
Chapter 5

Factoring Multivariate

Polynomials over Finite Fields

Summary:

We consider the deterministic complexity of the problem of polynomial factor-

ization over finite fields - given a finite field Fq and a polynomial h(x, y) ∈
Fq[x, y] compute the unique factorization of h(x, y) as a product of irreducible

polynomials. This problem admits a randomized polynomial-time algorithm

and no deterministic polynomial-time algorithm is known. In this chapter,

we give a deterministic polynomial-time algorithm that partially factors the

input polynomial h(x, y). The algorithm can be generalized to partially factor

multivariate polynomials in an arbitary number of variables.

We now describe precisely the output of our partial factoring algorithm.

Associated with every Fq-irreducible factor f(x, y) of h(x, y) are two objects -

its total degree n and the smallest extension field Fqd of Fq over which f(x, y)

splits into absolutely irreducible factors. Collecting all the Fq-irreducible factors

of h(x, y) which have the same degree and the same splitting field, we get a unique

factorization of h(x, y) into a product of “uniform polynomials” - polynomials

whose component Fq-irreducible factors all have the same degree and the same

splitting field. It is this unique representation of h(x, y) as a product of uniform

polynomials that is outputted by our algorithm.
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5.1 Introduction

A fundamental theorem of algebra states that polynomials over any field F admit a unique

factorization into a product of (a finite number of) F-irreducible factors. Computing

this factorization for polynomials over various fields is a very well-studied problem in

algorithmic number theory. For densely represented polynomials (that is, polynomials of

degree n in m variables that are specified by giving all the
(
n+m

m

)
-possible coefficients of

monomials), the problem of factoring multivariate polynomials is known to reduce to the

problem of factoring univariate polynomials [Kal82]. For univariate polynomials over Q,

the field of rational numbers, Lenstra, Lenstra and Lovasz [LLL82] gave a deterministic

polynomial-time algorithm.

Over finite fields, the problem admits random polynomial time algorithms [Ber67,

Ber70, CZ81] but no deterministic polynomial-time algorithm is known. In a very interest-

ing development, Kaltofen devised an algorithm that given an algebraic circuit computing

a moderate degree polynomial in a large number of variables, computes its factorization

in random polynomial time. Kaltofen’s algorithm has been widely used in theoretical

computer science with applications in list decoding of codes [GS99, Gur01] and hardness-

randomness tradeoffs for arithmetic circuits [KI04].

The deterministic complexity of factoring polynomials over finite fields has also made

partial progress. Berlekamp gave a deterministic algorithm for computing the distinct-

degree factorization of univariate polynomials. This was subsequently generalized by Gao,

Kaltofen and Lauder [GKL04] for deterministic distinct degree factorization of multivariate

polynomials over finite fields. Motivated by the solvability problem to be tackled in the

next chapter, we continue this line of work and develop a deterministic algorithm for

partially factoring multivariate polynomials over finite fields. Moreover our algorithm can

be parallelized so that the parallel time complexity is polylogarithmic in the degree of the

input polynomial to be factored.

In order to describe the output of our algorithm we need to introduce some terms.

Definition 5.1.1. A bivariate polynomial h(x, y) ∈ Fq[x, y] is said to be absolutely

irreducible if it is irreducible over Fq and remains irreducible over the algebraic closure Fq

of Fq.

Example: For example, (y2−x3) ∈ F7[x, y] is absolutely irreducible whereas (y2 +x2) ∈
F7[x, y] is irreducible over F7 but factors into (y +

√
−1x)(y −

√
−1x) over the extension
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F72 = F7(
√
−1) and hence is not absolutely irreducible over F7.

Remark. Note that a univariate polynomial f(x) ∈ Fq[x] is absolutely irreducible if and

only if it is a linear polynomial. To see this, observe that if f(x) ∈ Fq[x] is a univariate

irreducible polynomial of degree d ≥ 2 then then it splits properly over Fqd , and therefore

cannot be absolutely irreducible.

The polynomial h(x, y) has a unique factorization over the algebraic closure Fq of

Fq. Now collect all the elements of Fq that occur as the coefficient of some monomial

xiyj in some absolutely irreducible factor g(x, y) of h(x, y) over F. Since this is a finite

set, all these coefficients lie in some finite extension K of Fq. We will call the smallest

such extension field K the splitting field of h(x, y). We will denote by dimFq(h(x, y)) the

dimension of the splitting field K of h(x, y) over Fq. That is, dimFq(h(x, y))
def
= [K : Fq].

We will call a polynomial f(x, y) ∈ Fq[x, y] a uniform polynomial if any two of its

Fq-irreducible factors have the same total degree and the same splitting field K. In this

chapter, we build upon the distinct degree factorization algorithm of Gao, Kaltofen and

Lauder [GKL04] to split a given polynomial h(x, y) ∈ Fq[x, y] into a product of uniform

polynomials. We summarize our main result as a theorem:

Theorem 5.1.2. [Uniform factoring] There exists a deterministic algorithm that on input

a polynomial h(x, y) ∈ Fq[x, y] of degree n outputs

〈(h1(x, y), n1, d1), . . . , (hk(x, y), nk, dk)〉

such that

h(x, y) = h1(x, y) · . . . · hk(x, y)

where each hi(x, y) is a uniform polynomial consisting of Fq-irreducible factors of degree

ni and splitting field Fqdi .

The algorithm has a time complexity of poly(n · log q). Moreover, the algorithm can be

implemented parallely to get a family of P -uniform circuits of depth poly(logn · log q) and

size poly(n · log q).

Note that the output of the algorithm of Theorem 5.1.2 is a refinement of the distinct

degree factorization of h(x, y) over Fq.

We now give the overall idea behind our algorithm.
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5.1.1 Basic Idea

The starting point of our algorithm is the procedure (due to Kaltofen [Kal82]) for reducing

the problem of factoring bivariate polynomials to the problem of factoring univariate

polynomials. Let Fq be a finite field and h(x, y) ∈ Fq[x, y] be a square-free bivariate

polynomial of degree n that we wish to factor. By applying a suitable linear transformation

if necessary, we can assume without loss of generality that w(z) = h(z, 0) is square-free

(cf. Kaltofen [Kal82]). Suppose we know an α ∈ Fq which is a root of some Fq-irreducible

factor t(z) of w(z). Let Rt
def
= Fq[z]/〈t(z)〉 = Fq(α) be the splitting field of t(z). Then

by the squarefree-ness of h(z, 0) there exists a unique (upto constant factors) minimal

degree factor ht(z)(x, y) ∈ Rt[x, y] of h(x, y) such that α is a root of ht(z)(z, 0). With this

background in mind, Kaltofen’s algorithm can be viewed as follows: using the root α having

minimal polynomial t(z) over Fq, it simply writes down a system Rt(z),m of homogeneous

linear equations over Rt whose solutions correspond to polynomials in Rt[x, y] of degree

at most m and which are multiples of ht(z)(x, y). Setting m = n− 1 and taking the gcd of

all the polynomials corresponding to a basis of the solution space of Rt(z),m gives us the

factor ht(z)(x, y) ∈ Rt[x, y] of h(x, y).

Unfortunately the absence of a deterministic algorithm for univariate factoring over

finite fields prevents us from obtaining irreducible factors of w(z). Suppose that v(z) ∈
Fq[z] is any (not necessarily irreducible) factor of w(z). As before, we construct the

ring Rv
def
= Fq[z]/〈v(z)〉 (note that Rv is no longer a field). We then view the element

α′ ∈ Rv, α
′ def

= z (mod v(z)) as a ‘pseudo-root’ of the polynomial w(x) = h(x, 0) ∈ Rv[x].

Proceeding as before, we write down a system Rv(z),m of homogeneous linear equations

over Rv. We then ask the question - what do the solutions of Rv(z),m correspond to ‘in

reality’? Examining this question minutely, we deduce that by setting v(z) = w(z) and

varying m, the solutions of Rw(z),m can be used to factor out divisors of h(x, y) having

distinct degree or distinct splitting fields over Fq.

Remark. Subsequently, Kaltofen [Kal85] essentially observed that Rw(z),(n−1) does not

have a nontrivial solution if and only if h(x, y) is absolutely irreducible. Combining this

with efficient parallel algorithms for linear algebraic computations, he obtained a fast

parallel deterministic algorithm for absolute irreducibility testing.
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5.2 Mathematical machinery.

This section forms the core of this chapter. Its organized as follows - following tradition,

we first introduce nice bivariate polynomials. We then examine how an Fq-irreducible

bivariate polynomial factors over various possible field extensions of Fq. Next, we define

some systems of linear equationsRv(z),m, Fv(z),m and Bv(z),m and prove the basic properties

of their solution spaces. Finally we show how these solution spaces can be used to obtain

factors of h(x, y). In this and the next section, we will use h(x, y) for the reducible input

polynomial to be factored and f(x, y) for an Fq-irreducible factor of h(x, y).

5.2.1 Nice bivariate polynomials

Definition 5.2.1. A bivariate polynomial f(x, y) ∈ Fq[x, y] of total degree n is nice if

f(x, 0) is squarefree and of degree n.

Note that the coefficient of xi of a nice polynomial f(x, y) as a polynomial in y has

degree no more than n − i, in particular the leading coefficient of f(x, y) with respect to

x is in Fq.

Also observe that a nice polynomial f(x, y) ∈ Fq[x, y] remains nice over any extension

field K of Fq and that any factor of a nice polynomial is also a nice polynomial. By

doing a square-free factorization of the input polynomial followed by a suitable linear

transformation of the variables, the problem of general bivariate factoring can be reduced

to factoring a nice bivariate polynomial (cf. Kaltofen [Kal82] for details).

Throughout the rest of this chapter we will use Fq to denote the input field and unless

mentioned otherwise, all the algebras that we come across in this chapter will be over

Fq. Also we shall throughout use h(x, y) ∈ Fq[x, y] to denote the input polynomial to be

factored.

5.2.2 How Fq-irreducible bivariate polynomials behave over extensions

of Fq.

We will now examine how an Fq-irreducible factor f(x, y) of h(x, y) factors over an

extension field Fqd of Fq. We will show that over any extension field f(x, y) splits into

a product of conjugate factors and if the extension field happens to be isomorphic to

Fq[z]/〈v(z)〉 where v(z) is an irreducible factor of f(z, 0) then f(x, y) splits into absolutely

irreducible factors over it.
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Conjugacy - an equivalence relation.

Let K be a field extension of the finite field Fq. Let φ ∈ GalK/Fq
be an automorphism of

K. We extend φ to an automorphism of the ring K[x, y] in the natural way:

Definition 5.2.2. Let φ ∈ GalK/Fq
be an automorphism of K. Define the map φ :

K[x, y] 7→ K[x, y] as

φ(f(x, y)) =
∑

1≤k,l≤n

φ(akl)x
kyl

where

f(x, y) =
∑

1≤k,l≤n

aklx
kyl

Observe that the map φ : K[x, y] 7→ K[x, y] is an automorphism of the ring K[x, y] that

fixes the subring Fq[x, y]. In particular,

• φ(f(x, y) + g(x, y)) = φ(f(x, y)) + φ(g(x, y))

• φ(f(x, y) · g(x, y)) = φ(f(x, y)) · φ(g(x, y))

We now define an equivalence relation on K[x, y] induced by such automorphisms of

K[x, y].

Definition 5.2.3. Let f(x, y), g(x, y) ∈ K[x, y] be two bivariate polynomials. g(x, y) is

said to be a conjugate of f(x, y) over Fq, or an Fq-conjugate of f(x, y), if there exists an

automorphism φ ∈ GalK/Fq
such that g(x, y) = φ(f(x, y)).

Observe that conjugacy is an equivalence relation on K[x, y].

Factorization of Fq-irreducible polynomials over extension fields.

Now consider a nice Fq-irreducible polynomial f(x, y) ∈ Fq[x, y]. Let K ⊇ Fq be a finite

field extension of Fq. How does f(x, y) factor over K? We claim that all the K-irreducible

factors of f(x, y) in K are in fact Fq-conjugates of each other. In particular, all the

K-irreducible factors of f(x, y) in K[x, y] are of equal degree.

Lemma 5.2.4. Let f(x, y) ∈ Fq[x, y] be a nice Fq-irreducible polynomial of total degree n.

