
Learning to Search Better than Your Teacher

Kai-Wei Chang KCHANG10@ILLINOIS.EDU

University of Illinois at Urbana Champaign, IL

Akshay Krishnamurthy AKSHAYKR@CS.CMU.EDU

Carnegie Mellon University, Pittsburgh, PA

Alekh Agarwal ALEKHA@MICROSOFT.COM

Microsoft Research, New York, NY

Hal Daumé III HAL@UMIACS.UMD.EDU

University of Maryland, College Park, MD

John Langford JCL@MICROSOFT.COM

Microsoft Research, New York, NY

Abstract
Methods for learning to search for structured
prediction typically imitate a reference policy,
with existing theoretical guarantees demonstrat-
ing low regret compared to that reference. This
is unsatisfactory in many applications where the
reference policy is suboptimal and the goal of
learning is to improve upon it. Can learning to
search work even when the reference is poor?

We provide a new learning to search algorithm,
LOLS, which does well relative to the refer-
ence policy, but additionally guarantees low re-
gret compared to deviations from the learned
policy: a local-optimality guarantee. Conse-
quently, LOLS can improve upon the reference
policy, unlike previous algorithms. This enables
us to develop structured contextual bandits, a
partial information structured prediction setting
with many potential applications.

1. Introduction
In structured prediction problems, a learner makes joint
predictions over a set of interdependent output variables
and observes a joint loss. For example, in a parsing task,
the output is a parse tree over a sentence. Achieving optimal
performance commonly requires the prediction of each out-

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

put variable to depend on neighboring variables. One ap-
proach to structured prediction is learning to search (L2S)
(Collins & Roark, 2004; Daumé III & Marcu, 2005; Daumé
III et al., 2009; Ross et al., 2011; Doppa et al., 2014; Ross
& Bagnell, 2014), which solves the problem by:

1. converting structured prediction into a search problem
with specified search space and actions;

2. defining structured features over each state to capture
the interdependency between output variables;

3. constructing a reference policy based on training data;
4. learning a policy that imitates the reference policy.

Empirically, L2S approaches have been shown to be com-
petitive with other structured prediction approaches both
in accuracy and running time (see e.g. Daumé III et al.
(2014)). Theoretically, existing L2S algorithms guarantee
that if the learning step performs well, then the learned pol-
icy is almost as good as the reference policy, implicitly as-
suming that the reference policy attains good performance.
Good reference policies are typically derived using labels
in the training data, such as assigning each word to its cor-
rect POS tag. However, when the reference policy is sub-
optimal, which can arise for reasons such as computational
constraints, nothing can be said for existing approaches.

This problem is most obviously manifest in a “structured
contextual bandit”1 setting. For example, one might want
to predict how the landing page of a high profile web-

1The key difference from (1) contextual bandits is that the ac-
tion space is exponentially large (in the length of trajectories in
the search space); and from (2) reinforcement learning is that a
baseline reference policy exists before learning starts.

Learning to Search Better than Your Teacher

site should be displayed; this involves many interdepen-
dent predictions: items to show, position and size of those
items, font, color, layout, etc. It may be plausible to derive
a quality signal for the displayed page based on user feed-
back, and we may have access to a reasonable reference
policy (namely the existing rule-based system that renders
the current web page). But, applying L2S techniques re-
sults in nonsense—learning something almost as good as
the existing policy is useless as we can just keep using the
current system and obtain that guarantee. Unlike the full
feedback settings, label information is not even available
during learning to define a substantially better reference.
The goal of learning here is to improve upon the current
system, which is most likely far from optimal. This nat-
urally leads to the question: is learning to search useless
when the reference policy is poor?

This is the core question of the paper, which we address
first with a new L2S algorithm, LOLS (Locally Optimal
Learning to Search) in Section 2. LOLS operates in an
online fashion and achieves a bound on a convex combi-
nation of regret-to-reference and regret-to-own-one-step-
deviations. The first part ensures that good reference poli-
cies can be leveraged effectively; the second part ensures
that even if the reference policy is very sub-optimal, the
learned policy is approximately “locally optimal” in a sense
made formal in Section 3.

