
A Black-Box Tracing Technique to Identify
Causes of Least-Privilege Incompatibilities

Shuo Chen
University of Illinois at Urbana-Champaign

shuochen@uiuc.edu

John Dunagan Chad Verbowski Yi-Min Wang
Microsoft Research

{jdunagan, chadv, ymwang}@microsoft.com

Abstract

Most Windows users run all the time with Admin privi-
leges. This significantly increases the vulnerability of Win-
dows systems because the compromise of any user-level ap-
plication becomes a system compromise. To address this
problem, we present a novel tracing technique to identify
the causes of least-privilege incompatibilities (i.e., appli-
cation dependencies on Admin privileges). Our evalua-
tion on a number of real-world applications shows that our
tracing technique significantly helps developers fix least-
privilege incompatibilities, and can also help system admin-
istrators mitigate the impact of least-privilege incompatibil-
ities through local system policy changes.

1 Introduction

The principle of least-privilege is that software should run
only with the privileges necessary to accomplish the task
at hand. Much previous work has sought to build software
better conforming to this principle (e.g., [6, 18, 26]). Unfor-
tunately, adherence to the least-privilege principle on Win-
dows systems is quite low: Most users run all the time as
members of the Administrators group (“with Admin priv-
ileges”), similar to executing all commands as root on a
UNIX system. This increases the severity of security threats
faced by Windows users, because the compromise of any
user application becomes a system compromise. This threat
is both acute and widespread; attacks against user level
networking applications are common, and include spyware
[29, 33], self-propagating email [7], web browser exploits
[9, 10], and instant messaging (IM) client exploits [8].

Many Windows users run with Admin privileges because,
in fact, the applications they use require Admin privileges.
A Microsoft online article lists 188 such applications with
least-privilege incompatibilities [21]. Furthermore, this
problem spans many user types: children that play Bob the
Builder; anyone filing taxes with TurboTax; corporate em-
ployees that connect to their corporate network using Re-

mote Access Service; and developers that use Razzle to setup
their build environment.

In addition to causing individual applications to require
Admin privileges, least-privilege incompatibilities exert a
social pressure to run all applications with Admin privi-
leges. This social pressure exists for two reasons: First,
least-privilege incompatible applications often fail with
misleading error messages, so users without Admin privi-
leges spend significantly more time troubleshooting; Sec-
ond, the number of least-privilege incompatible applica-
tions is sufficiently great that starting each one from a sepa-
rate account with Admin privileges, or setting up scripts to
do this semi-automatically, is a significant inconvenience.

In this paper, we describe a tracing technique to iden-
tify the causes of least-privilege incompatibilities, making
it easier to fix or mitigate them. Our technique is black-
box, i.e. it does not require source code. Identifying the
causes of least-privilege incompatibilities enables two im-
portant scenarios:

• Developers can fix least-privilege incompatibilities
more easily. Developers face a number of challenges
in identifying and understanding least-privilege incom-
patibilities. In large software projects, developers must
often modify code written by others, where they have no
a priori insight into failing security checks. Additionally,
libraries and other software components commonly en-
capsulate system calls and are sometimes available only
in binary form, making failures more opaque. Simply
setting breakpoints often requires many iterations to
narrow down the source code line responsible for a single
least-privilege incompatibility. In contrast, our tracing
technique allows a single test pass to produce a list of
all the least-privilege incompatibilities in the exercised
code paths, and to provide additional information beyond
source lines, such as object names, Access Control Lists
(ACLs), and call stacks (if symbol files are present). Our
evaluation suggests that this information significantly
reduces the total time required to fix least-privilege
incompatibilities.



• System administrators can mitigate some least-
privilege incompatibilities through system policy
changes. Making ACL changes so that applications can
run with reduced privilege is a well-known technique
[6, 23]. Our tracing technique enables faster identifica-
tion of both the relevant ACLs and other causes of least-
privilege incompatibilities, such as missing named privi-
leges. Our evaluation suggests that this often allows sys-
tem administrators to modify the system policy so that
previously least-privilege incompatible applications can
be run without Admin privileges.

The use of tracing, a dynamic technique, implies a stan-
dard set of tradeoffs. Our tracing technique only iden-
tifies least-privilege incompatibilities on exercised code
paths, and achieving good code coverage may require the
additional use of sophisticated test generation technology
[3, 16, 19]. Because tracing can miss least-privilege incom-
patibilities on unexercised code paths, it does not have per-
fect completeness. In Section 5, we discuss the reasons to
prefer tracing to static techniques, even though static tech-
niques can provide perfect completeness, for the particular
problem of identifying least-privilege incompatibilities.

Our evaluation on eight real-world applications demon-
strates the accuracy and usefulness of our tracing technique.
Because our technique does not require source code, we
were able to include in our evaluation third-party appli-
cations for which we only have binaries. To demonstrate
accuracy, we show that few logged security checks were
unrelated to least-privilege incompatibilities (good sound-
ness), and that bypassing the remaining logged checks al-
lows the application to run without Admin privileges (an
empirical test of completeness). To demonstrate usefulness,
we first show that the number of security checks respon-
sible for least-privilege incompatibilities is small. Based
both on the traced least-privilege incompatibilities and con-
sultations with developers knowledgeable about the appli-
cations, we conclude that this information is a significant
help in fixing the incompatibilities.

The remainder of this paper is organized as follows: Sec-
tion 2 provides relevant background information on the
Windows Security Model. Section 3 describes our imple-
mentation. Section 4 presents our evaluation. Section 5
discusses related work. Section 6 concludes and discusses
our plans for future work.

