corruption 

Vulnerability 
The Operation 2 depicts the message write operation 

performed by the Rwall daemon. The daemon gets a 
filename from the file /etc/utmp. The predicate represented 
by pFSM2 states that if the filename refers to a non-
terminal file, e.g., “ ../etc/passwd” , it should be rejected, 
and if the filename refers to a terminal, e.g., “ /dev/pts/25” , 
the user specified message should be written to the 
terminal.  

In the implementation of the Rwall daemon, no file 
type check is performed. As a result, given an entry 
/etc/passwd added to the /etc/utmp, pFSM2 transits to the 
reject state and ends up in the termination state , which 
corresponds to a security violation – rwall daemon writes 
user messages to regular file /etc/passwd.  

5.4 Example 4: Validation Error due to IIS Decoding 
Filenames Superfluously after Applying Security 
Checks  
CGI (Common Gateway Interface) programs under the 

directory /wwwroot/scripts are by design executable 

through HTTP request from a user. When IIS9 receives a 
CGI filename request, it interprets the filepath as a path 
relative to /wwwroot/scripts. Therefore, unless the filepath 
contains “ ../” , the target file should be under the directory 
/wwwroot/scripts (Bugtraq ID 2708).  

In Figure 7, pFSM1 depicts the predicate –  if the target 
file does not reside in the directory /wwwroot/scripts, reject 
the request. Because the path is relative to /wwwroot/scripts, 
the above predicate is equivalent to – if the path of the target 
file does contain “ ../” , reject the request. The IIS 
implementation includes two decoding steps. As illustrated 
in the pFSM1, IIS implementation checks the following 
predicate – if the filepath contains “ ../”after the first 
decoding, reject the request. However, the implementation 
performs the second decoding step, which results in 
violating the predicate depicted by pFSM1, and allows 
executing an arbitrary code (not residing in 
/wwwroot/scripts). This inconsistency between the predicate 
specified by pFSM1 and the implemented predicate allows a 
transition from the reject state to accept state (the hidden 
path).  

The attacker can thus supply a malformed filename 
containing sub-string such as “ ..%252f” . After the second 
decoding, the string “ ..%252f”  becomes “ ../” 10, which allows 
the execution of arbitrary programs, even those out of the 
directory /wwwroot/scripts. The worm Nimda and its 
variants actively exploit this vulnerability.  

The file does not reside the 

directory /wwwroot/scripts/ ♦-

Execute arbitrry program, even those out of directory /wwwroot/scripts/,
because “../”  appears after the second decoding.

Filename containing “ ../”  after first decoding ♦-

The file resides in the 
directory /wwwroot/scripts/ ♦-

-♦ Decode 
filename first time

Filename without “ ../”  after first decoding.
(Filename containing “ ..%252f” are 
accepted by the implementation)♦-

-♦ Decode filename 
second time

-♦ Execute the target 
CGI program

-♦ get the filename 
of a CGI program

pFSM1

 
Figure 7: IIS Decodes Filenames Superfluously after 

Applying Security Checks 

A Stack Buffer Overflow Vulnerability and A Format String 
Vulnerability. FSM is also used to model a stack buffer 
overflow vulnerability (#5960: GHTTPD Log() Function 
Buffer Overflow Vulnerability) and a format string 
vulnerability (#1480 Multiple Linux Vendor rpc.statd 
Remote Format String Vulnerability). Due to the space 
limitation, we do not present the analysis of these two 
examples. The details can be found in [21]. 

6. Common Types of pFSMs  
Examples in the previous sections show that the FSM 

approach enables a detailed modeling/analysis of several 

                                                 
9 IIS is Microsoft Internet Information Service. 
10 Note that “%25” is decoded to a character “%” and “%2f”  is 
decoded to a character “ /” , so “ ..%252f”  becomes “ ..%2f”  after the 
first decoding, and is interpreted as “ ../”  after the second decoding. 