Let K be any finite field extension of Fq. If f1(x, y) ∈ K[x, y] and f2(x, y) ∈ K[x, y] are

any two K-irreducible factors of f(x, y) then f1(x, y) and f2(x, y) are Fq-conjugates.
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Proof. For a polynomial g(x, y) ∈ K[x, y], define Hg ≤ GalK/Fq
to be the subgroup of

GalK/Fq
consisting of automorphisms in GalK/Fq

that fix g(x, y). Since the galois groups

of finite extensions of finite fields are cyclic groups, Hg must be a normal subgroup of

GalK/Fq
.

Let g(x, y) ∈ K[x, y] be a K-irreducible factor of f(x, y). Let the set of distinct cosets

of Hg in GalK/Fq
be

GalK/Fq
/Hg = {Hgφ1,Hgφ2, · · ·Hgφt}

Then φ1(g(x, y)), φ2(g(x, y)), · · ·φt(g(x, y)) are all the distinct conjugates of g(x, y).

We claim that the unique factorization of f(x, y) into K-irreducible polynomials over K is

simply the product of all these distinct conjugates of g(x, y). That is,

f(x, y) =
∏

Hgφ∈GalK/Fq /Hg

φ(g(x, y)) (5.1)

We first observe that any Fq-conjugate of g(x, y) is also a K-irreducible factor of f(x, y).

Claim 5.2.4.1. Every conjugate of g(x, y) is a K-irreducible factor of f(x, y).

Proof. Since g(x, y)|f(x, y), therefore ∃g′(x, y) ∈ K[x, y] such that f(x, y) = g(x, y) ·
g′(x, y). Suppose that φ is any automorphism in GalK/Fq

. Applying φ to both sides

we get:

φ(f(x, y)) = φ(g(x, y)) · φ(g′(x, y))

⇒f(x, y) = φ(g(x, y)) · φ(g′(x, y))

⇒φ(g(x, y))|f(x, y)

By the same reasoning φ(g(x, y)) ∈ K[x, y] is K-irreducible for if any ĝ(x, y) ∈ K[x, y] is

a proper divisor of φ(g(x, y)) then φ−1(ĝ(x, y)) is a a proper divisor g(x, y), contradicting

the K-irreducibility of g(x, y). Thus any conjugate of g(x, y) is also an K-irreducible factor

of f(x, y).

Now g(x, y) being K-irreducible, is coprime to all Fq-conjugates distinct from itself.

Thus the rhs of equation (5.1) divides f(x, y). Moreover the rhs of equation (5.1) is fixed

by all the automorphisms in GalK/Fq
. Since finite extensions of finite fields are normal

extensions, so any polynomial in K[x, y] that is fixed by all the automorphisms in GalK/Fq

is in fact a polynomial in Fq[x, y]. Hence the rhs of equation (5.1) is in fact a polynomial in

Fq[x, y] that divides f(x, y). By the Fq-irreducibility of f(x, y), we deduce that equation
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(5.1) is indeed the unique factorization of f(x, y). Thus all the K-irreducible factors of

f(x, y) over K are precisely all the distinct conjugates of g(x, y).

Now consider an Fq-irreducible polynomial f(x, y) ∈ Fq[x, y] that factors in the alge-

braic closure Fq of Fq. What is the splitting field of f(x, y)? Can we put a bound on

the dimension of the splitting field over Fq? Assuming that f(x, y) is a nice polynomial,

the following proposition shows that if t(z) is an Fq-irreducible factor of f(z, 0), then the

splitting field of f(x, y) is a subfield of the finite field Fq[z]/〈t(z)〉. In particular, if f(z, 0)

has a root α ∈ Fq, then f(x, y) must be absolutely irreducible.

Proposition 5.2.5. Let f(x, y) ∈ Fq[x, y] be a nice Fq-irreducible polynomial of total

degree n whose splitting field is Fqd. Also let t(z) ∈ Fq[z] be an Fq-irreducible factor

of f(z, 0). Then d|deg(t(z)) and f(x, y) breaks into absolutely irreducible factors over

K := Fq[z]/〈t(z)〉, each absolutely irreducible factor being of degree m = n
d .

Proof. Let g(x, y) ∈ K[x, y] be a K-irreducible factor of f(x, y) in K[x, y]. Suppose if

possible that g(x, y) is not absolutely irreducible but breaks further over some finite

extension L ⊃ K.

Let Hg be as in lemma 5.2.4. By lemma 5.2.4

f(x, y) =
∏

Hgφ∈G/Hg

φ(g(x, y)) (5.2)

Let α ∈ K be a root of the polynomial t(z). We start with the observation that

some Fq-conjugate of α must be a root of g(z, 0). Since α is a root of f(z, 0) we have

(z−α)|(f(z, 0) =
∏

Hgφ∈G/Hg
φ(g(z, 0))). Being irreducible, (z−α) must divide one of the

factors on the rhs. That is, ∃φ ∈ GalK/Fq
such that (z − α)|φ(g(z, 0)). Applying φ−1 to

both sides, we get (z−β)|g(z, 0), where β = φ−1(α). This β = φ−1(α) ∈ K is the required

Fq-conjugate of α that is a K-root of the polynomial g(z, 0).

By lemma 5.2.4 the L-irreducible factors of g(x, y) in L[x, y] are all K-conjugates. Let

g1(x, y) ∈ L[x, y] be such an L-irreducible factor of g(x, y) with (z − β) dividing g1(z, 0).

Let ψ ∈ GalL/K be such that ψ(g1(x, y)) ∈ L[x, y] is another L-irreducible factor of g(x, y)

distinct from g1(x, y). Now since (z − β)|g1(z, 0), applying ψ on both sides we get that

(z − ψ(β))|ψ(g1(z, 0)). But ψ(β) = β and therefore (z − β) divides two distinct coprime

factors g1(z, 0) and ψ(g1(z, 0)) of g(z, 0). This implies that (z − β)2 divides g(z, 0) which

is a contradiction since f(z, 0) and hence g(z, 0) are squarefree.
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Thus the K-irreducible factors of f(x, y) are in fact absolutely irreducible. Hence there

exists a subfield F ⊆ K which is the splitting field of f(x, y). Therefore d = [F : Fq] divides

deg(t(z)) = [K : Fq] = [K : F][F : Fq].

By the definition of the splitting field of f(x, y), the coefficients occuring in g(x, y)

lie in the field F and do not all lie in any proper subfield of F. Hence F is precisely the

subfield of K which is fixed by every automorphism in Hg. So

d = [F : Fq] = ord(GalK/Fq
/Hg).

Further ord(GalK/Fq
/Hg) is the number of distinct absolutely irreducible factors of

f(x, y). Since all the absolutely irreducible factors of f(x, y) are of the same degree, say

m, we have

m.ord(GalK/Fq
/Hg) = deg(f(x, y))

⇒ m.d = n

⇒ m =
n

d

This proposition means that if f(x, y) ∈ Fq[x, y] is a nice Fq-irreducible polynomial

and t1(z), t2(z) ∈ Fq[z] are any two Fq-irreducible factors of f(z, 0) then the degree of

an irreducible factor of f(x, y) over K1
def
= Fq[z]/〈t1(z)〉 is the same as the degree of an

irreducible factor of f(x, y) over K2
def
= Fq[z]/〈t2(z)〉. This observation will be the key to

our uniform-factoring algorithm.

5.2.3 Defining the linear systems.

We will now define some linear systems over Rv whose solutions capture different factors

of h(x, y). To be able to specify how these factors relate to a “seed polynomial” v(z) we

need to make the following definition.

Definition 5.2.6. Let R be any ring and let v(z) ∈ R[z] be a univariate polynomial

f(x, y) ∈ R[x, y] be a bivariate polynomial. We will say that f(x, y) sits above v(z) if v(z)

divides f(z, 0).

We also extend the usual notion of squarefreeness of polynomials over fields to poly-

nomials over arbitary rings.
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Definition 5.2.7. Let R be any ring and v(z) ∈ R[z] be a univariate polynomial over R.

Let v′(z) ∈ R[z] be the formal derivative of v(z). We say that v(z) is squarefree if v(z) is

coprime (see (2.1.11) for definition of coprimality) to v′(z).

Fixing Some notation.

We recall some of the quantities from the previous section and define and fix some other

quantities that will be be used through the rest of this chapter.

As before, h(x, y) ∈ Fq[x, y] is a nice bivariate polynomial of degree n that we wish to

factor. w(z)
def
= h(z, 0) ∈ Fq[z] and v(z) ∈ Fq[z] is any factor of w(z). Let the Fq-irreducible

factors of v(z) be vj(z), 1 ≤ j ≤ r.

Rv
def
= Fq[z]/〈v(z)〉 ∼=

r⊗

j=1

Fq[z]/〈vj(z)〉.

We will denote by πvj the projection of Rv onto the j-th component field,

Rvj

def
= Fq[z]/〈vj(z)〉.

That is, for any u ∈ Rv,

πvj (u)
def
= u (mod vj).

Note that every πvj extends in a natural manner to a homomorphism from polynomial

rings over Rv to corresponding polynomial rings over Rvj . We shall denote by Bv the

Berlekamp subalgebra of Rv, defined as the subalgebra of Rv fixed by the automorphism

φ : ζ 7→ ζq of Rv.

The element α ∈ Rv is defined as α
def
= z (mod v(z)) and it is an Rv-root of h(x, 0) ∈

Rv[x].

We will now define three linear systems Rv(z),m, Bv(z),m and Fv(z),m. The solutions of

each of these linear systems correspond to factors of h(x, y) ∈ Rv[x, y] of degree at most m

which sit above the polynomial (x− α). The difference is in which subring of Rv[x, y] are

these factors allowed to lie in, that is which subring of Rv do the coefficients come from.

The solutions of Fv(z),m are intended to capture factors (of degree at most m) which lie

in the subring Fq[x, y] of Rv[x, y]. The solutions of Bv(z),m are intended to capture factors

which lie in the subring Bv[x, y] of Rv[x, y]. Finally, the solutions of Rv(z),m are intended

to capture factors which lie in Rv[x, y] itself.
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Notational convention: In the rest of this chapter we will use r(x, y) to denote

polynomials in Rv[x, y], b(x, y) to denote polynomials in Bv(x, y) and f(x, y) to denote

polynomials in Fq[x, y].

Moreover for m = deg(h(x, y)), the solutions of Rv(z),m are all going to be multiples of

some particular well-defined polynomial rv(z)(x, y) ∈ Rv[x, y]. Similar thing is true for the

linear systems Fv(z),m and Bv(z),m. We will shortly define this factor rv(z)(x, y) ∈ Rv[x, y]

and its analogues. We prove a lemma first.

Lemma 5.2.8. In the component field Rvj of Rv, there exists a unique (upto constant

multiples from Rvj ) minimal degree factor rj(x, y) ∈ Rvj [x, y] of h(x, y) in Rvj [x, y] which

sits above (x− πvj (α)).

Proof. Existence. Clearly h(x, y) ∈ Rvj [x, y] is itself a factor of h(x, y) which sits above

πvj (x − α) and therefore there does exist a minimal degree factor rj(x, y) of h(x, y) in

Rvj [x, y] sitting above πvj ((x− α)).

Uniqueness. Note that rj(x, y) must be an Rvj -irreducible polynomial for if

rj(x, y) = r1(x, y) · r2(x, y)

then either r1(x, y) or r2(x, y) sits above (x − πvj (α)) and they are both factors of

h(x, y) in Rvj [x, y] of degree smaller than rj(x, y), contradicting the assumption of the

minimality of the degree of rj(x, y). Suppose r
′
j(x, y) is another factor of h(x, y) sitting

above (x− πvj (α)), having the same degree as rj(x, y). Then arguing as above, r′j(x, y) is

also irreducible in Rvj [x, y]. Then their product rj(x, y)·r′j(x, y) ∈ Rvj [x, y] must be factor

of h(x, y). But then (x−πvj (α))2 divides rj(x, 0) ·r′j(x, 0) contradicting the squarefreeness

of h(x, 0).

In a similar manner, by the Fq-irreducibility of vj(z), there exists a unique Fq-

irreducible factor bj(x, y) ∈ Fq[x, y] such that vj(z) divides bj(z, 0). We will denote by

rv(z)(x, y) the unique element of Rv[x, y] such that

πvj (rv(z)(x, y)) = rj(x, y)∀1 ≤ j ≤ r.