2 Background on the Windows Security
Model

We describe the abstractions and mechanisms of the Win-
dows security model by comparison to the UNIX security
model. A Windows token represents the security context
of a user. Tokens are inherited by processes created by the
user. A token contains multiple Security IDs (SIDs), one

expressing the user’s identity, and the rest for groups that
the user belongs to, such as the Administrators group, or
the Backup Operators group. UNIX similarly attaches both
a user ID and a set of group IDs to a process. In order to
implement the setuid mechanism, UNIX adds another two
user IDs, so that at any point there is a real user ID, an ef-
fective user ID, and a saved user ID [11].

Windows does not support the notion of a setuid bit, and
Windows developers typically follow a different convention
in implementing privileged functionality. For example, in
UNIX, sendmail was historically installed with the setuid
bit so that an unprivileged user could invoke it, and the pro-
cess could then read and write to the mail spool, a protected
OS file. In Windows, a developer would typically write
sendmail as a service (equivalent to a UNIX daemon), and
a user would interact with sendmail using Local Procedure
Call (LPC). One would implement the sendmail command-
line interface as a simple executable that sends the com-
mand line arguments to the service via LPC. The Windows
service model allows services to be started on demand, so
dormant services occupy no memory, just as in the UNIX
sendmail case.

A Windows token also contains a set of privileges (which
can be enabled or disabled), such as the SystemTime or
Shutdown privilege. These two privileges grant the abili-
ties, respectively, to change the system clock and to shut-
down the system. Conceptually, privileges are used to grant
abilities that do not apply to a particular object, while ac-
cesses to individual objects are regulated using Access Con-
trol Lists (ACLs). In contrast, UNIX typically uses groups
to implement named privileges. For example, membership
in the floppy group grants access to the floppy drive. To cre-
ate an equivalent to the SystemTime privilege in UNIX, one
might create a SystemTime group, create a ChangeSystem-
Time setuid executable, set its group to SystemTime, and
give it group-execute permission.

Windows and UNIX both support ACLs, but again, their
implementations are slightly different. UNIX file systems
typically associate each file with an owner and a group, and
store access rights for the owner, members of the group,
and all others. Windows ACLs can contain many <SID,
access> pairs, as in AFS (the Andrew File System). These
<SID, access> pairs are used to grant one user the ability
to read and write the object, another user the ability only
to read the object, all members of another group the ability
to read the object, etc. ACLs in Windows can be attached
not only to files, but to any object accessible through a han-
dle, such as registry entries and semaphores. In UNIX, and
more so in Plan 9, access control is made uniform across re-
sources by exporting most resources through the file system
(e.g., /dev/audio).



2.1 Security Checking Functions

The interface to security checking in Windows is com-
plex. We identified a small set of security checking func-
tions to instrument, and we took several steps to assure our-
selves of their completeness: reading the Windows source
code, consulting a senior Windows architect, and examining
the kernel call stack at observed application failures. Based
on these steps and our success identifying least-privilege in-
compatibilities in the applications in our evaluation section,
we have good confidence in the set of functions we identi-
fied. Note that the complexity of security interfaces is not
unique to Windows; previous work has discussed the sub-
tleties of UNIX security interfaces[11, 14].

The five functions we identified, and their role in the se-
curity subsystem, are presented in Figure 1: the functions
themselves are circled, and the arrows denote function in-
puts and outputs. For the purpose of discussion, we have
changed the function names to make them more intelligi-
ble. Privilege-Check is used to check that privileges are
held and enabled in the token. Adjust-Privilege is used to
enable or disable privileges. Access-Check is used to check
whether a user has access to a particular object, as deter-
mined by its ACL. Reference-Object also performs access
checks; requests to read or write an object flow through this
function, which checks the Handle Table to see whether the
ability to perform the operation was previously granted by
Access-Check when the handle to the object was created.

SID-Compare is used both internally by the security sub-
system and directly by applications. In particular, least-
privilege incompatible applications often use SID-Compare
to fail early. The application checks if the user holds a
SID granting membership in the Administrators group, and
fails if not. Intercepting this direct application check was
necessary for us to determine the later (and more interest-
ing) set of checks causing least-privilege incompatibilities.
Of course, a developer attempting to fix a least-privilege
incompatible application would find removing this SID-
Compare check to be an obvious modification.

3 Identifying Least-Privilege Incompatibili-
ties

We implemented our tracing technique for identifying
least-privilege incompatibilities by adding two components
to the Windows XP Service Pack 1 kernel, a Security Check
Monitor and Noise Filter and a Security Check Event Log-
ger. Because security checks are a tiny fraction of an un-
modified system’s performance, the overhead our compo-
nents added to each security check had a negligible effect
on overall system performance. To apply our technique, a
developer or system administrator starts the tracer, runs the
incompatible application with Admin privileges, and then
stops the tracer. While the tracer is running, the Security

Check Monitor and Noise Filter component applies a con-
servative noise filtering algorithm to keep only those secu-
rity checks that might be responsible for least-privilege in-
compatibilities. The actual logging of these checks is done
the Security Check Event Logger component. After tracing,
we apply a separate log validation step, described in more
detail in Section 3.2. Figure 2 shows this workflow.

3.1 Security Check Monitoring and Noise Filter-
ing

We developed a simple noise filtering algorithm specific
to identifying least-privilege incompatibilities motivated by
the following observation: large numbers of security checks
fail on running Windows systems without any noticeable
end-user impact. We speculate that these failed checks
come from applications and libraries attempting to acquire
object with rights they do not require for their proper func-
tioning, but we have not yet managed to investigated this.
Our noise filtering algorithm identifies calls that succeed
with Admin privileges and fail without them. This has no
false negatives, i.e., it does not eliminate any true least-
privilege incompatibilities from the log. It does not entirely
eliminate false positives: some applications attempt to ac-
quire objects with rights they do not need, falling back to
acquiring the object with fewer rights without any apparent
adverse effect.