LOLS operates according to a general schematic that en-
compases many past L2S algorithms (see Section 2), in-
cluding Searn (Daumé III et al., 2009), DAgger (Ross et al.,
2011) and AggreVaTe (Ross & Bagnell, 2014). A sec-
ondary contribution of this paper is a theoretical analysis of
both good and bad ways of instantiating this schematic un-
der a variety of conditions, including: whether the reference
policy is optimal or not, and whether the reference policy is
in the hypothesis class or not. We find that, while past algo-
rithms achieve good regret guarantees when the reference
policy is optimal, they can fail rather dramatically when it
is not. LOLS, on the other hand, has superior performance
to other L2S algorithms when the reference policy performs
poorly but local hill-climbing in policy space is effective. In
Section 5, we empirically confirm that LOLS can signifi-
cantly outperform the reference policy in practice on real-
world datasets.

In Section 4 we extend LOLS to address the structured
contextual bandit setting, giving a natural modification to
the algorithm as well as the corresponding regret analysis.

The proofs of our main results, and the details of the cost-
sensitive classifier used in experiments are deferred to the
appendix. The algorithm LOLS, the new kind of regret
guarantee it satisfies, the modifications for the structured
contextual bandit setting, and all experiments are new here.

[]

. . .

[N]

. . .

[N V]

. . .

[N V V],loss=1

[N V N],loss=0[N N]
[V]

Figure 1. An illustration of the search space of a sequential tag-
ging example that assigns a part-of-speech tag sequence to the
sentence “John saw Mary.” Each state represents a partial la-
beling. The start state b = [] and the set of end states
E = {[N V N], [N V V], . . .}. Each end state is associated
with a loss. A policy chooses an action at each state in the search
space to specify the next state.

2. Learning to Search
A structured prediction problem consists of an input space
X , an output space Y , a fixed but unknown distribution D
over X × Y , and a non-negative loss function `(y∗, ŷ) →
R≥0 which measures the distance between the true (y∗) and
predicted (ŷ) outputs. The goal of structured learning is to
useN samples (xi,yi)

N
i=1 to learn a mapping f : X → Y

that minimizes the expected structured loss under D.

In the learning to search framework, an input x ∈ X in-
duces a search space, consisting of an initial state b (which
we will take to also encode x), a set of end states and a
transition function that takes state/action pairs s, a and de-
terministically transitions to a new state s′. For each end
state e, there is a corresponding structured output ye and
for convenience we define the loss `(e) = `(y∗,ye) where
y∗ will be clear from context. We futher define a feature
generating function Φ that maps states to feature vectors in
Rd. The features express both the input x and previous pre-
dictions (actions). Fig. 1 shows an example search space2.

An agent follows a policy π ∈ Π, which chooses an action
a ∈ A(s) at each non-terminal state s. An action specifies
the next state from s. We consider policies that only access
state s through its feature vector Φ(s), meaning that π(s)
is a mapping from Rd to the set of actions A(s). A trajec-
tory is a complete sequence of state/action pairs from the
starting state b to an end state e. Trajectories can be gener-
ated by repeatedly executing a policy π in the search space.
Without loss of generality, we assume the lengths of trajec-
tories are fixed and equal to T . The expected loss of a policy
J(π) is the expected loss of the end state of the trajectory
e ∼ π, where e ∈ E is an end state reached by follow-
ing the policy3. Throughout, expectations are taken with

2Doppa et al. (2014) discuss several approaches for defining
a search space. The theoretical properties of our approach do not
depend on which search space definition is used.