Analogously, we will denote by bv(z)(x, y) ∈ Bv[x, y] the unique element of Bv[x, y] such

that

πvj (bv(z)(x, y)) = bj(x, y)∀1 ≤ j ≤ r.
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Finally we define fv(z)(x, y) ∈ Fq[x, y] to be the polynomial

fv(z)(x, y)
def
=

∏

1≤j≤r

bvj(z)(x, y)

The linear systems Rv(z),m, Fv(z),m and Bv(z),m.

The polynomials (x−α) and w(x)
(x−α) in Rv[x] are formally coprime (since they are coprime

in each of the projected fields). That is α is an ordinary root of w(x) = h(x, 0) in

Rv = Rv[y]/〈y〉. We fix k ∈ Z>0 to be k
def
= 2n(n − 1). By the well-known Hensel lifting

lemma 2.1.12, there exists a unique α(y) = α + α1y + α2y
2 + . . . + αky

k ∈ Rv[y]/〈yk+1〉
such that

h(α(y), y) = 0 (mod yk+1).

Moreover, α(y) is easily computed by iteratively solving linear equations over Rv.

Definition 5.2.9. The linear system Rv(z),m over Rv is defined to be the system

m∑

i=0

ui(y)α(y)i = 0 (mod yk+1) (5.3)

with unknowns

ui(y) ∈ Rv[y], deg(ui(y)) ≤ (m− i).

The definitions of the linear systems Bv(z),m and Fv(z),m are very similar except that

the unknown polynomials are restricted to lie in the respective subrings of Rv.

Definition 5.2.10. The linear system Bv(z),m over Bv is defined to be the system

m∑

i=0

ui(y)α(y)i = 0 (mod yk+1) (5.4)

with unknowns

ui(y) ∈ Bv[y], deg(ui(y)) ≤ (m− i).

Definition 5.2.11. The linear system Fv(z),m over Fq is defined to be the system

m∑

i=0

ui(y)α(y)i = 0 (mod yk+1) (5.5)

with unknowns

ui(y) ∈ Fq[y], deg(ui(y)) ≤ (m− i).
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By a solution r(x, y) of Rv(z),m in Rv[x, y] we will a mean a solution vector

(u0(y), u1(y), . . . , um(y))

of the linear system Rv(z),m, with r(x, y) ∈ Rv[x, y] being

r(x, y) =

m∑

i=0

ui(y)x
i ∈ Rv[x, y].

In an analogous manner we will identify solutions of Bv(z),m and Fv(z),m with bivariate

polynomials b(x, y) ∈ Bv[x, y] and f(x, y) ∈ Fq[x, y] respectively.

Properties of the linear systems for irreducible factors of v(z).

We will use Rvj(z),m to denote the projection linear system Rv(z),m onto the j-th compo-

nent:

Rvj(z),m
def
= πvj (Rv(z),m).

The projected linear systems Fvj(z),m and Bvj(z),m are defined analogously. We are now

all set to prove the fundamental property of the solution space of these linear systems.

Proposition 5.2.12. For all 1 ≤ j ≤ r:

1. The projected linear system Rvj(z),m has a non-zero solution if and only if

Deg(rvj(z)(x, y)) ≤ m.

Moreover, the gcd of all the polynomials in Rvj [x, y] corresponding to a basis of the

solution space of Rvj(z),m is precisely the polynomial rvj(z)(x, y) ∈ Rvj [x, y].

2. The projected linear system Bvj(z),m has a non-zero solution if and only if

Deg(bvj(z)(x, y)) ≤ m.

Moreover, the gcd of all the polynomials in Bvj [x, y] corresponding to a basis of the

solution space of Bvj(z),m is precisely the polynomial bvj(z)(x, y) ∈ Bvj [x, y].

3. The projected linear system Fvj(z),m has a non-zero solution if and only if

Deg(fvj(z)(x, y)) ≤ m.

Moreover, the gcd of all the polynomials in Fq[x, y] corresponding to a basis of the

solution space of Fvj(z),m is precisely the polynomial fvj(z)(x, y) ∈ Fq[x, y].
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Proof. The proofs of parts (ii) and (iii) are analogous to that of part (i) and we omit them

for the sake of brevity. To emphasize that Rvj is a field we will let K stand for it in the

rest of this proof.

Existence of solution. Let rvj(z)(x, y) = v0(y) + v1(y)x + . . . vd(y)x
d where d =

Deg(rvj(z)(x, y)). Moreover rvj (x, y), being a factor of a nice polynomial h(x, y) is itself

a nice polynomial and so Deg(vi(y)) ≤ (d− i). Now if d ≤ m then

(v0(y), v1(y), · · · , vd(y), 0, . . . , 0)

is clearly a non-zero solution of the linear system Rvj(z),m. Conversely suppose that the

system Rvj(z),m has a nontrivial solution g(x, y) with

g(x, y) :=

m∑

i=0

ui(y)x
i ∈ K[x, y]

We claim that rvj(z)(x, y) must divide g(x, y) thereby implying that m ≥ d. Let

ρ(y) := Resultantx(rvj(z)(x, y), g(x, y)) ∈ K[y]

Then deg(ρ(y)) ≤ (2n − 1)n = k. Then there exist polynomials a(x, y), b(x, y) ∈ K[x, y]

such that

ρ(y) = a(x, y)rvj(z)(x, y) + b(x, y)g(x, y) (5.6)

Substituting x := α(y) in equation (5.6), we have

ρ(y) = 0 (mod yk+1).

But deg(ρ(y)) ≤ k and hence we must have that ρ(y) is identically zero. Thus

gcdx(rvj(z)(x, y), g(x, y)) is nontrivial whence by the irreducibility of rvj(z)(x, y) we deduce

that g(x, y) is a multiple of rvj(z)(x, y) as claimed. Thus we have shown that Rvj(z),m has

a non-zero solution if and only if

Deg(rvj(z(x, y)) ≤ m

and moreover rvj(z)(x, y) divides the bivariate polynomial in K[x, y] corresponding to any

solution of Rvj(z),m.

The gcd of the basis vectors. Every solution of Rvj(z),m corresponds to a bivariate

polynomial over K in the natural way and let g(x, y) be the gcd of all the basis polynomials

which are solutions of Rvj(z),m. We must have that
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FactorRvj(z)(x, y) divides g(x, y) because it divides every polynomial in the basis of

Rvj(z),m. In the converse direction, observe that by definition, any solution of Rvj(z),m is a

K-linear combination of the basis polynomials and therefore g(x, y) divides any polynomial

in the solution space. Since rvj(z)(x, y) is a solution of Rvj(z),m, we must have that g(x, y)

divides rvj(z)(x, y). Thus rvj(z)(x, y) = g(x, y) as was to be shown.

Using Fv(z),n to compute a factor of h(x, y).

Recall that n is the degree of h(x, y) and now we set m = n and look at solutions of Fv(z),n.

Note that the linear system Fv(z),n lies over the field Fq ⊂ Rv which is common to all the

components Rvj . Since Deg(fvj(z)(x, y)) ≤ n, by Proposition 5.2.12 all the projected

linear systems Fvj(z),n have a solution. In fact, among all factors f(x, y) of h(x, y) sitting

above v(z), fv(z)(x, y) is the unique one with the minimal possible degree. By the above

proposition, we can compute it efficiently by taking the gcd of all the basis polynomials

in the solution space of Fv(z),n. We record this discussion as a corollary.

Corollary 5.2.13. Given a factor v(z) of h(z, 0) we can compute in deterministic poly-

nomial time the unique minimal degree factor f(x, y) of h(x, y) such that v(z) divides

f(z, 0).

The linear systems L such as Rv(z),m and Bv(z),m will have nontrivial solutions in a

projected component field Rvj depending on whether the projected linear system Rvj(z),m

has a nontrivial solution there or not. The next proposition shows that if L has a nontrivial

solution for some but not all the vj(z)’s, then we can use the solutions of L to factor v(z).

5.2.4 Factoring v(z) using linear systems over Rv.

Recall that v(z) is the product of r irreducible polynomials vj(z)s.

Proposition 5.2.14. Let S ⊆ {1, 2, · · · r} with the following property: the dimension over

Fq of the solution space of the projected system Lvj is non-zero if and only if j ∈ S.

Then we can compute in deterministic polynomial time the nontrivial factor (
∏

j∈S vj(z))

of v(z).

Proof. (We reproduce the following proof from Gao-Kaltofen-Lauder [GKL04].) Certainly

any solution r(x, y) of Rv(z),m will be sent under the map πvj to a solution of Rvj(z),m with
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entries in Rvj . Moreover this solution will be non-zero if and only if vj(z) does not divide

all of the coefficients in r(x, y) thought of as polynomials in Fq[z]. Conversely any solution

of Rvj(z),m with entries in Rvj can be lifted using the Chinese Remainder Theorem to a

solution for Rv(z),m with entries in Rv.

Now compute a basis over Fq for the space of solutions in Rv of the linear system

Rv(z),m. We claim that the greatest commong divisor g(z) say of v(z) and the polynomials

that occur as entries in the basis vectors (viewed as polynomials in z) is exactly
∏

j /∈S vj .

To see this, suppose j ∈ S. Then there exists some non-zero solution rj(x, y) of the

linear systemRvj(z),m which can be lifted to a non-zero solution r(x, y) of the linear system

Rv(z),m as previously described. This solution r(x, y) has the property that at least one

of the entries is not divisible by vj(z). This solution r(x, y) of Rvj(z),m must lie in the

Fq-span of the basis vectors of the solution space of Rv(z),m. Now if vj(z) divided all the

entries in the basis vectors we would have that vj(z) divides all the entries of of all vectors

in the solution space of Rv(z),m - a contradiction. Hence vj(z) does not divide g(z). Now

suppose, if possible, that j /∈ S and also that vj(z) does not divide g(z). Then vj(z) does

not divide all the entries in the basis vectors of the solution space of Rvj(z),m. Thus there

exists at least one basis element r(x, y) which projects down to a non-zero solution of

Rvj(z),m under πvj - a contradiction. Thus g(z) is as claimed.

Now one may compute the factor g(z) in deterministic polynomial time using only

a deterministic algorithm for computing the solution space over Fq of the linear system

Rv(z),m and the euclidean algorithm for greatest common divisors of univariate polynomi-

als. Moreover, this can be done efficiently in parallel.

5.3 The Algorithm.

Proposition 5.3.1. Let m ≥ 1 be a natural number and h(x, y) ∈ Fq[x, y] a nice poly-

nomial. There is a deterministic polynomial-time algorithm that given 〈Fq, h(x, y),m〉
obtains the product of all the Fq-irreducible factors of h(x, y) having degree at most m.

Proof. Let f(x, y) ∈ Fq[x, y] be the product of all Fq-irreducible factors of h(x, y) having

degree at most m. Set v(z) to be h(z, 0). We claim that the projected linear system

Bvj(z),m has a solution in Rvj if and only if vj(z) divides f(z, 0).
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(⇒) By Proposition 5.2.12, bvj(z)(x, y) ∈ Fq[x, y] which is an Fq-irreducible factor of

h(x, y) is a solution of the projected system Bvj(z),m. Moreover from the definition of the

linear system Bvj(z),m, bvj(z)(x, y) has degree at most m. Therefore bvj(z)(x, y)|f(x, y).

But vj(z)|bvj(z)(z, 0) and therefore vj(z)|f(z, 0) as required.

(⇐) Since vj(z)|f(z, 0), by the squarefree-ness of f(z, 0), there exists a unique Fq-

irreducible factor g(x, y) of f(x, y) of degree at most m such that vj(z)|g(z, 0). From

the definition of the linear system Bvj(z),m this polynomial g(x, y) is clearly a solution of

Bvj(z),m.

By Proposition 5.2.14, we can recover f(z, 0) and using this seed factor of h(z, 0) as

input to the algorithm of Proposition 5.2.13, we can compute f(x, y) in deterministic

polynomial time.