Our noise filtering algorithm assumes the user is running
the application with Admin privileges. In the security sub-
system, we intercept all security checks, and initially al-
low the check to pass through unmodified. If the check is
successful and the token contained membership in the Ad-
ministrators group, the noise filter temporarily removes this
membership from the token and performs a second check.
If this second check fails, the Security Check Event Logger
is called. Although our implementation only differentiates
between membership and non-membership in the Adminis-
trators group, it would be straightforward to configure the
component to handle other groups (e.g., the Backup Oper-
ators group). To convince ourselves that this approach had
merit, we performed a quick experiment, collecting three
2-hour traces during regular office hours on one of our pri-
mary machines. The results of these traces are summarized
in Table 1.

In each of these traces, the set of security checks that
would be logged after applying our noise filtering algorithm
(the column labeled Difference) is much smaller than the
total number of failed checks. The 2K-3K remaining failed
checks still constitute a conservative superset of the checks
corresponding to least-privilege incompatibilities. Though
2K-3K checks is probably too many to examine by hand,
in practice we expect the tracer to be run in much shorter
intervals — identifying the least-privilege incompatibilities
described in Section 4 required trace lengths of less than



Group 1 ID: SID of Users Group

…

Group n ID: SID of Admins Group

User ID: Alice’s SID

Thread or process

ACE 2: Allow Admins write

…

ACE n: Allow Users execute

ACE 1: Allow Alice read 

Object (e.g., file, 
registry key, …)

ACL

Security Descriptor
Token

SIDs

Privileges

Access-Check

Desired Access

Compute granted 
access on success

Adjust-Privilege

Target Privilege,
Enable/Disable

Succeed?
(Privilege 
held?)

Privilege-Check

Target Privileges

Succeed?
(Privileges held 
and enabled?)

SID-CompareSID to compare Identical?

Granted 
Access

Object 
Pointer

Handle Table Entry

Reference-Object
Desired Access

Succeed?

Succeed?

Privilege 1: SystemTime (Disabled)

…

Privilege n: ShutDown (Enabled)

Figure 1. Windows Security Checking Functions

Security checks Security checks
with user token

Failures with Ad-
min privileges

Failures without
Admin privileges

Difference

Trace 1 1,756,000 417,257 79,317 81,597 2,280
Trace 2 1,124,000 315,014 64,336 66,385 2,049
Trace 3 913,000 422,783 94,453 97,170 2,717

Table 1. Two-Hour Traces of Security Checks

20 seconds. Manually inspecting the logs also yielded two
other unsurprising observations. First, security checks tend
to occur in bursts right after new processes are started. Sec-
ond, the potential causes of least-privilege incompatibilities
appear to cover the entire range of security checks: access
check failures on semaphores and registry keys, privilege
check failures, and many others.

This noise filtering algorithm depends on the fact that
the underlying Windows security subsystem is stateless be-
cause it re-executes certain calls with modified arguments.
A natural alternative approach to modifying the security
subsystem would have been to modify the APIs that access
resources, e.g. the file system or socket APIs. However, the
stateful nature of these interfaces would have made our ap-
proach to noise filtering either difficult or impossible. For
example, re-executing a File-Open call would have required

closing the file, attempting to reopen it with a different set
of permissions, and doing the appropriate fixup. Appropri-
ately handling calls to arbitrary objects would have been
even more challenging.

Intricacies of Access-Check with MAXI-
MUM ALLOWED. The Access-Check function can
be called either with an explicit list of desired accesses,
such as read and write, or it can be called with a special
argument (MAXIMUM ALLOWED) asking for all al-
lowed accesses. Because Admin privileges grant additional
accesses on most objects, it might seem necessary to log
most calls with MAXIMUM ALLOWED as potential
least-privilege incompatibilities. However, this would
quickly lead to a large number of false positives: for
example, when we started the TurboTax application (one of
the examples in our evaluation), Access-Check was called



Run app with
Admin privileges

Security Check Monitor 
and Noise Filter

Security Check 
Event Logger

Start
tracing

Stop
tracing

Log of
least-privilege 

incompatibilities

Run app without
Admin privileges

Security Check Monitor 
and Noise Filter

(in validation mode)

Start
validation

Stop
validation

Figure 2. Workflow of Tracing and Validation

303 times with MAXIMUM ALLOWED access, and 189
of these calls return different accesses based on whether a
user has Admin privileges.

Fortunately, all the calls that we observed to Access-
Check with MAXIMUM ALLOWED occurred during ob-
ject handle creation. When object handles are created,
the accesses granted by Access-Check are cached, and
later calls through Reference-Object are compared to these
cached accesses. This allowed us to avoid the po-
tentially large number of false positives due to MAXI-
MUM ALLOWED by modifying the Reference-Object in-
terface to incorporate our noise filtering algorithm: retry
successful requests to see whether they would have suc-
ceeded without Admin privileges.

Applying the noise filtering algorithm at the Reference-
Object interface required maintaining a small amount
of additional state for each object handle. When ob-
ject handles are created with Access-Check and MAXI-
MUM ALLOWED, we initialize an additional field in the
handle, AssumedGrantedAccess, with the results of Access-
Check and MAXIMUM ALLOWED after removing Ad-
min privileges. When Reference-Object is later called with
an object handle, the desired access is compared to both the
actual granted accesses and AssumedGrantedAccess. The
request is then logged if the desired access is allowed by
the actual granted accesses and not by AssumedGrantedAc-
cess.

3.2 Security Check Event Logger

We implemented the Security Check Event Logger by
modifying ETW (Event Tracing for Windows), a kernel
component that already allows logging events such as reg-
istry accesses, page faults and disk I/O. Each security check
log entry indicates the current process name, the monitored
security checking function, target privileges, the desired ac-
cess and granted access, a stack dump (the return addresses
on the kernel stack), and the object name.