3Some imitation learning literature (e.g., (Ross et al., 2011;
He et al., 2012)) defines the loss of a policy as an accumulation
of the costs of states and actions in the trajectory generated by the
policy. For simplicity, we define the loss only based on the end

Learning to Search Better than Your Teacher

s r e

e

e

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

x  X
y

e
Y, l(y

e
)=0.0

y
e
Y, l(y

e
)=0.2

y
e
Y, l(y

e
)=0.8

Figure 2. An example search space. The exploration begins at the
start state s and chooses the middle among three actions by the
roll-in policy twice. Grey nodes are not explored. At state r the
learning algorithm considers the chosen action (middle) and both
one-step deviations from that action (top and bottom). Each of
these deviations is completed using the roll-out policy until an
end state is reached, at which point the loss is collected. Here, we
learn that deviating to the top action (instead of middle) at state r
decreases the loss by 0.2.

respect to draws of (x,y) from the training distribution, as
well as any internal randomness in the learning algorithm.

An optimal policy chooses the action leading to the min-
imal expected loss at each state. For losses decomposable
over the states in a trajectory, generating an optimal policy
is trivial given y∗ (e.g., the sequence tagging example in
(Daumé III et al., 2009)). In general, finding the optimal
action at states not in the optimal trajectory can be tricky
(e.g., (Goldberg & Nivre, 2013; Goldberg et al., 2014)).

Finally, like most other L2S algorithms, LOLS assumes
access to a cost-sensitive classification algorithm. A cost-
sensitive classifier predicts a label ŷ given an example x,
and receives a loss cx(ŷ), where cx is a vector containing
the cost for each possible label. In order to perform on-
line updates, we assume access to a no-regret online cost-
sensitive learner, which we formally define below.

Definition 1. Given a hypothesis classH : X → [K], the
regret of an online cost-sensitive classification algorithm
which produces hypotheses h1, . . . , hM on cost-sensitive
example sequence {(x1, c1), . . . , (xM , cM)} is

RegretCS
M =

M∑
m=1

cm(hm(xm))−min
h∈H

M∑
m=1

cm(h(xm)).

(1)
An algorithm is no-regret if RegretCS

M = o(M).

Such no-regret guarantees can be obtained, for instance, by
applying the SECOC technique (Langford & Beygelzimer,
2005) on top of any importance weighted binary classifica-
tion algorithm that operates in an online fashion, examples
being the perceptron algorithm or online ridge regression.

state. However, our theorems can be generalized.

Algorithm 1 Locally Optimal Learning to Search (LOLS)
Require: Dataset {xi,yi}Ni=1 drawn from D and β ≥ 0: a

mixture parameter for roll-out.
1: Initialize a policy π0.
2: for all i ∈ {1, 2, . . . , N} (loop over each instance) do
3: Generate a reference policy πref based on yi.
4: Initialize Γ = ∅.
5: for all t ∈ {0, 1, 2, . . . , T − 1} do
6: Roll-in by executing πin

i = π̂i for t rounds and
reach st.

7: for all a ∈ A(st) do
8: Let πout

i =πref with probability β, otherwise π̂i.
9: Evaluate cost ci,t(a) by rolling-out with πout

i

for T − t− 1 steps.
10: end for
11: Generate a feature vector Φ(xi, st).
12: Set Γ = Γ ∪ {〈ci,t,Φ(xi, st)〉}.
13: end for
14: π̂i+1 ← Train(π̂i,Γ) (Update).
15: end for
16: Return the average policy across π̂0, π̂1, . . . π̂N .

LOLS (see Algorithm 1) learns a policy π̂ ∈ Π to ap-
proximately minimize J(π),4 assuming access to a refer-
ence policy πref (which may or may not be optimal). The
algorithm proceeds in an online fashion generating a se-
quence of learned policies π̂0, π̂1, π̂2, At round i, a
structured sample (xi,yi) is observed, and the configura-
tion of a search space is generated along with the reference
policy πref. Based on (xi,yi), LOLS constructs T cost-
sensitive multiclass examples using a roll-in policy πin

i and
a roll-out policy πout

i . The roll-in policy is used to generate
an initial trajectory and the roll-out policy is used to de-
rive the expected loss. More specifically, for each decision
point t ∈ [0, T), LOLS executes πin

i for t rounds reaching
a state st ∼ πin

i . Then, a cost-sensitive multiclass example
is generated using the features Φ(st). Classes in the mul-
ticlass example correspond to available actions in state st.
The cost c(a) assigned to action a is the difference in loss
between taking action a and the best action.