Given any polynomial h(x, y) of degree we obtain by the above algorithm a factor

f(x, y) consisting of Fq-irreducible factors of degree at most m := n
2 . Recursively repeating

this process (in parallel) on the polynomials f(x, y) and h(x,y)
f(x,y) , we obtain a distinct degree

factorization of h(x, y) in deterministic time poly(n · log q). Moreover implementing all

the fundamental linear-algebraic operations over Fq in parallel we can do this in parallel

time poly(log n · log q).

Proposition 5.3.2. Let m, d ≥ 1 be natural numbers and h(x, y) ∈ Fq[x, y] a nice

polynomial, each of whose Fq-irreducible factors has degree at most m. There is a de-

terministic polynomial-time algorithm given 〈Fq, h(x, y),m, d〉 obtains the product of all

the Fq-irreducible factors of h(x, y) having a splitting field of size at least qd.

Proof. Let f(x, y) ∈ Fq[x, y] be the product of all Fq-irreducible factors of h(x, y) having

a splitting field of size at least qd. Set v(z) to be h(z, 0) and k = m
d . We claim that the

projected linear system Rvj(z),k has a solution in Rvj if and only if vj(z) divides f(z, 0).

(⇒) By Proposition 5.2.12, rvj(z)(x, y) ∈ Rvj [x, y] which is an absolutely irreducible

factor of h(x, y) is a solution of the projected systemRvj(z),k. Moreover from the definition

of the linear system Rvj(z),k, rvj(z)(x, y) has degree at most k. Also bvj(z)(x, y) ∈ Fq[x, y] is

an Fq-irreducible factor of h(x, y) and since all Fq-irreducible factors of h(x, y) have degree

m, therefore bvj(z)(x, y) also has degree m. Now, rvj (x, y) divides bvj(z)(x, y) ∈ Fq[x, y],



79

an Fq-irreducible factor of h(x, y). By Proposition 5.2.5,

dimension of bvj(z)(x, y) = Deg(bvj(z)(x, y))/Deg(hvj(z)(x, y))

= m/Deg(hvj(z)(x, y))

≥ d

Therefore bvj(z)(x, y)|f(x, y). But vj(z)|bvj(z)(z, 0) and therefore vj(z)|f(z, 0) as re-

quired.

(⇐) Since vj(z)|f(z, 0), by the squarefree-ness of f(z, 0), there exists a unique Fq-

irreducible factor g(x, y) of f(x, y) of degree at most m such that vj(z)|g(z, 0). From

the definition of the linear system Bvj(z),m this polynomial g(x, y) is clearly a solution of

Bvj(z),m.

By Proposition 5.2.14, we can recover f(z, 0) and using this seed factor of h(z, 0) as

input to the algorithm of Proposition 5.2.13, we can compute f(x, y) in deterministic

polynomial time.

Given a h(x, y) and m as in the statement of this proposition and setting d = m
2 ,

we obtain by the above algorithm a factor f(x, y) consisting of Fq-irreducible factors

of dimension at most d := m
2 . Recursively repeating this process (in parallel) on the

polynomials f(x, y) and h(x,y)
f(x,y) , we obtain a uniform factorization of h(x, y) in deterministic

time poly(n · log q), and in parallel time poly(logn · log q).

This completes the proof of Theorem 5.1.2.

5.4 Discussion

The presentation here was complicated by the fact that we also wanted an algorithm that

was parallelizable. An easier description for a sequential deterministic algorithm achieving

the same task can be found in [Kay05]. Finally, we note that in general, the deterministic

complexity of factoring polynomials over finite fields remains an open problem and hope

that some of the ideas here can also be used to tackle that.



Chapter 6

Solvability of Polynomial

Equations over Finite Fields

Summary:

We investigate the complexity of the following polynomial solvability problem:

given a finite field Fq and a set of polynomials f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn]

of total degree at most d determine the Fq-solvability of the system f1 = f2 =

· · · = fm = 0. This problem is easily seen to be NP-complete even when the

field size q is as small as 2 and the degree of each polynomial is bounded by

d = 2. Here we investigate the deterministic complexity of this problem when

the number of variables n in the input is bounded. We show that there is a

deterministic algorithm for this problem whose running time, for any fixed n, is

bounded by a polynomial in d, m and log q.

6.1 Introduction

6.1.1 Motivation

Studying the solution set of a system of polynomial equations is one of the main preoc-

cupations of mathematics. Indeed, three of the most celebrated results of the twentieth

century pertain to the solutions of polynomial equations:

• Weil’s Theorem, also known as the Riemann Hypothesis for curves over finite

fields, which gives bounds on the number of rational points on smooth projective

curves over finite fields.

80
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• Falting’s Theorem which states that any curve over Q, the field of rational num-

bers, of genus greater than 1 has only a finite number of rational points.

• Wiles’ Theorem which states that the curve xn+yn = 1 has no nontrivial (xy 6= 0)

solution over the field of rational numbers for n ≥ 3.

This motivates the study of the corresponding computational problems - given a set

of polynomials over a field F:

• Solvability: Determine whether there exists a common zero of the polynomials.

• Counting solutions: Determine the number of common zeroes.

• Computing a solution: Compute a common zero, if it exists.

One gets different computational problems depending on whether one is looking for

common zeroes in F itself (i.e. F-rational points) or in the algebraic closure F of F.

The decidability of the solvability problem for rational points over Q is an intensively

investigated open problem (Poonen [Poo02] gives a survey). In this chapter we consider

the solvability problem for rational points over finite fields. We give a deterministic

polynomial-time algorithm for the solvability problem over finite fields when the number n

of variables in the system is bounded. Our results can be viewed as the natural algorithmic

outcome of Weil’s theorem. Indeed using Weil’s bounds, we get an algorithm with similar

complexity for the approximate counting version of the problem. We remark here that

given a set of polynomial equations over Q, the field of rational numbers, one can deduce

certain properties of the solution set by looking at the reduction of the system of equations

modulo p for various primes p and use this information to deduce global values of those

properties of the solution set over Q. For certain particularly special sets of polynomial

equations over Q, it might be sufficient to verify solvability modulo lots of primes p in

order to deduce the existence of a solution over Q. We make one such conjecture in the

chapter on open problems. In general, however, there exist polynomials which have lots

of Fp-solutions for all primes p but no solution over the rational numbers. Nevertheless,

given such a set of equations over Q, one can determine almost all the geometric properties

such as the numer of C-irreducible components, their dimension and degree of the solution

set by looking at the solution set modulo p (see Huang and Wong, [HW00] for details).

Our basic solvability algorithm can be extended in two ways to give more information

about the algebraic set X defined by the given set of polynomials over Fq. We also get

efficient deterministic algorithms for:
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• Approximating the number of Fq-points on X.

• Computing the number of irreducible components of X together with the degree and

dimension of each such irreducible component.

6.1.2 Problem Definition

Here we are interested in the computational complexity of the solvability problem over the

domain of finite fields. The most general version of the polynomial system problem is:

Problem - Existence of solution to a polynomial system (Solvability)

Input. The input is 〈Fq, f1, f2, · · · fm〉 where : (i) Fq is a finite field with q = pr being a

prime power. The finite field can be specified in the usual way by giving a prime p and

an irreducible polynomial of degree r over Fp. (ii) f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn]

are m polynomials in the n variables x1, x2, · · · , xn with coefficients coming from

the field Fq. The polynomials are specified using the dense representation. That is,

a polynomial of degree d in n variables over Fq has input size
(
d+n

d

)
· log q.

Question. Does there exist a point (a1, a2, · · · , an) ∈ Fn
q such that

fi(a1, a2, · · · , an) = 0 for all 1 ≤ i ≤ m

The general polynomial system problem is easily seen to be NP-complete even over a

field as small as F2 and even when all the polynomials in the specified system are of total

degree at most 2. This suggests that the problem becomes intractable when the number

of variables is large. We examine the complexity of this problem when the number n of

variables in the input system is bounded. Huang and Wong [HW96] give a randomized

polynomial time (ZPP) algorithm for the bounded-variable version of this problem leaving

the determintistic complexity unresolved. Our contribution to this problem is to give a

deterministic polynomial-time algorithm. Moreover, our algorithm works for arbitary

finite fields and not just prime fields.

Remark. Consider the slightly more general problem - given a finite field Fq and

polynomials f1, f2, . . . , fm and g1, g2, . . . , gl ∈ Fq[x̄] in n variables over Fq, determine if

there exists a point ā ∈ Fn
q such that

f1(ā) = . . . = fm(ā) = 0 and g1(ā) 6= 0, g2(ā) 6= 0 . . . , gl(ā) 6= 0
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Such an apparently more general problem, involving both equations and ‘inequations’

over a field is easily seen to reduce to the solvability problem via what is known as the

”‘Rabinovich trick”’ - introduce a new variable y and determine the Fq-solvability of the

following system of equations instead:

f1(x̄) = f2(x̄) = . . . = fm(x̄) = 0, y · g1(x̄) · . . . · gl(x̄) = 1

Remark. Let f(x) = g(x)
h(x) ∈ Fq(x) be a rational function over Fq with gcd(g(x), h(x)) =

1. Then f(x) induces a partial mapping Fq 7→ Fq via the map a 7→ f(a) for a ∈ Fq.

If f(x) is total and bijective then f(x) is called a permutation function over Fq. In the

special case that h(x) = 1 , so that f(x) = g(x) ∈ Fq[x], it is called a permutation

polynomial over Fq. Permutation functions have been investigated theoretically [Wil68,

Mac67, DL63, BD66, Hay67, Coh70], applied in cryptography [LM83] and the complexity

of recognizing them dealth with [Shp92, Gat91, Gat89, MG95]. Shparlinski [Shp92] gave

a deterministic superpolynomial-time algorithm for this problem while Ma and Gathen

[Gat91, MG95] gave an efficient randomized algorithm. The existence of an efficient

deterministic algorithm was open.

Now note that f(x) = g(x)
h(x) is a permutation function if and only if f(x) is total

(h(x) = 0 has no Fq-solution) and

g(x)h(y)− g(y)h(x) = 0, x 6= y

has no Fq-solution. Thus, by the remark above, recognizing permutation functions boils

down to the solvability problem in 3 variables. Our deterministic solvability algorithm

now implies an efficient deterministic algorithm for recognizing permutation functions and

thus resolves the deterministic complexity of this problem as well.

6.1.3 Our results

We summarize our main result as a theorem:

Theorem 6.1.1. There exists a deterministic algorithm which solves the decision version

of the Solvability problem on an input consisting of a finite field Fq and polynomials

f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn] of total degree bounded by d in time poly(dcn ·m · log q),

where cn is a constant that depends on n alone and is of size nO(n). Moreover, the

algorithm can be implemented parallely to get a family of P -uniform circuits of depth

poly(cn · log d · logm · log q) and size poly(dcn ·m · log q) for the solvability problem.
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The basic algorithm for solvability can be easily extended to get an approximation

algorithm of the same complexity for the counting version of the problem. More precisely,

the algorithm calculates two non-negative integers N and D, such that |#V − NqD| is

bounded by dcnqD−1/2 for some constant cn that depends on n alone, where #V denotes

the number of common Fq-solutions of the given set of polynomials.

6.1.4 The Idea

The input polynomials with coefficients from Fq describe an algebraic closed set X. Our

aim is to determine if the given closed set X over the given field Fq has any Fq-rational

point or not. The basic idea is to decompose the given closed set X into a union of (possibly

reducible) closed sets Xi, each Xi being birational to a hypersurface Yi. Now Weil’s theorem

and its generalizations [Sch74, CM03, CM04] imply the abundance of Fq-rational points

on any absolutely irreducible Fq-hypersurface. We use the partial factoring algorithm

developed in the previous chapter to determine, for each i, if any of the component Fq-

irreducible hypersurfaces of Yi is absolutely irreducible or not. If Yi happens to have an

absolutely irreducible Fq-factor, we use Weil’s theorem to deduce an abundance of rational

points on Yi and, via the birational correspondence, on Xi as well. Otherwise a rational

point on Xi, if it exists, must lie on a closed proper subset of Xi. We compute this subset

of Xi and determine the existence of a rational point on it recursively.

Comparison with previous algorithms. Our approach parallels that of Huang and

Wong ([HW99]) and it can be viewed as a deterministic modification of their algorithm.