Obtaining the object name of each Access-Check call is
more difficult than obtaining the other information. Access-
Check is performed on a security descriptor and a token.
There is no backward pointer from the security descriptor to

the object, and indeed, a security descriptor can be created
by a programmer without reference to an object, though this
practice is rare. To obtain object names when they exist, the
logger walks back along the kernel stack, traversing frame
pointer frames. The traversal stops at any function frame
that is known to contain object name information, which
is then written to the log. This technique requires a kernel
compiled with frame pointers, which is the case for Win-
dows XP Service Pack 1. We have currently implemented
retrieving object names from five functions that we know to
be particularly common parents of Access-Check, such as
Create-File. This has been sufficient to give us very good
coverage. It allowed us to debug all the least-privilege in-
compatibilities given in the evaluation section, and it re-
turned object names for 98.3% of the access checks in one
of our 2-hour traces (8490 out of 8639 checks).

3.3 Log Validation

We performed a separate validation step to confirm that
all the least-privilege incompatibilities in the code paths
we managed to exercise were detected by our tracing tech-
nique. We could not directly modify the code for some of
the applications in our evaluation, so instead we modified
the behavior of our Security Check Monitor and Noise Filter
to change the outcomes of the security checks themselves.
This validation step is the reverse of the tracing step: ap-
plications are run without Admin privileges, and previously
logged checks are made to succeed where they otherwise
would have failed. The application will work without Ad-
min privileges if and only if the logged checks cover all
causes of least-privilege incompatibilities.

Though it might seem possible to mitigate all least-
privilege incompatibilities by using the validation technique
to change the outcome of certain security checks (often ef-
fectively changing ACLs), we have several reasons to urge
caution in this approach. First, some applications legiti-
mately require Admin privileges, and the objects they are
accessing should retain their strict ACLs. A significant
complicating factor is that the ACLs may be for kernel ob-
jects whose significance is less clear than files or registry
keys. Secondly, for applications that should not require Ad-



min privileges, developers are free to change application
behavior in many ways. Changing ACLs may require sig-
nificantly more work than the alternative modifications to
application behavior. Finally, the architecture of the Secu-
rity Check Monitor and Noise Filter component requires a
lookup table to determine whether to change the outcome of
particular security checks. Reconfiguring ACLs in place has
better scalability and efficiency, avoiding both the lookup
step and the need to maintain additional state in the security
subsytem. Indeed, this is exactly how ACL modifications
are currently handled in the file system and registry.

4 Evaluation

We evaluated the effectiveness of our tracing technique
on eight least-privilege failure scenarios drawn from real
applications. These applications include small utility pro-
grams, video games, document processing applications, and
software development tools, and span the spectrum of users,
including pre-school children, teenagers, professionals and
home users. The purpose of the evaluation is both to under-
stand the effectiveness of the technique in producing a small
set of security checks responsible for the least-privilege in-
compatibility, and to understand how helpful this would be
to a developer seeking to fix the incompatibility, or a system
administrator seeking to mitigate it.

For our experiments we installed and traced applica-
tions using an account with Admin privileges. We found
that most least-privilege incompatibilities are encountered
quickly: for interactive applications, we found that we
only needed to trace application startup, while for non-
interactive applications (e.g., scripts), we traced the entire
run of the application. We validated our logs using a sec-
ond account without Admin privileges. We found that the
causes of least-privilege incompatibilities in our evaluation
fall into three categories: overly-restrictive ACL settings,
insufficient granularity of privilege in the application de-
sign, and programmatic enforcement of unnecessary privi-
lege requirements.

4.1 Overly Restrictive ACLs

The three applications in this section required elevated
privileges because they either stored their settings in a more
secure location than necessary, or they did not correctly
configure ACLs to allow access by the appropriate users.
These problems are all fixable with small code changes, and
it appears to be possible to work around them by manually
reconfiguring the relevant ACLs.

4.1.1 Bob The Builder Game

“Bob The Builder, Can We Fix It” is a video game designed
for children as young as 3. If a user attempts to start the

game without Admin privileges, an error message appears
stating “Automenu: insufficient privilege”. The tracer in-
tercepted 4002 checks during application startup, of which
899 would have failed if the user had not had Admin privi-
leges. Only 15 checks survived noise filtering. The 5 unique
entries among these 15 checks are shown in Table 2.

Two things point to the first entry in the log being the
likely cause of the least-privilege incompatibility. First,
the error message mentions the AutoMenu process. Sec-
ond, HKEY LOCAL MACHINE (HKLM) is a portion of
the Registry used for storing machine-wide settings. We
used our validation technique to confirm this hypothesis.
Although we have not heard from the application develop-
ers directly, anecdotal evidence points to this being a com-
mon mistake leading to least-privilege incompatibility, eas-
ily fixed by using a per-user store. This least-privilege in-
compatibility is also simple to mitigate by modifying ACLs
because no system critical information is stored in the “Bob
the Builder” section of the Registry. We have not yet de-
duced why explorer also generates entries in the log, but as
mentioned previously, our technique sometimes generates
false positives.

4.1.2 RAZZLE

Several Microsoft products use the razzle build environment
configuration tool. Developers must have Admin privileges
to use the current version of this tool. When a user without
Admin privileges runs razzle and then attempts to change to
a source code directory, they receive a “permission denied”
message.