c(a) = `(e(a))−min
a′

`(e(a′)), (2)

where e(a) is the end state reached with rollout by πout
i af-

ter taking action a in state st. LOLS collects the T exam-
ples from the different roll-out points and feeds the set of
examples Γ into an online cost-sensitive multiclass learner,
thereby updating the learned policy from π̂i to π̂i+1. By de-
fault, we use the learned policy π̂i for roll-in and a mixture

4 We can parameterize the policy π̂ using a weight vector w ∈
Rd such that a cost-sensitive classifier can be used to choose an
action based on the features at each state. We do not consider
using different weight vectors at different states.

Learning to Search Better than Your Teacher

roll-out→

↓ roll-in
Reference Mixture Learned

Reference Inconsistent

Learned Not locally opt. Good RL

Table 1. Effect of different roll-in and roll-out policies. The strate-
gies marked with “Inconsistent” might generate a learned policy
with a large structured regret, and the strategies marked with “Not
locally opt.” could be much worse than its one step deviation. The
strategy marked with “RL” reduces the structure learning problem
to a reinforcement learning problem, which is much harder. The
strategy marked with “Good” is favored.

policy for roll-out. For each roll-out, the mixture policy ei-
ther executes πref to an end-state with probability β or π̂i
with probability 1 − β. LOLS converts into a batch algo-
rithm with a standard online-to-batch conversion where the
final model π̄ is generated by averaging π̂i across all rounds
(i.e., picking one of π̂1, . . . π̂N uniformly at random).

3. Theoretical Analysis
In this section, we analyze LOLS and answer the ques-
tions raised in Section 1. Throughout this section we use
π̄ to denote the average policy obtained by first choosing
n ∈ [1, N] uniformly at random and then acting according
to πn.We begin with discussing the choices of roll-in and
roll-out policies. Table 1 summarizes the results of using
different strategies for roll-in and roll-out.

3.1. The Bad Choices

An obvious bad choice is roll-in and roll-out with the
learned policy, because the learner is blind to the reference
policy. It reduces the structured learning problem to a re-
inforcement learning problem, which is much harder. To
build intuition, we show two other bad cases.

Roll-in with πref is bad. Roll-in with a reference policy
causes the state distribution to be unrealistically good. As
a result, the learned policy never learns to correct for pre-
vious mistakes, performing poorly when testing. A related
discussion can be found at Theorem 2.1 in (Ross & Bag-
nell, 2010). We show a theorem below.

Theorem 1. For πin
i = πref, there is a distribution D

over (x,y) such that the induced cost-sensitive regret
RegretCS

M = o(M) but J(π̄)− J(πref) = Ω(1).

Proof. We demonstrate examples where the claim is true.

We start with the case where πout
i = πin

i = πref. In this case,
suppose we have one structured example, whose search
space is defined as in Figure 3(a). From state s1, there are

s1

s3

e4, 0
f
e3, 100eb

s2

e2, 10
d
e1, 0c

a

(a) πin
i =πout

i =πref

s1

s3

e4, 0
f
e3, 100ea

s2

e2, 10
d
e1, 0c

a

(b) πin
i = πref, repre-

sentation constrained

s1

s3

e4, 0
d
e3, 1+εcb

s2

e2, 1−ε
d
e1, 1c

a

(c) πout
i =πref

Figure 3. Counterexamples of πin
i = πref and πout

i = πref. All
three examples have 7 states. The loss of each end state is spec-
ified in the figure. A policy chooses actions to traverse through
the search space until it reaches an end state. Legal policies are
bit-vectors, so that a policy with a weight on a goes up in s1

of Figure 3(a) while a weight on b sends it down. Since features
uniquely identify actions of the policy in this case, we just mark
the edges with corresponding features for simplicity. The refer-
ence policy is bold-faced. In Figure 3(b), the features are the same
on either branch from s1, so that the learned policy can do no bet-
ter than pick randomly between the two. In Figure 3(c), states s2

and s3 share the same feature set (i.e., Φ(s2) = Φ(s3)). There-
fore, a policy chooses the same set of actions at states s2 and s3.
Please see text for details.