Indeed, [HW99] remark that their method actually gives a deterministic reduction to

univariate factorization so that the only point that prevents their algorithm from being

deterministic is the lack of a deterministic polynomial time algorithm for factoring uni-

variate polynomials over finite fields. The key contribution of our work on this problem

is to observe that as far as the decision version of the problem of solvability is concerned,

we do not need to completely factor the multivariate polynomials that arise during this

computation process. In both the works, the algorithm consists of two phases: we first

decompose the algebraic closed set corresponding to the given set of equations and reduce

the problem to the case of hypersurfaces and then determine the existence of a rational

point on the hypersurface by testing for absolutely irreducibility. The difference is that in

the first phase, while their algorithm decomposes the set into Fq-irreducible components,

the output components of the first phase in our case need not be Fq-irreducible. Our
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contribution here is to observe that the operations involved and the proofs which hold for

irreducible components and their corresponding fields go through with minor modifications

when we are working with reducible algebraic sets and their corresponding rings. In the

second phase, instead of testing the absolute irreducbility of an Fq-irreducible polynomial,

our algorithm uses the output of the partial factoring algorithm developed in the previous

chapter. Moreover, they use efficiently parallelizable subroutines developed earlier by

Grigoriev, Chistov, et al in order to ensure that the algorithm is efficiently parallelizable

with respect to d and m. We give a self-contained treatment here which preserves this

parallelism while eliminating randomness. Finally, the algorithm in [HW99] works only

over prime fields while our algorithm works over all finite fields Fq, even those with a small

characteristic p. The difficulty in going from prime fields (q is prime) to general finite fields

(q is prime power) is the existence of polynomials f(x1, . . . , xn) ∈ Fq[x1, . . . , xn] of degree

d≪ q which are squarefree and yet not separable. For example, f(x1, x2) = xp
2−x1 viewed

as a univariate polynomial in x2 over the function field F
def
= Fq(x1) is squarefree and yet

has repeated roots in the algebraic closure of F. We overcome this difficulty by observing

that a random linear transformation σ ∈ Fn×n
q on the variables transforms a square-free

non-separable polynomial f(x̄) to a separable polynomial in xn. We then replace f(x̄) by

σ(f(x̄)) in our computations and work with this transformed polynomial instead.

We flesh out this basic idea in more detail in a later section, after introducing the

appropriate terminology and proving some basic facts.

6.2 Basic Algebraic Geometry with Examples

In this section we give a very quick overview of some basic facts from algebraic geometry

and introduce the terminology to be used. For proofs see any basic text in algebraic

geometry such as Shafarevich [Sha94]. We then give some representative examples.

Algebraic Closed Sets. Let F be a field. The algebraic closure of F will be denoted

by F. A closed algebraic set over F is a subset X of F
n

consisting of all common zeroes of

a finite number of polynomials in n variables with coefficients in F. When the field F is

understood from context we will simply refer to X as a closed algebraic set or just a closed

set. A F-rational point of X is a point P ∈ X all of whose coordinates are in F.

We shall write f(x̄) to denote a polynomial in n variables, allowing x̄ to stand for

the n-tuple of variables (x1, x2, . . . , xn). If a closed set X consists of all common zeroes of

polynomials f1(x̄), . . . , fm(x̄), then we refer to f1(x̄) = · · · = fm(x̄) = 0 as the equations
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of the set X. We say that X is a hypersurface when it is specified by a single equation

(m = 1). Observe that a point P = (a1, . . . , an) ∈ F
n

belongs to the closed algebraic set X

if and only if for all i ∈ [m], fi(x1 + a1, . . . , xn + an) has no constant term. P ∈ X is said

to be a singular point of X iff for all i ∈ [m], fi(x1 + a1, . . . , xn + an) has no constant as

well as no linear terms. We will say that a closed set Y is a singular closed subset of X iff

every point P ∈ Y is a singular point.

A closed algebraic set X is said to be reducible if there exist proper closed subsets

X1, X2 ( X such that X = X1 ∪ X2. Otherwise X is irreducible. An irreducible algebraic

closed set X is also referred to as a variety.

It is a fundamental theorem in algebraic geometry that any closed agebraic set X is a

finite union of irreducible algebraically closed sets. Now if X =
⋃
Xi is an expression of X

as a finite union of irreducible closed sets, and if Xi ⊆ Xj then we can delete Xi from the

representation. Repeating this several times, we arrive at a representation X =
⋃
Xi in

which no Xi is a subset of any Xj . We say that such a representation is irredundant, and

the Xi are the irreducible components of X. Such a representation of X as an irredundant

union of a finite number of irreducible algebraic sets is unique.

Let X ⊆ F
n

be an irreducible algebraic closed set (variety) residing in an ambient

space of dimension n. Suppose that the minimum possible number of equations required

to completely describe X is m. Then the dimension of X, denoted ℓX, is the number

(n − m). The varieties contained in an arbitary algebraic closed set are in general of

varying dimensions. When all the varieties in a closed set have the same dimension, we

will refer to it as a uniform-dimensional algebraic closed set.

Correspondence between rings and algebraic sets. Corresponding to the given

closed set X there is a ring RX obtained by quotienting the polynomial ring Fq[x̄] with the

ideal generated by the polynomials which are equations of X. That is, if X is the set of

common zeroes of the polynomials f1(x̄), . . . , fm(x̄) ∈ Fq[x̄] the ring RX corresponding to

X is

RX

def
= Fq[x̄]/〈f1(x̄), · · · , fm(x̄)〉.

The elements of RX can be thought of as functions from X to Fq, this set of functions itself

being endowed with a ring structure. The homomorphisms from RX to Fq then correspond

to the Fq-rational points on X. Indeed, ā = (a1, . . . , an) ∈ Fn
q is an Fq-rational point on X

if and only if the map

φ : RX 7→ Fq, φ : xi 7→ ai ∀1 ≤ i ≤ n
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is a homomorphism from RX to Fq.

In this way the ring RX captures the algebraic set X and the structure of the ring

RX corresponds to the structure of X. In particular, X is Fq-irreducible if and only if RX

is indecomposable. X is absolutely irreducible (or Fq-irreducible) if and only if the ring

RX

def
= Fq[x̄]/〈f1(x̄), · · · , fm(x̄)〉 is indecomposable. In this chapter all the rings R that we

will come across will be of the above form (a polynomial ring over Fq quotiented by some

ideal I). We will refer to the closed algebraic set corresponding to the ideal I as the closed

set of R. We will denote by RX the ring corresponding to the closed set X and by XR the

algebraic set corresponding to the ring R. We will denote by Rfr
X

the ring of fractions of

RX.

Rational maps between algebraic sets. A map of the form

y1 = ψ1(x1, x2, . . . , xn)

y2 = ψ2(x1, x2, . . . , xn)

...

ym = ψm(x1, x2, . . . , xn),

where the ψi = G(x1,...,xn)
H(x1,...,xn) are ratios of polynomials in the xj is referred to as a rational

map. In general, a rational map may be thought of as a function that transforms some

set of points X in [x1, . . . , xn]-space to a set of points Y in [y1, . . . , ym]-space. Note that

the denominators are polynomials and can have zeroes. Thus the map may not be defined

at all points. We denote this map by ψ : X 7→ Y. Note that for algebraic sets X and Y,

ψ maps points on X to points on Y if and only if the map yi 7→ ψi(x1, . . . , xn) ∀i ∈ [m]

is a homomorphism from Rfr
Y

to Rfr
X

. We will denote this ring homomorphism also by ψ

itself.

A rational map ψ : X 7→ Y is called birational if it admits an inverse. That is, there

exists a rational map φ : Y 7→ X such that ψ(X) has the same dimension as Y, φ(Y) has the

same dimension as X, ψ · φ = 1 almost everywhere, and φ · ψ = 1 almost everywhere. In

terms of the corresponding rings, it means that (φ ·ψ) : Rfr
Y
7→ Rfr

Y
is the identity map on

Rfr
Y

and (ψ · φ) : Rfr
X
7→ Rfr

X
is the identity map on Rfr

X
.

Two algebraic closed sets X and Y are said to be birationally equivalent or birational if

there exists a birational map between X and Y.

A classical theorem from algebraic geometry states that ‘Any algebraic variety X is

birational to a hypersurface Y of the appropriate dimension’. This theorem is a direct
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consequence of the well-known theorem in algebra that every finite-dimensional field

extension K of some base field F is generated by some element γ ∈ K (i.e. K = F(γ)) .

Moreover it can be arranged that the map ψ : X 7→ Y is just a linear map. That is, each

unknown yj of Y is expressed as a linear combination of the variables xi of X. The degree of

the variety X is then defined to be the degree of the hypersurface Y birationally equivalent

to X.

6.2.1 Examples

Example: The algebraic set X defined by the polynomials

f1(x, y, z) = (x+ y + z)(x+ 2y + z)

and f2(x, y, z) = (x− y)(x+ y − z)

is the irredundant union of four lines -

line L1 :(x+ y + z) = (x− y) = 0,

line L2 :(x+ y + z) = (x+ y − z) = 0,

line L3 :(x+ 2y + z) = (x− y) = 0,

and line L4 :(x+ 2y + z) = (x+ y − z) = 0.

Generalization. In general, for polynomials f1(x̄), . . . , fm(x̄) ∈ F[x1, . . . , xn] where

each polynomial fi(x̄) is the product of di linear polynomials in general position, the

corresponding algebraic set defined by these polynomials is the irredundant union of

(
∏m

i=1 di) hyperlines of dimension (n−m).

Example: The algebraic set X defined by the polynomials

f1(x, y, z) = (x− y)(x+ y + z)(x+ 2y + z)

and f2(x, y, z) = (x− y)(x+ y − z)

is the irredundant union of a plane

plane P1 :(x− y) = 0

and two lines

line L1 :(x+ y + z) = (x+ y − z) = 0

and line L2 :(x+ 2y + z) = (x+ y − z) = 0.
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Generalization. We can generalize this example a little. Suppose that X is an algebraic

set defined by the polynomials

f1(x, y, z) = f2(x, y, z) = 0,

where both f1 and f2 are products of linear polynomials. Moreover, suppose that

Deg(f1) = d1, Deg(f2) = d2 and Deg(gcd(f1, f2)) = d. Then the closed set X is the

irredundant union of d planes and (d1 − d) · (d2 − d) lines.

Example: The algebraic closed set X in 3 variables x1, x2, x3 defined by the equations

x2
1 − x3 = x2

2 − (x3 + 1) = 0

is an irreducible one-dimensional closed set birational to the planar curve Y

y4 − 2(2x+ 1)y2 + 1 = 0

via the map

ψ : X 7→ Y, ψ : (x1, x2, x3) 7→ (x3, x1 + x2)

The inverse map φ is given by

φ : Y 7→ X, φ : (x, y) 7→ ((
1

2
)(y3 − (4x+ 1)y), (−1

2
)(y3 − (4x+ 3)y), x).

In this example both ψ and φ happen to be well-defined everywhere.

Generalization. More generally: Suppose that X is an algebraic closed set in (n + 1)

variables x1, x2, . . . , xn+1 with defining equations

x2
1 − (xn+1 + a1) = x2

2 − (xn+1 + a2) = . . . = x2
n − (xn+1 + an) = 0.

Suppose further that the ai’s are all distinct. Then the closed set X is irreducible and

birational to a planar curve of degree 2n.

Further Generalization. Now suppose that X is an algebraic closed set in (n + 1)

variables x1, x2, . . . , xn+1 with defining equations f1(x̄) = . . . = fn(x̄) = 0 where each

fi(x̄), 1 ≤ i ≤ n is of the form:

fi(x1, . . . , xn, xn+1) =
d∏

j=1

(x2
i − (xn+1 + aij)).

Suppose further that the aij ’s are all distinct. Then the closed set X is a union of dn

irreducible closed sets, each irreducible component being birational to a planar curve of

degree 2n.
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Example: We now give an example of a reducible one-dimensioal closed set X being bira-

tional to a (reducible) planar curve. Suppose that f1(y), f2(y), g1(y), g2(y) are univariate

polynomials. The algebraic closed set X in [x1, x2, y]-space defined by the equations:

(x1 − f1(y))(x1 − f2(y)) = (x2 − g1(y))(x2 − g2(y)) = 0

is reducible and is the union of four irreducible one-dimensional closed sets. X is birational

to the planar curve Y in [z, y]-space defined by the equation:

(z − f1(y)− g1(y))(z − f1(y)− g2(y))(z − f2(y)− g1(y))(z − f2(y)− g2(y)) = 0

via the map

ψ : X 7→ Y, ψ : (x1, x2, y) 7→ (x1 + x2, y).