Tracing razzle from start to finish yielded 7 log entries
(shown in Table 3) out of 8660 security checks. One no-
tices immediately from the trace that razzle launches a se-
ries of other processes. Our first hypothesis was that the
ACL on c:\sysman (our source code directory) was respon-
sible for the least-privilege incompatibility, and we changed
the ACL manually. However, when we ran razzle a sec-
ond time, the ACLs reverted to requiring Admin privileges.
Our second hypothesis was that the child process razacl.exe
was changing the ACLs. We confirmed this by changing
the ACL manually and then removing the razacl executable;
this allowed a user without Admin privileges to use razzle.
We learned from consulting razzle developers that razacl
removes user accounts from ACLs in the build tree to pro-
duce a consistent build environment across user accounts.
Changing razzle to produce a consistent build environment
without requiring Admin privileges is trivial, and indeed,
the next version of razzle is already slated to have this
change incorporated. This least-privilege incompatibility is
easily mitigated by a system administrator because razzle is
a shell script, and so a system administrator can easily mod-
ify it to not use razacl. If razzle had been compiled code that



Security Function Process Object Name
Reference-Object Automenu.exe \REGISTRY\HKLM\SOFTWARE\BBC Multimedia\Bob the

Builder\1.0.0
Access-Check explorer.exe \Program Files\THQ\Bob the Builder\StartBTB.exe
Access-Check explorer.exe \WINDOWS\explorer.exe
Access-Check explorer.exe \WINDOWS\system32\mydocs.dll
Access-Check explorer.exe \WINDOWS\system32\shell32.dll

Table 2. Unique Log Entries for Bob The Builder

required razacl in order to complete, a system administrator
still could have written a separate script to reset the ACLs
after running razacl.

4.1.3 Microsoft Greetings 2001

Microsoft Greetings 2001 is a document processing appli-
cation. Our trace of Microsoft Greetings’ startup recorded
37 potential causes of least-privilege incompatibilities,
(summarized in Table 4), out of the 12,618 total security
checks.

In validating the logs, we found that the first three classes
of logged security checks must succeed for the application
to be usable without Admin privileges. All the security
checks in the remaining two classes appear to be false pos-
itives. All the failed checks appear to be easily fixable, as
they seem to reflect the standard mistake of storing settings
in a machine-wide scope. Indeed, the next (and renamed)
version of this software, Microsoft Picture It! 2002, does
not have any least-privilege incompatibilities. From the sys-
tem administrator perspective, the second and third classes
of security checks are mitigatable using only standard tools,
but the first class requires the use of our validation tech-
nique. Finally, the large number of least-privilege incom-
patibilities in this example illustrates the benefits of requir-
ing only one trace to identify all the incompatibilities.

4.2 Insufficient Privilege Granularity in Applica-
tion Design

The three applications in this section all have some func-
tionality that is appropriate for all users, and some func-
tionality that should only be usable with Admin privileges.
However, they all fail to accommodate both modes of oper-
ation in their design, and consequently are not usable at all
without Admin privileges. We thank [4] for bringing many
of these examples to our attention.

4.2.1 Remote Access Service (RAS)

RAS is a program for corporate employees to remotely con-
nect to the corporate network. Running RAS without Ad-
min privileges leads to an error message roughly one minute
after the program starts. Reproducing this problem was

technically challenging because our lab did not allow us to
easily fake the remote environment that RAS assumes. Our
workaround was to trace a small script [22] that replicated
the core RAS behavior, and then to validate the results using
the real RAS program from a remote location.

Tracing the small script generated 7 log entries out of
2566 security checks. Six of the seven checks were related
to files, registry keys and TCP/IP devices that we eliminated
as causes of least-privilege incompatibilities using our val-
idation technique. Causing just the last check to succeed
allowed both the script and the real RAS program to be run
without Admin privileges.

Analyzing this one security check in more detail, we
saw the Windows script interpreter attempting to enu-
merate all network connections by calling the function
get EnumEveryConnection in class CNetSharingManager
defined in HNETCFG.dll (Home Networking Configuration
Manager). This function checks that the user has Admin
privileges using the function CheckTokenMembership ex-
ported by ADVAPI32.dll, which internally calls into the ker-
nel function Access-Check.

From discussions with the developers of this tool we
learned that RAS enumerates all network connections, and
switches all of them to run over the newly created Virtual
Private Network (VPN). The only API for enumerating net-
work connections enumerates them for all connections (not
just the current user), and this API was designed to be us-
able only with Admin privileges. The RAS developers seem
to be faced with two possible solutions to this least-privilege
incompatibility: a Windows service could perform work on
behalf of RAS, thus allowing any user to switch other users’
connections to run over the VPN; alternatively, if an al-
ternative API were present that allowed enumerating only
the network connections for a particular user, one might be
satisfied with switching only that user’s connections to run
over the VPN. A system administrator would be restricted
to addressing this problem by using our validation technol-
ogy to cause this one check for Admin privileges to succeed
— this would be roughly equivalent to the first of the possi-
ble developer solutions.

This example illustrates that least-privilege incompatibil-
ities may result from non-intuitive security checks where
a library indirectly checks access in its lower level imple-



Security Function Process Object Name or Security Action
Access-Check explorer.exe \WINDOWS\system32\cmd.exe
Adjust-Privilege razacl.exe Enable Security privilege
Privilege-Check razacl.exe Check if Security privilege enabled
Access-Check cmd.exe \sysman
Access-Check findstr.exe \sysman
Access-Check perl.exe \sysman
SID-Compare tfindcer.exe Determine if user has Admin privileges

Table 3. Log Entries for RAZZLE

Security Function Object Name or Security Action
SID-Compare Determine if user has Admin privileges
Access-Check \Program Files\Microsoft Picture It! PhotoPub\pidocob.dll
3 Access-Check \REGISTRY\HKLM\SOFTWARE\Microsoft\Picture It! (and subkeys)
22 Access-Check \REGISTRY\HKLM\SOFTWARE\Classes (and subkeys)
11 additional entries . . .

Table 4. Summary of Log Entries for Microsoft Greetings 2001

mentation. In cases like these, even developers benefit from
tracing not requiring source code. However, because we ac-
tually did have access to the application source code, we
were able to construct the entire sequence of calls respon-
sible for the least-privilege incompatibility, not just within
the RAS application.