two possible actions: a and b (we will use actions and fea-
tures interchangeably since features uniquely identify ac-
tions here); the (optimal) reference policy takes action a.
From state s2, there are again two actions (c and d); the
reference takes c. Finally, even though the reference policy
would never visit s3, from that state it chooses action f .
When rolling in with πref, the cost-sensitive examples are
generated only at state s1 (if we take a one-step deviation
on s1) and s2 but never at s3 (since that would require a
two deviations, one at s1 and one at s3). As a result, we
can never learn how to make predictions at state s3. Fur-
thermore, under a rollout with πref, both actions from state
s1 lead to a loss of zero. The learner can therefore learn to
take action c at state s2 and b at state s1, and achieve zero
cost-sensitive regret, thereby “thinking” it is doing a good
job. Unfortunately, when this policy is actually run, it per-
forms as badly as possible (by taking action e half the time
in s3), which results in the large structured regret.

Next we consider the case where πout
i is either the learned

policy or a mixture with πref. When applied to the example
in Figure 3(b), our feature representation is not expressive
enough to differentiate between the two actions at state s1,
so the learned policy can do no better than pick randomly
between the top and bottom branches from this state. The
algorithm either rolls in with πref on s1 and generates a
cost-sensitive example at s2, or generates a cost-sensitive
example on s1 and then completes a roll out with πout

i . Cru-
cially, the algorithm still never generates a cost-sensitive
example at the state s3 (since it would have already taken
a one-step deviation to reach s3 and is constrained to do a
roll out from s3). As a result, if the learned policy were to

Learning to Search Better than Your Teacher

choose the action e in s3, it leads to a zero cost-sensitive
regret but large structured regret.

Despite these negative results, rolling in with the learned
policy is robust to both the above failure modes. In Fig-
ure 3(a), if the learned policy picks action b in state s1, then
we can roll in to the state s3, then generate a cost-sensitive
example and learn that f is a better action than e. Similarly,
we also observe a cost-sensitive example in s3 in the exam-
ple of Figure 3(b), which clearly demonstrates the benefits
of rolling in with the learned policy as opposed to πref.

Roll-out with πref is bad if πref is not optimal. When the
reference policy is not optimal or the reference policy is
not in the hypothesis class, roll-out with πref can make the
learner blind to compounding errors. The following theo-
rem holds. We state this in terms of “local optimality”: a
policy is locally optimal if changing any one decision it
makes never improves its performance.
Theorem 2. For πout

i = πref, there is a distribution D
over (x,y) such that the induced cost-sensitive regret
RegretCS

M = o(M) but π̄ has arbitrarily large structured
regret to one-step deviations.

Proof. Suppose we have only one structured example,
whose search space is defined as in Figure 3(c) and the ref-
erence policy chooses a or c depending on the node. If we
roll-out with πref, we observe expected losses 1 and 1 + ε
for actions a and b at state s1, respectively. Therefore, the
policy with zero cost-sensitive classification regret chooses
actions a and d depending on the node. However, a one step
deviation (a → b) does radically better and can be learned
by instead rolling out with a mixture policy.

The above theorems show the bad cases and motivate a
good L2S algorithm which generates a learned policy that
competes with the reference policy and deviations from the
learned policy. In the following section, we show that Al-
gorithm 1 is such an algorithm.

3.2. Regret Guarantees

Let Qπ(st, a) represent the expected loss of executing ac-
tion a at state st and then executing policy π until reach-
ing an end state. T is the number of decisions required be-
fore reaching an end state. For notational simplicity, we use
Qπ(st, π

′) as a shorthand for Qπ(st, π
′(st)), where π′(st)

is the action that π′ takes at state st. Finally, we use dtπ
to denote the distribution over states at time t when acting
according to the policy π. The expected loss of a policy is:

J(π) = Es∼dtπ [Qπ(s, π)] , (3)

for any t ∈ [0, T]. In words, this is the expected cost of
rolling in with π up to some time t, taking π’s action at
time t and then completing the roll out with π.