The inverse map φ is given by

φ : Y 7→ X, φ : (z, y) 7→ (B1(z, y), B2(z, y), y)

with B1(z, y)
def
= A11f1(y) +A12f1(y) +A21f2(y) +A22f2(y)

and B2(z, y)
def
= A11g1(y) +A12g2(y) +A21g1(y) +A22g2(y),

where the coefficient polynomial Aij ’s are defined as follows. For 1 ≤ i, j ≤ 2 define the

polynomial hij(u, y) as

hij(u, y)
def
=

g(u, y)

(u− fi(y)− gj(y))
.

Then for 1 ≤ i, j ≤ 2 the coefficent polynomial Aij is

Aij
def
=

hij(z, y)

hij(fi(y) + gj(y), y)
.

6.2.2 Notation

• For an ideal I ⊆ Fq[x̄], we will denote by Rad(I) the radical (square-free part) of

the ideal I defined as

Rad(I)
def
= {f(x̄) ∈ Fq[x̄] | f(x̄)m ∈ I for some m ≥ 1}.

• By the term total degree of a rational function ψ(x̄) = F (x̄)
G(x̄) ∈ F(x̄), we will mean

the sum of the total degrees of the numerator and the denominator. We denote it

by Deg(ψ). That is,

Deg(ψ)
def
= Deg(F (x̄)) + Deg(G(x̄))
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6.3 Algorithm Description

6.3.1 Overview

In this section we describe in words the proposed algorithm. Our aim is to determine if

a given algebraic closed set X over a given field Fq has any Fq-rational point or not. (The

set X is specified to us by means of polynomial equations with coefficients from Fq). The

basic idea is to decompose the given closed set X into a union of (possibly reducible) closed

sets Xi, each Xi being birational to a hypersurface Yi of the appropriate dimension. We

then use the partial factoring algorithm developed in the previous chapter to determine,

for each i, the existence of an Fq-rational point on the set Xi.

We flesh out this basic idea in more detail through the rest of this section. We first

describe precisely the output of the (deterministic) decomposition algorithm and show how

to use our partial factoring algorithm for determining the existence of a rational point on

the components of the decomposition. We then describe the decomposition algorithm

itself in more detail. Finally, we remark how to improve the parallel time-complexity of

the algorithm.

6.3.2 The output of the decomposition and rational points on hypersur-

faces

Input: A finite field Fq and a set of polynomials f1, . . . , fm ∈ Fq[x1, . . . , xn] of
total degree at most d.

Output: True if ∃ an Fq-solution to the system f1 = . . . = fm = 0, False

otherwise.

begin1

let cn := 2n
2

if q ≤ 105n3d10cn then3

Check if any of the qn points in Fn
q is a common solution to the given4

equations and return accordingly.

Let Y be the hypersurface defined by g(y1, . . . , yn) := Rad(f1(y1, . . . , yn)), ψ be5

the trivial map ∀i ∈ [n], ψ : yi 7→ xi and φ be its inverse. Let X ⊂ F
n
q be

X := 〈(n− 1), Y, ψ, φ〉
return Solvability(X, f2(x̄), . . . , fm(x̄)).6

end7

Algorithm 1: SolvabilityMain : Determine the existence of an Fq-rational point.
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Input: A finite field Fq, a component X ⊂ F
n
q and a set of polynomials

f1, . . . , fm ∈ Fq[x1, . . . , xn].
Output: True if ∃ an Fq-rational point ā ∈ Fn

q which satisfies ā ∈ X and
f1(ā) = . . . = fm(ā) = 0. False otherwise.

begin1

Call Decompose(X, f1(x̄), . . . , fm(x̄) ) to obtain a list (X1, . . . , Xt) of2

subcomponents of X.

foreach component Xi := 〈ℓ, Yi, ψ, φ〉 do3

Let the equation of Yi be g(y1, . . . , yℓ+1) = 04

if g(ȳ) has any absolutely irreducible Fq-factor then return True5

else6

for j ← 1 to (ℓ+ 1) do7

Compute hj(x̄) := ψ(∂g(ȳ)
∂yj

) ∈ Fq[x1, . . . , xn].8

Then the closed set X′i ( Xi,9

X
′
i

def
= Xi ∩




ℓ+1⋂

j=1

{ā ∈ F
n
q |hj(ā) = 0}


 ,

consists of points P ∈ Xi such that ψ(P) ∈ Yi is a singular point.
Recursively determine existence of Fq-rational point on X

′
i by calling

Solvability(Xi, h1(x̄), . . . , hℓ+1(x̄) )

if X
′
i contains a rational point then return True10

return False11

end12

Algorithm 2: Solvability : Determine the existence of an Fq-rational point.
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The number of variables is n. We will denote by cn a constant that depends on n alone

and is of size 2O(n). Our algorithm is interesting only for large values of q; for if the size q

of the given field is small (q = O(poly(dcn) )), we simply do a brute force search over all

possible Fq-rational points (qn many of them) and check if any of them belongs to X. In

what follows we shall assume that q is large (q ≫ dcn).

We break the given algebraic set X into a union of uniform-dimensional algebraic sets

Xi: X =
⋃
Xi. These Xi’s we call the components of X. We represent a component Xi of X

by a four-tuple 〈ℓ, Yi, ψ, φ〉. where:

• ℓ is the dimension of Xi and of Yi,

• Yi is a hypersurface with equation g(y1, . . . , yℓ+1) = 0 for some squarefree g(ȳ) ∈
Fq[ȳ].

• ψ : Xi 7→ Yi is a rational map,

• and φ : Yi 7→ Xi is the inverse rational map of ψ.

Note that now X contains a Fq-rational point if and only if some Xi contains a Fq-rational

point. This computation of the decomposition of X satisfies the following properties:

P-i). Neither Xi nor Yi contains any singular (repeated) varieties.

P-ii). The map ψ : Xi 7→ Yi is an Fq-rational map and so is φ : Yi 7→ Xi. That is the

coefficients of all the rational functions occuring in ψ and φ are from Fq. In particular

this means that Fq-rational points on Xi get mapped to Fq-rational points on Yi and

vice-versa.

P-iii). The map ψ : Xi 7→ Yi is well-defined on all points of Xi. This happens because the

corresponding ring homomorphism ψ : Rfr
Yi
7→ Rfr

Xi
is actually a linear map, mapping

each generator yi of RYi to a linear combination of the generators xj ’s in RXi .

P-iv). On the other hand, the map φ : Yi 7→ Xi is well-defined everywhere except possibly

at the singular points of Yi.

These properties ensure that if there is a Fq-rational point on Xi then there is one on

Yi as well. In the other direction, if there is no Fq-rational point on Yi and there is also

no singular point on Yi then Xi does not contain any Fq-rational point as well.
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Now consider one such algebraic closed set Yi of dimension ℓ. Let the equation of Yi

be

g(y1, y2, . . . , yl, yℓ+1) = 0.

We first handle the zero-dimensional case ( ℓ = 0 ). In this case the components of Yi are

simply individual points. Moreover, by the second property, there are no singular points

on Yi. Thus, in this case Xi has a rational point if and only if the univariate g(y1) = 0 has

an Fq-root, or equivalently, if and only if g(y1) has an absolutely irreducible Fq-factor (see

the remark at the end of the defintion of absolute irreducibility 5.1.1).

Now consider the case when ℓ ≥ 1. We use the partial factoring algorithm described

in the previous chapter to determine if g(ȳ) ∈ Fq[ȳ] contains any absolutely irreducible

factors or not. If g(ȳ) does have an absolutely irreducible Fq-factor, then from Weil’s

theorem we can deduce that there does exist an Fq-rational point on Yi. Indeed, Weil’s

theorem says that any absolutely irreducible polynomial contains a lot of (Θ(qℓ), provided

q is large enough in comparison to the degree of the polynomial) rational points. Thus if

g(ȳ) has an absolutely irreducible Fq-factor g1(ȳ) then the hypersurface g1(ȳ) = 0 has a

lot of Fq-rational points. Moreover, most of these points are non-singular. There is also a

partial converse to Weil’s theorem: if g(ȳ) = 0 has no absolutely irreducible factors then

any rational point on g(ȳ) = 0, if it exists, is a singular point.

Thus if g(ȳ) has an absolutely irreducible factor we deduce that Xi, and hence X,

contains a Fq-rational point and we stop. Otherwise any rational point on Xi, if it exists,

must map to a singular point on Yi under ψ. Now the set of points on Xi that can map to

a singular point on Yi under ψ is a closed algebraic subset of Xi of dimension strictly less

than ℓ. We compute the equations of this subset and then repeat the process to determine

if this smaller dimensional set has a rational point or not. This process continues until

the Xi’s that we get are zero-dimensional.

6.3.3 Description of the decomposition algorithm.

The most general form of the algebraic set decomposition problem is the following -

Algebraic Set Decomposition Problem. Consider a set of polynomials

f1(x̄), . . . , fm(x̄) ∈ Fq[x̄] of total degree d in n variables over the finite field Fq.

Decompose the algebraic set defined by

f1(x̄) = f2(x̄) = . . . = fm(x̄) = 0
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into Fq-irreducible components, representing each of them by a birational

hypersurface over Fq, together with a map from the component to the hyper-

surface and an inverse rational map from the hypersurface to the component.

Lacking an efficient algorithm for completely factoring univariate polynomials, we

cannot solve this most general form of the decomposition problem. We do solve this

problem partially and as we shall see, this partial solution is good enough for deciding

solvability.

Input: A finite field Fq, an algebraic closed set X over Fq, and polynomials
f1, . . . , fm ∈ Fq[x1, . . . , xn] .

Output: A list 〈X1, . . . , Xt〉 of (possibly reducible) components of the closed set
X ∩

(⋂m
i=1{ā ∈ F

n
q |fi(ā) = 0}

)
.

begin1

Initialize a list L with the single component X.2

for i← 1 to m do3

Initialize L′ to be the empty list.4

forall X̂ := 〈ℓ, Y, ψ, φ〉 in the list L do5

6

Let F
def
= Fq(y1, . . . , yℓ), Rfr

Y
:= F[yℓ+1]/〈g(y1, . . . , yℓ+1)〉,

fφ
i (y1, . . . , yℓ+1) := φ(fi(x1, . . . , xn)) =

h1(y1, . . . , yℓ+1)

h2(y1, . . . , yℓ)
∈ Rfr

Y

where h1 and h2 are polynomials in the yj ’s.

We now have two hypersurfaces g(ȳ) = 0 and h1(ȳ) = 0 in the ambient7

[y1, . . . , yℓ+1]-space. Compute the intersection of these two hypersurfaces
and obtain two components Ŷ1 := 〈ℓ, Z1, ψ1, φ1〉 and
Ŷ2 := 〈ℓ− 1, Z2, ψ2, φ2〉.
if Ŷ1 6= ∅ then8

add the component X̂1 := 〈ℓ, Z1, ψ1 ◦ ψ, φ ◦ φ1〉 to L′.9

if Ŷ2 6= ∅ then10

add the component X̂2 := 〈ℓ− 1, Z2, ψ2 ◦ ψ, φ ◦ φ2〉 to L′.11

L← L′12

Output the list L13

end14

Algorithm 3: Decompose - Compute the decomposition of an algebraic set.
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Input: A finite field Fq and two ℓ-dimensional hypersurfaces
Y1 : g1(y1, . . . , yℓ+1) = 0 and Y2 : g2(y1, . . . , yℓ+1) = 0.

Output: The decomposition of (Y1 ∩ Y2) as the union of two component closed
subsets Ŷ1 := 〈ℓ, Z1, ψ1, φ1〉 and Ŷ2 := 〈ℓ− 1, Z2, ψ2, φ2〉.

begin1

g1(ȳ) ← Rad(g1(ȳ)), g2(ȳ) ← Rad(g2(ȳ))2

By making a suitable linear transformation σ on the variables y1, . . . yℓ+1,3

ensure that both σ(g1(ȳ)) and σ(g2(ȳ)) are monic and seperable polynomials
with respect to yℓ+1.