4.2.2 Windows Power Configuration

Windows power options are configured per user and stored
in the user’s profile. However, Admin privileges are
required to change power options, and the application
only allows users with Admin privileges to change the
power options for their own account. When a user at-
tempts to change their power options without Admin
privileges, they receive an “access denied” error mes-
sage. Tracing this action led to 5 logged checks out
of 1364 total. Two of these logged checks were for
\REGISTRY\HKLM\SOFTWARE\Microsoft\Windows
\CurrentVersion\Controls Folder\PowerCfg, and we vali-
dated that this one ACL was the cause of the least-privilege
incompatibility.

From discussing this with internal Microsoft developers
we have surmised that power configuration presents diffi-
cult policy issues, where certain scenarios call for per-user
settings, and yet those settings have machine-wide impact.
One user’s power option, such as time to turn off hard disks,
may interfere with applications running for other logged in
users. At the same time, in a shared laptop scenario one
could reasonably want the power options to change depend-
ing on the person using the machine (e.g., the long-trip user
versus the short-trip user). We speculate that it might be
possible to better handle this issue by adding a privileged

group whose members can change the power configura-
tion. In a shared laptop scenario, one could then add each
new laptop user to the group and make a user’s configura-
tion dominant when that user is logged in to the console.
However, even with this modification, power configuration
would still be unavailable to an unprivileged user.

4.2.3 Windows Clock/Calendar

Double clicking the numeric clock on the right-bottom cor-
ner of the Windows desktop presents a pictorial clock and a
calendar. Users find this a handy tool to use when they want
to answer questions like “what is the date of the last Mon-
day of May?” Unfortunately, attempting to launch the clock
without Admin privileges leads to an “insufficient privilege
to chanhe system time” error message. Even if one wanted
to launch this application from a script granting it Admin
privileges, this might be difficult because the command line
is not readily available. Tracing this action led to 3 logged
checks (shown in Table 5) out of 455 total.

We validated that the SystemTime privilege check is
the cause of the least-privilege incompatibility. From dis-
cussing this case with internal Microsoft developers, we
surmised that the original clock was not designed to be used
in a read-only manner, but that this privilege check would
provide a good place to branch, displaying a read-only UI
if the privilege was missing. This least-privilege incompat-
ibility does not appear to fit our model for mitigation by a
system administrator.



Security Function Process Object Name or Security Action
Access-Check explorer.exe \WINDOWS\system32\rundll32.exe
Access-Check rundll32.exe \BaseNamedObjects\shell.{A48F1A32-A340-11D1-BC6B-

00A0C90312E1}
Adjust-Privilege rundll32.exe Enable SystemTime privilege

Table 5. Log Entries for Windows Clock/Calendar

Figure 3. Error Message When Starting Diablo II
Game without Admin privileges

4.3 Programmatic Enforcement of Unnecessary
Privilege Requirements

The two applications in this section programmatically en-
force that the user possess Admin privileges, but they ap-
pear to function perfectly well if this check is bypassed. We
discuss the reasons for these requirements in more detail in
the context of each application.

4.3.1 Diablo II Game

Diablo II is an action game that ships on three CDs: an
install disc, a cinematics disc, and a play disc that must be
in the drive for the game to work. When a user without
Admin privileges attempts to play the game, a misleading
error message (Figure 3) pops up claiming the CD drive
is empty. Tracing this action generated 3 log entries out
of 1573 total checks, 440 of which fail for a user without
Admin privileges. The 3 log entries are shown in Table 6.

Because the error message mentions the CD-ROM drive,
we hypothesized that the third log entry was responsible for
the least-privilege incompatibility. We verified that passing
this check alone allows the game to be played without Ad-
min privileges.

This example illustrates how least-privilege incompatibil-
ities can be presented to the user with a misleading error
message. We have not received any response from the Di-
ablo II developers, but the misleading error message leads
us to believe that the failure mode was not anticipated by
the developers. We speculate that this may be a simple pro-
gramming oversight where the program attempts to acquire
certain unnecessary CD-ROM accesses, and that it could
easily be fixed. This least-privilege incompatibility also
could easily be mitigated by a system administrator using
our validation technique.

4.3.2 TurboTax 2003

TurboTax is tax calculation software released by Intuit.
Running TurboTax without Admin privileges generates an
error message stating that Admin privileges are necessary
to use the application. Tracing the application startup gen-
erated 11 log entries out of 12503 total security checks.
The 11 logged entries break down to one entry for SID-
Compare, three for Access-Check on semaphores, four for
Access-Check on HKLM registry keys, and three others.
Surprisingly, using our validation technique we discovered
that just causing the SID-Compare call to succeed is suffi-
cient to allow using the application extensively without Ad-
min privileges; we succeeded in running TurboTax, com-
pleting a 1040A tax form and printing it to a PDF file. We
have not yet received a response from the developers of Tur-
boTax, but we have two different reasons that we believe
might have caused the TurboTax developers to insert this
check. First, a publicly available transcript of a discussion
with an Intuit customer service representative suggests that
requiring Admin privileges was a quick fix solution to data
privacy concerns [31]. Because Admin privileges convey
complete control of the system, leaking information about
other users through the application does not represent an
increased exposure of private data if the user viewing the
information already has Admin privileges. The second rea-
son we considered is that some code path we did not execute
generates a failure when the user lacks Admin privileges.
On balance, we believe the evidence points to the check for
Admin privileges being an explicit decision by the applica-
tion developers to require Admin privileges.