 

types of security vulnerabilities: buffer overflow, race 
condition, signed integer, and format string vulnerabilities 
(these four account for 22% of all vulnerabilities reported 
in Bugtraq). Vulnerabilities including, access validation 
errors, input validation errors, failure to handle exceptional 
conditions, can also be modeled, if the predicates are 
derived from available information vulnerability reports, 
exploits descriptions, and application source code.  

As seen in the examples, the operations involving each 
vulnerability can be modeled as a series of pFSMs – each 
corresponding to an elementary activity. The simplicity of 
the predicates defining the pFSMs makes the generation of 
the overall FSM relatively easy. Since the pFSMs are 
critical to the analysis – it is meaningful to ask – Are there 
a few pFSMs, which allow us to model the bulk if not all of 
the studied data? Our analysis shows that we only require 
three types of pFSMs to model the full range of studied 
vulnerabilities (i.e., stack buffer overflow, integer overflow, 
heap overflow, input validation vulnerabilities, and format 
string vulnerabilities). 

Object Type Check. This is a predicate to verify 
whether the input object is of the type that the operation is 
defined on. In many circumstance, performing an operation 
on an object of incorrect type results in fail-secure states 
[20], i.e., the operation fails without causing security to be 
compromised. For example, the object of a ping operation 
should be an IP address or a hostname. It is meaningless to 
say “ping /etc/passwd” , because this will result in an error 
message “unknown host /etc/passwd” . However, as we have 
seen in the examples, failure in object type check can be 
exploited by attackers, e.g., rwalld (see Figure 6) does not 
check whether the file type is a terminal or a non-terminal 
file, and Sendmail (see Figure 3) does not check whether 
the input represents an integer or a long integer. 

Content and Attribute Check.  This is a predicate to 
verify whether the content and the attributes of the object 
meet the security guarantee. Examples of content and 
attribute checks include (1) IIS filename decoding (Figure 
7), where the program should verify that the request does 
not contain substring “ ../” , (2) the system should check 
whether format directives are not embedded in the input, in 
order to prevent format string vulnerabilities (#1480), and 

(3) GHTTPD (#5960) should check whether the length of the 
input string is less than 200 bytes.  

Reference Consistency Check. This is a predicate to 
verify whether the binding between an object and its 
reference is preserved from the time when the object is 
checked to the time when the operation is applied on the 
object. The examples include the return address referring to 
the parent function code, the function pointer referring to a 
function code, and a filename referring to a file. As shown in 
the FSM models, several conditions may result in violating 
the reference consistency, including stack smashing (#5960), 
signed integer overflow (Figure 3), heap overflow (Figure 
4), format string (#1480), and file race condition (Figure 5).  

The pFSMs representing the three generic predicates are 
depicted in Figure 8, which shows a typical operation (P) 
encompassing the three predicates. While all predicates may 
not be involved in all operations, the three suffice to model 
all the studied vulnerabilities classes (stack buffer overflow, 
integer overflow, heap overflow, input validation, and 
format string vulnerabilities). Having defined the three types 
of predicates, the following lemma is stated. The proof is 
straightforward and is given in [21]. 

Operation P

IM PL_TY PE_A CPT ♦ -

! SPEC_TY PE_A CPT ♦ -
IM PL_TYPE_REJ ♦ -

SPEC_TYPE_ACPT ♦ -

!  SPEC_CA _A CPT ♦ -

IM
PL_CA_REJ ♦ -

SPEC_CA _A CPT ♦ -

IM PL_CA _A CPT ♦ -

-♦ apply operation P 
on the object

pFSM : O BJECT TYPE CHECK

pFSM : CONTENT/ATTRIBUTE 
CHECK

pFSM : REFERENCE 
CONSISTENCY 
CHECK

-♦ -

IM PL_ CONSTCY _REJ ♦ -

IM PL_ CONSTCY  _A CPT ♦-!  SPEC_CONSTCY_ACPT ♦ -

SPEC_ CONSTCY  _ACPT ♦-

object ♦ -

 
Figure 8: Types of Generic pFSMs 

Lemma: (1) To ensure the security of an operation 
requires predicates (represented by pFSMs) constituting the 
operation to be correctly implemented. (2) To foil an exploit 
consisting of a sequence of vulnerable operations, it is 
sufficient to ensure security of one of the operations in the 
sequence. 