4

Let F
def
= Fq(y1, . . . , yℓ−1), R := F(yℓ)[yℓ+1]/〈σ(g1(ȳ)), σ(g2(ȳ))〉.

Compute5

h(ȳ) := gcd(σ(g1(ȳ)), σ(g2(ȳ))), h1(ȳ) :=
σ(g1(ȳ))

h(ȳ)
, h2(ȳ) :=

σ(g2(ȳ))

h(ȳ)
.

Note that h(ȳ), h1(ȳ), h2(ȳ) ∈ Fq[ȳ] are all monic polynomials in yℓ+1. The ring
R then decomposes into the direct sum of two rings:

R =
(
R1

def
= F(yℓ)[yℓ+1]/〈h(ȳ)〉

)
⊕

(
R2

def
= F[yℓ, yℓ+1]/Rad(〈h1(ȳ), h2(ȳ)〉)

)

Let π1 : R 7→ R1 and π2 : R 7→ R2 be the projection maps. Also let ρ1 : R1 7→ R
and ρ2 : R2 7→ R be the natural inclusion maps.

if Deg(h(ȳ)) = 0 then Ŷ1
def
= ∅ else6

Ŷ1
def
= 〈ℓ, Z1 := {ā ∈ F

ℓ+1
q | h(ā) = 0}, σ−1 · ρ1, π1 · σ〉7

Viewing R2 as an algebra over F, use the primitive element theorem to obtain a8

ring Rfr
Z

:= F[z]/〈g̃(z)〉 such that φ : R2 7→ Rfr
Z

is an isomorphism with inverse

ψ. Here Z := {ā ∈ F
ℓ
q | g̃(ā) = 0} is the algebraic closed set corresponding to

Rfr
Z

.

if Z = ∅ then Ŷ2 = ∅ else Ŷ2
def
= 〈ℓ− 1, Z, σ−1 · ρ2 · ψ, φ · π2 · σ〉9

return 〈Ŷ1, Ŷ2〉.10

end11

Function Intersect - Compute the intersection of two hypersurfaces.
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We now delve a little deeper and describe in more detail the process of computing the

components together with their birationally equivalent hypersurfaces.

Let X[i] be the closed set defined by the first i equations:

f1(x̄) = f2(x̄) = . . . = fi(x̄) = 0.

Corresponding to the closed set X[i] we have the ring

R
[i]
X

:= Fq[x̄]/〈f1(x̄), . . . , fi(x̄)〉.

Starting with i = 1, our algorithm successively computes the decomposition of X
[i] for

i = 2, 3, . . . ,m until we get the decomposition of X[m] = X. Our algorithm ensures that

at each stage the components that we get are all ‘square-free’, i.e. each variety in the

component occurs with multiplicity 1.

In order to get the decomposition of the closed set X[i+1] from that of X[i], we compute

the intersection of each component of X[i] with the hypersurface Z defined by fi+1(x̄) = 0.

Consider one such component X̂ of X[i], of dimension ℓ. Then X̂ ∩ Z is the union of two

components X̂1 and X̂2. X̂1 is the union of those ℓ-dimensional varieties in X̂ that are a

subset of Z. Each of the remaining varieties in X̂− X̂1 give a collection of (ℓ−1)-dimensional

varieties upon intersection with Z, the union of which is the set X̂2. In this way intersecting

a component of X[i] with the hypersurface fi+1(x̄) = 0 gives, in general, two components

of X[i+1]. Continuing in this manner we get the decomposition of X = X
[m]. It remains for

us to describe how to compute the intersection of a component with a hypersurface.

Computing the intersection of a component X̂ := 〈ℓ, Y, ψ, φ〉 with a hyper-

surface fi(x̄) = 0. The component X̂ is birational to a ℓ-dimensional hypersurface Y

with defining equation g(y1, . . . , yℓ+1) = 0. We ‘project’ the constraint fi(x̄) = 0 into the

ambient [y1, . . . , yℓ+1]-space of Y by using the map φ : Rfr

X̂
7→ Rfr

Y
. Thus the problem now

boils down to computing the intersection of two hypersurfaces g1(ȳ) := g(ȳ) and g2(ȳ) :=

φ(fi(x̄)). After some initial preprocessing, we compute h(ȳ) = gcd(g1(ȳ), g2(ȳ)) and this

captures all the varieties common to both g1(ȳ) = 0 and g2(ȳ) = 0. The hypersurface

h(ȳ) = 0 then gives us the representation of X̂1. After removing these common varieties

from both g1(ȳ) = 0 and g2(ȳ) = 0, our problem boils down to computing an (ℓ − 1)-

dimensional hypersurface birational to the intersection of two ‘disjoint’ ℓ-dimensional

hypersurfaces. We solve this problem by using the primitive element theorem as described

in the next section and upon composing the relevant maps we obtain a hypersurface-

representation of X̂2 as well.
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In summary, we obtain the decomposition of the given set by introducing the con-

straints one by one and at each stage computing the intersection of every component with

the newly introduced constraint. This completes the description of the sequential version

of our algorithm.

Time complexity of the algorithm.

The computation of the decomposition of the given algebraic set X can be viewed in terms

of a binary tree of depthm where the nodes at depth i correspond to the components in the

decomposition of the closed set X
[i]. We will observe that the degree of any hypersurface

is bounded by dcn . Also, the total degree of every rational function that occurs in the

map from the given set X to the hypersurfaces that occur during the computation process

is also bounded by dcn . From this it follows that the total number of Fq-field operations

that we require is poly(dcn · km) where km is the number of components output by the

decomposition algorithm. Finally, km is itself upper-bounded by dcn thereby implying an

overall time complexity of poly(dcn ·m) field operations over Fq. Note that both the degree

and the number of components of X are bounded by dcn , a quantity that, remarkably, is

independent of m.

Parallelizing the algorithm.

Consider once again the binary tree corresponding to the computation of the decomposition

algorithm as mentioned in the previous section.

The fundamental operations involved in the decomposition algorithm are computing

the gcd of two polynomials, solving a set of linear equations and computing the char-

acteristic polynomial of a matrix. All of these are all well-studied operations known to

be efficiently parallelizable. Thus, by doing an efficient parallel implementation of these

fundamental operations and a parallel traversal of the aforementioned computation tree,

we get a parallel time complexity of poly(cn ·log d·m·log q). To make the dependence poly-

logarithmic in m also we need one more idea. The idea is simply to divide the given set

of m equations into two sets of size m
2 , compute the decomposition of the closed algebraic

set induced by each set of equations recursively in parallel and then take the intersection

of each pair of components to get the decomposition of the original algebraic set X. Let X̂

be the algebraic closed set corresponding to the equations

f1(x̄) = f2(x̄) = . . . = fm
2
(x̄) = 0
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and X̃ be the algebraic closed set corresponding to the rest of the equations

fm
2

+1(x̄) = fm
2

+1(x̄) = . . . = fm(x̄) = 0.

We recursively compute the decomposition of X̂ and X̃ in parallel. Let X̂ =
⋃

i X̂i and

X̃ =
⋃

j X̃j be the decomposition of X̂ and X̃ respectively. Then the decomposition of X

is given simply by X =
⋃

i,j(X̂i ∩ X̃j). The intersection of every pair of sets X̂i and X̃j is

computed again in parallel and computing one such intersection again involves elementary

linear algebraic operations which are also efficiently parallelized. Overall, this gives a

parallel time complexity of poly(cn · log d · logm · log q).

6.3.4 The Primitive Element Theorem

We now come to the main technical section of our algorithm - computing the intersection

of two hypersurfaces. In this subsection we give a very constructive version of the well

known primitive element theorem (cf. Lang [Lan94]), along with explicit bounds on the

sizes of the involved quantities, as required for our purposes.

Consider polynomials

f1(z1, . . . , zn, x) ∈ Fq[z1, . . . , zn, x, y] and f2(z1, . . . , zn, y) ∈ Fq[z1, . . . , zn, x, y].

Let f1(z̄, x) and f2(z̄, y) be squarefree polynomials of total degree d1 and d2 respectively

over Fq. Moreover, suppose that f1(z̄, x) is monic and separable with respect to the

variable x while f2(z̄, y) is monic and separable with respect to the variable y.

Remark. If f1 and f2 are not monic and separable then a random linear transformation

σ on the variables makes them monic and separable so that in this case we apply the

appropriate linear transform on the variables and work with these new polynomials instead.

See [Kal82] for a proof of the bivariate case. The proof of the general case in n variables

is an easy generalization of the bivariate case. Moreover, when the number of variables is

bounded such a transformation σ can be computed efficiently [Kal82].

Let F be the rational function field F
def
= Fq(z1, . . . , zn). Let R be the ring

F[x, y]/〈f1(x), f2(y)〉. Thus R is an algebra of dimension d1 · d2 over the field F with

basis

B1
def
= {xiyj | 0 ≤ i < d1, 0 ≤ j < d2}.
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We want to express R as a ring of the form F[z]/〈g(z)〉. We will see that choosing g(z)

to be the minimal polynomial of some element α ∈ R of the form α = x+ ty with t ∈ Fq

works for us.

Suppose that in the algebraic closure F of F, f1 and f2 factor as:

f1(x) =

d1∏

i=1

(x− αi),

f2(y) =

d2∏

j=1

(x− βj).

By the squarefreeness and separability of f1 the αi’s are all distinct. Similarly the βj ’s are

all distinct.

Now for some t ∈ Fq, consider the element α ∈ R defined as α
def
= (x + ty). Then the

characteristic polynomial of α over F is

g(z)
def
= charpolyα/F(z) =

d1∏

i=1

d2∏

j=1

(z − (αi + tβj)).

Let A ⊂ F be the set

A
def
= {(αi1 − αi2)/(βj1 − βj2) | i1, i2 ∈ [d1], j1 6= j2 ∈ [d2]}.

Then for t /∈ A, the roots of g(z) are all distinct. Fix any such t /∈ A. Then since the

characteristic polynomial g(z) of α is squarefree and separable, it is in fact also the minimal

polynomial of α. Therefore R = F(α) = F[z]/〈g(z)〉. Choosing any t ∈ (Fq \ A) gives a

suitable α. Note that | A |< d2
1d

2
2 and therefore there are at least | (Fq \ A) |≥ (q − d2

1d
2
2)

suitable choices of t.

We now adopt a slightly different viewpoint of the above matter. The discussion

above explicitly exhibits an isomorphism ψ from the ring R1
def
= F[z]/〈g(z)〉 to the ring

R
def
= F[x, y]/〈f1(x), f2(y)〉 given by ψ : z 7→ (x+ty), where g(z̄, z) ∈ Fq[z̄, z] is the minpoly

of the element (x + ty) ∈ R. Let φ : R 7→ R1 be the inverse of ψ. Clearly then φ can

be viewed as a map from the set of points Y on g(z̄, z) = 0 to the set of points X on

f1(z̄, x) = f2(z̄, y) = 0. ψ then maps the points on X to points on Y and by the linear

nature of the map, ψ is well-defined everywhere.

We now investigate the well-definedness of φ as a map from points in Y to points in

X. For P = (z̄, z) let φ(P ) = (z̄, φ1(P ), φ2(P )). Over the algebraic closure F of F, we
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can obtain an explicit expression for φ1 as a polynomial in z. Indeed this expression is

remniscient of polynomial interpolation for the following reason. If x = φ1(z) ∈ F[z] is the

expression for x in terms of z then we want it to satisfy φ1(αi + tβj) = αi for all i ∈ [d1]

and j ∈ [d2]. Let gij(z)
def
= g(z)

z−(αi+tβj)
∈ F[z]. Its easy to verify that

φ1(z) :=
∑

i,j

gij(z)

gij(αi + tβj)
αi

works. It turns out the rhs of the above equation is actually in F[z] itself. From the above

expression, we can deduce that φ1(P ) is well defined for all non-singular points P on Y.

Similarly, it can be shown that φ2(P ) is also well-defined for all non-singular points P on

Y.

Let us summarize the above discussion far as a theorem.