Our main regret guarantee for Algorithm 1 shows that
LOLS minimizes a combination of regret to the reference
policy πref and regret its own one-step deviations. In or-
der to concisely present the result, we present an additional
definition which captures the regret of our approach:

δN =
1

NT

N∑
i=1

T∑
t=1

Es∼dt
π̂i

[
Qπ

out
i (s, π̂i)−

(
βmin

a
Qπ

ref
(s, a)

+(1− β) min
a
Qπ̂i(s, a)

)]
, (4)

where πout
i = βπref + (1−β)π̂i is the mixture policy used

to roll-out in Algorithm 1. With these definitions in place,
we can now state our main result for Algorithm 1.
Theorem 3. Let δN be as defined in Equation 4. The aver-
aged policy π̄ generated by runningN steps of Algorithm 1
with a mixing parameter β satisfies

β(J(π̄)− J(πref)) + (1− β)

T∑
t=1

(
J(π̄)−min

π∈Π
Es∼dtπ̄ [Qπ̄(s, π)]

)
≤ TδN .

It might appear that the LHS of the theorem combines one
term which is constant to another scaling with T . We point
the reader to Lemma 1 in the appendix to see why the terms
are comparable in magnitude. Note that the theorem does
not assume anything about the quality of the reference pol-
icy, and it might be arbitrarily suboptimal. Assuming that
Algorithm 1 uses a no-regret cost-sensitive classification
algorithm (recall Definition 1), the first term in the defini-
tion of δN converges to

`∗ = min
π∈Π

1

NT

N∑
i=1

T∑
t=1

Es∼dtπ̂i [Q
πout
i (s, π)].

This observation is formalized in the next corollary.

Corollary 1. Suppose we use a no-regret cost-sensitive
classifier in Algorithm 1. As N →∞, δN → δclass, where

δclass = `∗− 1

NT

∑
i,t

Es∼dtπ̂i

[
βmin

a
Qπ

ref
(s, a)

+(1− β) min
a
Qπ̂i(s, a)

]
.

When we have β = 1, so that LOLS becomes almost
identical to AGGREVATE (Ross & Bagnell, 2014), δclass
arises solely due to the policy class Π being restricted. For
other values of β ∈ (0, 1), the asymptotic gap does not
always vanish even if the policy class is unrestricted, since
`∗ amounts to obtaining minaQ

πout
i (s, a) in each state. This

corresponds to taking a minimum of an average rather than
the average of the corresponding minimum values.

In order to avoid this asymptotic gap, it seems desirable
to have regrets to reference policy and one-step deviations

Learning to Search Better than Your Teacher

controlled individually, which is equivalent to having the
guarantee of Theorem 3 for all values of β in [0, 1] rather
than a specific one. As we show in the next section, guaran-
teeing a regret bound to one-step deviations when the refer-
ence policy is arbitrarily bad is rather tricky and can take an
exponentially long time. Understanding structures where
this can be done more tractably is an important question
for future research. Nevertheless, the result of Theorem 3
has interesting consequences in several settings, some of
which we discuss next.

1. The second term on the left in the theorem is always
non-negative by definition, so the conclusion of Theo-
rem 3 is at least as powerful as existing regret guaran-
tee to reference policy when β = 1. Since the previous
works in this area (Daumé III et al., 2009; Ross et al.,
2011; Ross & Bagnell, 2014) have only studied regret
guarantees to the reference policy, the quantity we’re
studying is strictly more difficult.

2. The asymptotic regret incurred by using a mixture pol-
icy for roll-out might be larger than that using the ref-
erence policy alone, when the reference policy is near-
optimal. How the combination of these factors mani-
fests in practice is empirically evaluated in Section 5.

3. When the reference policy is optimal, the first term
is non-negative. Consequently, the theorem demon-
strates that our algorithm competes with one-step
deviations in this case. This is true irrespective of
whether πref is in the policy class Π or not.