Table 2: Types of pFSMs 
Type of pFSM 

Vulnerabilities 
Object Type Check Content and Attribute Check Reference Consistency Check 

Sendmail Signed Integer 
Overflow (Figure 3) 

pFSM1: Does the input represent a long 
integer? 

pFSM2: Is the integer in the interval [0 , 100] ? pFSM3: Is GOT entry of setuid() 
unchanged? 

NULL HTTPD Heap Overflow 
(Figure 4) 

 pFSM1: contentLen ≥0?  
pFSM2 : length(input) ≤ size(buffer)  

pFSM3 : Are free-chunk links unchanged? 
pFSM4: Is GOT entry of free() unchanged? 

Rwall File Corruption (Figure 
6) 

pFSM2 : Is the target file a terminal? pFSM1: Does the user have a root privilege?   

IIS Filename Decoding 
Vulnerability (Figure 7) 

 pFSM1: Does the filename contain “ ../”?  

Xterm File Race Condtion 
(Figure 5)  

 pFSM1: Does the user have a write permission 
to the file? 

pFSM2: Does the filename refer to another 
unverified file? 

GHTTPD Buffer overflow on 
Stack [21] 

 pFSM1: size(message) ≤ 200 ? pFSM2: Is the return address unchanged? 

rpc.statd format string 
vulnerability [21] 

 pFSM1: Does the filename contain format 
directives (e.g., %n, %d)? 

pFSM2: Is the return address unchanged? 



In Table 2, the pFSMs of the vulnerabilities analyzed 
in the previous sections are classified according to the three 
types of pFSMs identified above. The most common cause 
of the analyzed vulnerabilities is an incomplete content 
and/or attribute check. This can be explained by fact that 
determining the correctness of an attribute (e.g., a buffer 
size) or a content (e.g., input contains a string “%n”) of a 
given object may require a comprehensive understanding of 
the application. Incompleteness of a reference consistency 
check is another frequent reason for the vulnerabilities. 
While techniques protecting the return address have been 
widely recognized, very few techniques are available to 
protect other reference inconsistencies, such as 
inconsistency of function pointers, entries in GOT tables, 
and links to free memory chunks on the heap.  

7. Conclusions  
This paper presents a study of the security 

vulnerabilities published in Bugtraq database. The 
statistical study identifies leading categories of security 
vulnerabilities. An in-depth analysis of vulnerability reports 
and the corresponding source code of the applications 
reveal three characteristics of security vulnerabilities: (1) 
exploits must pass through a series of elementary activities, 
(2) exploiting a vulnerability involves multiple vulnerable 
operations on several objects, (3) the vulnerability data and 
corresponding code inspections allow us to derive a 
predicate for each elementary activity, and a security 
vulnerability is the result of violating the predicate in 
implementation. These three observations motivate the 
development of the FSM model to depict and reason about 
security vulnerabilities. Each vulnerability is modeled as a 
series of primitive FSMs (pFSMs), which depicts a derived 
predicate. The proposed FSM methodology is exemplified 
by analyzing several types of vulnerabilities, such as buffer 
overflow and signed integer overflow. The pFSMs are 
classified into three types, indicating three common causes 
of the modeled vulnerability. These causes reflect different 
aspects of security considerations, and suggest 
opportunities for providing appropriate checks to protect 
the systems.  

A future direction of this work is to study the security 
predicates specific to different software (e.g., Internet 
services, administrative tools and TCP/IP implementation) 
in addition to the generic predicates discussed in this paper 
(e.g., buffer boundary and array index checks). We hope 
that a comprehensive understanding of these predicates will 
enable us to build an automatic tool for the vulnerability 
analysis. 
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