Proposition 6.3.1. (Primitive Element Theorem.) Let Fq be a finite field. Let

f1(z1, . . . , zn, x) ∈ Fq[z1, . . . , zn, x, y] and f2(z1, . . . , zn, y) ∈ Fq[z1, . . . , zn, x, y] be square-

free polynomials of degree d1 and d2 respectively over Fq. Moreover, f1(z̄, x) is monic and

separable with respect to the variable x while f2(z̄, y) is monic and separable with respect

to the variable y. Let F be the rational function field F
def
= Fq(z1, . . . , zn). Let R be the ring

F[x, y]/〈f1(x), f2(y)〉. Thus R is an algebra of dimension d1 · d2 over the field F. Then R

is isomophic to the ring R1 := F[z]/〈g(z)〉, where g(z) ∈ Fq[z1, . . . , zn, z] is a polynomial

of degree (d1 · d2) and is monic in z. The map ψ : R1 7→ R, ψ : z 7→ (x + ty) for some

t ∈ Fq is a ring isomorphism. Let φ : R 7→ R1 be the inverse of ψ. Then φ maps points on

the closed set of g(z̄, z) = 0 to points on the closed set of f1(z̄, x) = f2(z̄, y) = 0 in such a

way that it is well-defined on all non-singular points on g(z̄, z) = 0.

Moreover the ring R1 together with the maps ψ and φ can be constructed in determin-

istic polynomial time (i.e. time polynomial in the size of the input and output).

6.3.5 Intersection of two hypersurfaces.

Now suppose that we are given two (n+ 1)-dimensional hypersurfaces

f1(z1, . . . , zn, x, y) = 0 and f2(z1, . . . , zn, x, y) = 0

over the field Fq. Moreover assume that f1 and f2 have no common varieties, i.e. the

polynomials f1(z̄, x, y) and f2(z̄, x, y) are coprime. We want to compute an n-dimensional

hypersurface g(z̄, z) = 0 birational to their intersection

f1(z̄, x, y) = f2(z̄, x, y) = 0.
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Equivalently, we want to compute a ring R1 of the form

R1 = Fq(z̄)[z]/〈g(z)〉

that is Fq(z̄)-isomorphic to the given ring

R = Fq(z̄)[x, y]/Rad(〈f1(z̄, x, y), f2(z̄, x, y)〉).

We do this as follows:

1. Compute

h1(z̄, x) = Rad(Resultanty(f1(z̄, x, y), f2(z̄, x, y))) 6= 0

and h2(z̄, y) = Rad(Resultantx(f1(z̄, x, y), f2(z̄, x, y))) 6= 0.

Then over the field F = Fq(z̄), since h1(x) and h2(y) ∈ 〈f1(x, y), f2(x, y)〉, we have

R = (F[x, y]/〈h1(x), h2(y)〉)/〈f1(x, y), f2(x, y)〉.

2. Let S
def
= F[x, y]/〈h1(x), h2(y)〉. Using the primitive element theorem described

previously obtain a ring S′ of the form S′ = F[z]/〈g1(z)〉 along with isomorphisms

φ : S 7→ S′ and ψ : S′ 7→ S.

3. Viewing f1(x, y) and f2(x, y) as elements of S, compute

f ′1(z) = φ(f1(x, y)) ∈ S′, f ′2(z) = φ(f2(x, y)) ∈ S′.

Then R ⊆ S is isomorphic to S′/〈f ′1(z), f ′2(z)〉 = F[z]/〈g(z)〉 where g(z) =

gcd(g1(z), f
′
1(z), f

′
2(z)). The restriction of the map φ to R ⊆ S provides the

isomorphism from R to R1 := F[z]/〈g(z)〉 ⊆ S′.

Clearly all these computations are in deterministic polynomial time. Finally, when ψ

and φ are viewed as mappings from one algebraic closed set to another, ψ is well defined

at all points whereas φ is well-defined at all non-singular points. We summarize this as a

theorem.

Proposition 6.3.2. Let Fq be a finite field. Let f1(z1, . . . , zn, x, y) ∈ Fq[z1, . . . , zn, x, y]

and f2(z1, . . . , zn, x, y) ∈ Fq[z1, . . . , zn, x, y] be squarefree polynomials of degree d1 and d2

respectively over Fq. Let F be the rational function field F
def
= Fq(z1, . . . , zn). Let R be
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the ring F[x, y]/〈f1(x), f2(y)〉. Then R is isomophic to the ring R1 := F[z]/〈g(z)〉, where

g(z) ∈ Fq[z1, . . . , zn, z]. The map ψ : R1 7→ R, ψ : z 7→ (x+ ty) for some t ∈ Fq is a ring

isomorphism. Let φ : R 7→ R1 be the inverse of ψ. Then φ maps points on the closed set

of g(z̄, z) = 0 to points on the closed set of f1(z̄, x) = f2(z̄, y) = 0 in such a way that it is

well-defined on all non-singular points on g(z̄, z) = 0.

Moreover the ring R1 together with the maps ψ and φ can be constructed in determin-

istic polynomial time (i.e. time polynomial in the size of the input and output).

6.3.6 Proof of Correctness

We now prove the correctness of our algorithm. The main subroutine involved in the de-

composition is computing the intersection of two hypersurfaces. The important properties

of this intersection algorithm and its proof of correctness has already been discussed. So

we can assume that the decomposition algorithm works correctly and returns a list of

components of the given algebraic set. Now consider a uniform-dimensional component

Xi := 〈ℓ, Yi, ψ, φ〉 in the list of components returned by the decomposition algorithm. Our

algorithm then consists of two cases.

Case I: Yi contains an absolutely irreducible hypersurface. We will make use

of the following two results by Schmidt [Sch74].

Theorem 6.3.3. Suppose g(y1, . . . , yℓ+1) is an absolutely irreducible polynomial of total

degree d > 0, with coefficients in the finite field Fq. Let A be the number of Fq-rational

points on

g(y1, . . . , yℓ+1) = 0.

Suppose

q > 104ℓ3d5P 3(4 ⌊logd⌋),

where P (1) = 2, P (2) = 3, . . . is the sequence of primes. In particular P (x) ≈ x log x, and

hence the right hand side of the above inequality is O(ℓ3d5+ǫ) for every ǫ > 0. Then

A > qℓ − (d)(d− 1)qℓ−(1/2).

Theorem 6.3.4. Suppose g1(y1, . . . , yℓ+1), . . . , gm(y1, . . . , yℓ+1) are polynomials of degree

≤ d with coefficients in Fq and without a common factor. Then the number of Fq-rational

points on

g1(y1, . . . , yℓ+1) = . . . = gm(y1, . . . , yℓ+1) = 0

is ≤ 2ℓd3qℓ−1.
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Combining these two theorems we prove the following:

Theorem 6.3.5. Suppose that g(y1, . . . , yℓ+1) ∈ Fq[y1, . . . , yℓ+1] is a squarefree polynomial

of total degree d having at least one absolutely irreducible Fq-factor. If q ≥ 105ℓ3d10, then

there exists at least one non-singular Fq-rational point on the hypersurface

g(y1, . . . , yℓ+1) = 0.

Proof. If d = 1 then g(ȳ) is simply a hyperplane of dimension (ℓ) and thus all the qℓ

Fq-rational points on g(ȳ) are non-singular. So now assume d ≥ 2.

Since g(ȳ) is squarefree, therefore it must be coprime to at least one of its partial

derivatives
(

∂g
∂yi

)
(ȳ). So by theorem 6.3.4 the system of equations

g(ȳ) =

(
∂g

∂y1

)
(ȳ) = . . . =

(
∂g

∂yℓ+1

)
(ȳ) = 0

has at most 2ℓd3qℓ−1 solutions. In other words the number of Fq-rational singular points

on g(ȳ) is upper bounded by 2ℓd3qℓ−1.

Let g1(ȳ) ∈ Fq[ȳ] be an absolutely irreducible Fq-factor of g(ȳ). Combining the lower

bound of 6.3.3 on the number of Fq-rational points on g1(ȳ) = 0 with this upper bound on

the number of singular points on g(ȳ) = 0, we get that there exists at least one non-singular

Fq-rational point on g(ȳ) = 0.

We need to bound the number and degree of the components of various dimensions

obtained as our algorithm s. We bound it as follows.

Lemma 6.3.6. During the execution of the algorithm, the degree of any ℓ-dimensional

component is at most d2n−1−ℓ
.

Proof. We proceed by induction on s
def
= n− ℓ.

Base case s = 1. Any (n− 1) dimensional component of X simply corresponds to an

Fq-factor of the polynomial f1(x̄) and thereofore its degree is bounded by d, as required.

Induction step. Now any (ℓ − 1)-dimensional component Xi of X is obtained by the

intersection of a component X̂ (obtained reviously during the computation) of dimension

at most ℓ and a hypersurface h(x̄) = 0. The hypersurface h(x̄) is either one of the original

input hypersurfaces fi(x̄) = 0 or is of the form ψ( ∂g
∂yj

(ȳ)) for some birationally equivalent

hypersurface g(ȳ) = 0. In either case, the induction hypothesis implies that the degree dh
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of the hypersurface h(x̄) = 0 is bounded by dh ≤ 2ds
. By induction hypothesis the degrees

d̂ of X̂ is bounded by d̂ ≤ d2s
. By Bezout’s theorem, the degree of Xi which is a component

in their intersection is bounded by

dh · d̂ ≤ d2s · d2s

= d2s+1

,

as required.

Suppose that the corresponding birational hypersurface g(ȳ) = 0 contains an abso-

lutely irreducible Fq-factor. Then the claim here is that Xi does indeed contain a rational

point. If the dimension ℓ is zero, then the absolutely irreducible Fq-factors of g(y1) are

nothing but Fq-points on g(y1) = 0. The components output by the decomposition

algorithm do not contain any singular varieties and thus no such point P is a singular

point of Yi and therefore φ(P ) gives an Fq-point on Xi as desired. If ℓ ≥ 1, then by

theorem 6.3.5, Yi contains a non-singular rational point P and therefore φ(P ) gives a

rational point on Xi as claimed.

Case II : Yi has no absolutely irreducible Fq-factors. We make use of the

following lemma from the previous chapter.

Lemma 6.3.7. Suppose that h(ȳ) ∈ Fq[ȳ] is Fq-irreducible and it splits into absolutely

irreducible factors h1(ȳ), . . . , ht(ȳ) over some extension field Fqd of Fq. Then its absolutely

irreducible factors hi(ȳ)’s are all Fq-conjugates of each other.

Now consider a rational point P on the hypersurface g(ȳ) = 0. Then P must be the

zero of some Fq-irreducible factor h(ȳ) of g(ȳ). That is h(P ) = 0. Suppose h(ȳ) splits

completely over the extension field K ) Fq into factors h1(ȳ), . . . , ht(ȳ) ∈ K[ȳ]. Then

P must be a rational point on some factor, say h1(ȳ), of h(ȳ). Let σ ∈ GalK/Fq
be an

automorphism of K mapping h1(ȳ) to h2(ȳ). Then since P is an Fq-rational point, we

have σ(P ) = P . So P is also a zero of h2(ȳ) and hence P is a singular point on the surface

h(ȳ) = 0. Consequently P is also a singular point on the surface g(ȳ) = 0.

Now a point P on g(ȳ) = 0 is singular if and only if it is the common zero of the closed

subset Y′ ( Yi with defining equations

g(ȳ) =

(
∂g

∂y1

)
(ȳ) = . . . =

(
∂g

∂yℓ+1

)
(ȳ) = 0
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By imposing the constraints hi(x̄) = ψ(
(

∂g
∂y1

)
(ȳ)) on the algebraic set Xi, our algorithm

computes the preimage X
′ ( X of Y′. In this case then there is an Fq-rational point P in X

if and only if there is one in X
′, which our algorithm determines recursively, as required.

This completes the proof of correctness of our algorithm. We summarize it as a

theorem.

Theorem 6.3.8. Algorithm 1 is a deterministic algorithm which decides Solvability on an

input consisting of a finite field Fq and polynomials f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn] of

total degree bounded by d in time poly(dcn ·m · log q), where cn is a constant that depends

on n alone and is of size nO(n).

Discussion

In this chapter we devised a deterministic algorithm for determining the existence of a

rational point on a variety by using Weil estimates for the number of rational points on an

absolutely irreducible curves and the deterministic factoring algorithm of the last chapter.

The major open problem in this direction now is to deterministically compute a rational

point if it exists and to count their number efficiently.