5 Related Work

A common approach to increasing system security is to
sandbox applications or users, so that the scope of individ-
ual compromises is decreased. Common sandboxing tech-
niques include virtual machines [15], system call interposi-
tion [1, 14, 30], and restricted file systems [12]. Our work
differs from this prior art in that we are not inventing a new
sandbox or developing a new technology to better imple-
ment an existing sandbox. Instead, our tracing technique
is designed to help developers and system administrators
make use of an existing and well-understood sandbox: the
unprivileged user.

Other previous work has investigated technologies for



Security Function Process Object Name
Access-Check explorer.exe \Program Files\Diablo II\Diablo II.exe
Access-Check Game.exe \REGISTRY\MACHINE\SYSTEM\ControlSet001\Control\

MediaProperties\PrivateProperties\Joystick\Winmm
Access-Check Game.exe \Device\CdRom0

Table 6. Log Entries for Diablo II

building or re-building systems so that they better conform
to the principle of least privilege [13, 25, 32]. Provos et
al show how separating OpenSSH into privileged and un-
privileged parts (privilege separation) would have reduced
its vulnerability to several security holes that were later dis-
covered [26]. Brumley and Song describe the Privtrans tool
which significantly automates this process using static anal-
ysis and annotations on privileged operations [5]. Our tech-
nique is complementary to Privtrans, and our tracing tech-
nique could potentially be used to automatically produce the
annotations required by Privtrans.

A common assumption in much of this earlier work is
that some part of the program under investigation (e.g.,
OpenSSH) legitimately requires the ability to perform a
privileged operation. In contrast, our investigation into
Windows applications suggests that in many cases, the re-
quirement that the application run in a privileged context is
a trivial bug. In other cases, the requirement that the ap-
plication run in a privileged context reflects a larger design
flaw. There was only an argument for the application requir-
ing Admin privileges in two of the eight cases we evaluated,
RAS and Power Config.

Some previous research has focused on new models for
access control, e.g., Role Based Access Control, Type En-
forcement, and Mandatory Access Control [20]. The de-
velopment of policies for such systems, and in particular
the retrofitting of policies to existing applications, has been
recognized to require a significant amount of work [28]. A
tracing approach likes ours might help in policy develop-
ment for such systems by providing insight as to why par-
ticular applications do or do not violate particular access
control policies.

We now consider previous work that has used static anal-
ysis [2, 34], a commonly cited alternative to dynamic trac-
ing techniques such as our own. A major strength of static
analysis is that it can achieve code-coverage trivially, while
dynamic techniques often require sophisticated test-case
generation strategies to exercise all code paths, if exercising
all code paths is possible at all. However, no one has pre-
viously attempted to apply static analysis to this problem,
and indeed, we believe static analysis would be difficult or
impossible for at least three reasons. First, the underlying
property being checked is a function of all ACLs on the
system, and this is not a fixed target. It is standard practice
to reconfigure ACLs based on the deployment environment

[24], and the actual ACLs can depend on runtime state, e.g.,
virtual directories such as “My Documents” will be mapped
to different directories (with different ACLs) depending
on the current user. Second, our investigation shows that
privilege failures sometimes occur after the flow of con-
trol passes through multiple libraries, and static analysis
becomes increasingly difficult as the scope of the analysis
increases. Lastly, static analysis typically requires source
code, and sometimes additional annotations, and so can not
be used if portions of the code are only available in binary
format. This is a common situation for system adminis-
trators, and also for developers due to the common use of
third-party components.

The most closely related previous work is the cur-
rent developer practice of identifying privilege failures by
tracing the file system or registry and grepping for AC-
CESS DENIED [17]. Our technique goes beyond this by
monitoring a complete set of functions within the Windows
security subsystem and implementing a more sophisticated
noise filtering strategy. Our evaluation in Section 4 justi-
fies the importance of both of these advances for identifying
least-privilege incompatibilities. On UNIX systems, system
call tracing is sometimes similarly used to debug access fail-
ures. Our tracing technique differs from system call tracing
in its more sophisticated noise filtering, and the significantly
smaller code base that must be correctly understood in order
to correctly capture all access failures. System call tracing
must monitor all functions that have security implications
and are exposed by the OS API, while we only need to mon-
itor five functions in the Windows security subsystem.

A recently proposed alternative approach to eliminating
least-privilege incompatibilities is to encourage developers
to run without Admin privileges [27]. Initiating this prac-
tice helps with code bases being developed from scratch,
but is difficult to incorporate into large pre-existing code
bases. Even in the development of new software, our tracing
technique provides several additional benefits to developers
running without Admin privileges: individual test passes
can uncover multiple least-privilege incompatibilities; these
least-privilege incompatibilities are identified as such (not
just as bugs with unknown causes); and additional help-
ful debugging information is provided, such as complete
call stacks (if symbol files are present), object names, and
ACLs.



6 Conclusion and Future Directions

Least-privilege incompatibilities cause many Windows
users to run with Admin privileges. This significantly in-
creases the vulnerability of Windows systems: any com-
promise of a user level application becomes a system com-
promise. To address this problem, we introduce a black-
box tracing technique that identifies the causes for least-
privilege incompatibilities. Our technique catches all least-
privilege incompatibilties on exercised code paths.

We evaluated our tracing technique using eight least-
privilege incompatible applications. These eight applica-
tions span a variety of user types, and exhibit a variety of
reasons for the underlying least-privilege incompatibilities.
Based on these evaluations and subsequent discussions with
developers, we conclude that the tracing technique makes
fixing or mitigating least-privilege incompatibilities signifi-
cantly easier.

In the future, our tracing technique would provide even
more value if it was integrated with other development tech-
nologies, such as the ability to set breakpoints. Also, we
believe that our log validation technique highlights the need
for a utility to configure security permissions associated
with objects other than files and registry keys. In addition
to aiding system administrators in mitigating some least-
privilege incompatibilities, such a utility would be conve-
nient for developers debugging these incompatibilities. Fi-
nally, we speculate that a tracing technique like ours could
be fruitfully applied to some least-privilege problems on
other operating systems.

Acknowledgements

We thank our colleagues at Microsoft and Microsoft Re-
search for their assistance and insightful comments, and
in particular Doug Beck, Bill Bolosky, Brad Daniels, Jon
Howell, Jon Pincus, Dan Simon, Helen Wang, Rich Ward,
and Alec Wolman.

References

[1] A. Acharya and M. Raje. MAPbox: Using Parameter-
ized Behavior Classes to Confine Untrusted Applications.
USENIX Security 2000.

[2] K. Ashcraft and D. Engler. Using Programmer-Written
Compiler Extensions to Catch Security Holes. IEEE Secu-
rity and Privacy 2002.

[3] T. Ball. Abstraction-guided Test Generation: A Case Study,
Microsoft Research Technical Report, MSR-TR-2003-86,
November 2003.

[4] K. Brown. Keith’s Security Hall of Shame.
http://www.pluralsight.com/keith/hallofshame/default.htm.

[5] D. Brumley and D. Song. Privtrans: Automatically parti-
tioning Programs for Privilege Separation. USENIX Secu-
rity 2004.

[6] M. E. Carson. Sendmail without the Superuser. USENIX
Security 1993.

[7] CERT. Advisory CA-2004-02 Email-borne Viruses.
http://www.cert.org/advisories/CA-2004-02.html.

[8] CERT. AOL Instant Messenger client for Windows con-
tains a buffer overflow while parsing TLV 0x2711 packets.
http://www.kb.cert.org/vuls/id/907819.

[9] CERT. Critical Vulnerabilities in Microsoft Windows.
http://www.us-cert.gov/cas/techalerts/TA04-212A.html.

[10] CERT. Internet Explorer Update to Disable
ADODB.Stream ActiveX Control. http://www.us-
cert.gov/cas/techalerts/TA04-184A.html.

[11] H. Chen, D. Wagner, and D. Dean. Setuid demystified.
USENIX Security 2002.

[12] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle,
and V. Gligor. SubDomain: Parsimonious Server Security.
LISA 2000.

[13] C. Evans. Very secure FTP daemon. http://vsftpd.beasts.org.
[14] T. Garfinkel. Traps and Pitfalls: Practical Problems in Sys-

tem Call Interposition Based Security Tools. NDSS 2003.
[15] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and

D. Boneh. Terra: A Virtual Machine-Based Platform for
Trusted Computing. SOSP 2003.

[16] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. In Proceed-
ings of the International Symposium on Software Testing
and Analysis, pages 53-62. ACM, 1998.

[17] D. GUI. Debugging Permissions Problems.
http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dnaskdr/html/askgui03272001.asp.

[18] M. Howard, J. Pincus, and J. Wing. Measuring Relative At-
tack Surfaces. Proceedings of Workshop on Advanced De-
velopments in Software and Systems Security, Taipei, De-
cember 2003. Also CMU-CS-03-169 Technical Report, Au-
gust 2003.

[19] D. Jackson and M. Vaziri. Finding bugs with a constraint
solver. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 14-25. ACM, 2000.

[20] P. A. Loscocco and S. D. Smalley. Meeting Critical Security
Objectives with Security-Enhanced Linux. In the Proceed-
ings of the 2001 Ottawa Linux Symposium, July 2001.

[21] Microsoft. Certain Programs Do Not Work Cor-
rectly If You Log On Using a Limited User Account.
http://support.microsoft.com/default.aspx?scid=kb;en-
us;307091.

[22] Microsoft. Retrieving the Properties of a Connec-
tion (VBScript). http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/ics/ics/retrieving the proper-
ties of a connection vbscript .asp.

[23] T. Oetiker. MSI Packaging How-to.
http://isg.ee.ethz.ch/tools/realmen/det/msi.en.html.

[24] P. Proctor. Hardening Windows NT Against At-
tack. http://www.secinf.net/windows security/ Harden-
ing Windows NT Against Attack.html.

[25] N. Provos. Improving Host Security with System Call Poli-
cies. USENIX Security 2003.

[26] N. Provos, M. Friedl, and P. Honeyman. Preventing Privi-
lege Escalation. USENIX Security 2003.

[27] P. Provost. Non-Admin Development in VS.NET 2003.
http://www.peterprovost.org/archive/2004/11/01/2040.aspx.



[28] T. Rhodes. FreeBSD Handbook, Chap-
ter 15: Mandatory Access Control,
http://www.freebsd.org/doc/en US.ISO8859-
1/books/handbook/mac.htmlciteseer.nj.nec.com/
ganesh03peertopeer.html.

[29] S. Saroiu, S. D. Gribble, and H. M. Levy. Measurement and
Analysis of Spyware in a University Environment. NSDI
2004.

[30] M. R. Tal Garfinkel, Ben Pfaff. Ostia: A Delegating Archi-
tecture for Secure System Call Interposition. NDSS 2004.

[31] Toups. Administrator Privileges for Turbo-
Tax?!?! http://www.dslreports.com/forum/ re-
mark,9732454 mode=flat.

[32] W. Venema. Postfix Overview.
http://www.postfix.org/motivation.html.

[33] Y.-M. Wang, R. Roussev, C. Verbowski, A. Johnson, M.-
W. Wu, Y. Huang, and S.-Y. Kuo. Gatekeeper: Monitoring
Auto-Start Extensibility Points (ASEPs) for Spyware Man-
agement. In Proceedings of Usenix LISA, Nov. 2004.

[34] J. Yang, T. Kremenek, Y. Xie, and D. Engler. MECA: an
Extensible, Expressive System and Language for Statically
Checking Security Properties. ACM CCS 2003.