4. When the reference policy is very suboptimal, then the
first term can be negative. In this case, the regret to
one-step deviations can be large despite the guarantee
of Theorem 3, since the first negative term allows the
second term to be large while the sum stays bounded.
However, when the first term is significantly negative,
then the learned policy has already improved upon the
reference policy substantially! This ability to improve
upon a poor reference policy by using a mixture pol-
icy for rolling out is an important distinction for Al-
gorithm 1 compared with previous approaches.

Overall, Theorem 3 shows that the learned policy is either
competitive with the reference policy and nearly locally op-
timal, or improves substantially upon the reference policy.

3.3. Hardness of local optimality

In this section we demonstrate that the process of reaching
a local optimum (under one-step deviations) can be expo-
nentially slow when the initial starting policy is arbitrary.
This reflects the hardness of learning to search problems
when equipped with a poor reference policy, even if local
rather than global optimality is considered a yardstick. We
establish this lower bound for a class of algorithms sub-
stantially more powerful than LOLS. We start by defining

a search space and a policy class. Our search space con-
sists of trajectories of length T , with 2 actions available
at each step of the trajectory. We use 0 and 1 to index the
two actions. We consider policies whose only feature in a
state is the depth of the state in the trajectory, meaning that
the action taken by any policy π in a state st depends only
on t. Consequently, each policy can be indexed by a bit
string of length T . For instance, the policy 0100 . . . 0 ex-
ecutes action 0 in the first step of any trajectory, action 1
in the second step and 0 at all other levels. It is easily seen
that two policies are one-step deviations of each other if the
corresponding bit strings have a Hamming distance of 1.

To establish a lower bound, consider the following power-
ful algorithmic pattern. Given a current policy π, the algo-
rithm examines the cost J(π′) for all the one-step devia-
tions π′ of π. It then chooses the policy with the smallest
cost as its new learned policy. Note that access to the ac-
tual costs J(π) makes this algorithm more powerful than
existing L2S algorithms, which can only estimate costs of
policies through rollouts on individual examples. Suppose
this algorithm starts from an initial policy π̂0. How long
does it take for the algorithm to reach a policy π̂i which is
locally optimal compared with all its one-step deviations?
We next present a lower bound for algorithms of this style.

Theorem 4. Consider any algorithm which updates poli-
cies only by moving from the current policy to a one-step
deviation. Then there is a search space, a policy class and
a cost function where the any such algorithm must make
Ω(2T) updates before reaching a locally optimal policy.
Specifically, the lower bound also applies to Algorithm 1.

The result shows that competing with the seemingly rea-
sonable benchmark of one-step deviations may be very
challenging from an algorithmic perspective, at least with-
out assumptions on the search space, policy class, loss
function, or starting policy. For instance, the construction
used to prove Theorem 4 does not apply to Hamming loss.

4. Structured Contextual Bandit
We now show that a variant of LOLS can be run in a “struc-
tured contextual bandit” setting, where only the loss of a
single structured label can be observed. As mentioned, this
setting has applications to webpage layout, personalized
search, and several other domains.

At each round, the learner is given an input example x,
makes a prediction ŷ and suffers structured loss `(y∗, ŷ).
We assume that the structured losses lie in the interval
[0, 1], that the search space has depth T and that there are at
most K actions available at each state. As before, the algo-
rithm has access to a policy class Π, and also to a reference
policy πref. It is important to emphasize that the reference
policy does not have access to the true label, and the goal

Learning to Search Better than Your Teacher

Algorithm 2 Structured Contextual Bandit Learning
Require: Examples {xi}Ni=1, reference policy πref, explo-

ration probability ε and mixture parameter β ≥ 0.
1: Initialize a policy π0, and set I = ∅.
2: for all i = 1, 2, . . . , N (loop over each instance) do
3: Obtain the example xi, set explore = 1 with

probability ε, set ni = |I|.
4: if explore then
5: Pick random time t ∈ {0, 1, . . . , T − 1}.
6: Roll-in by executing πin

i = π̂ni for t rounds and
reach st.

7: Pick random action at ∈ A(st); let K = |A(st)|.
8: Let πout

i = πref with probability β, otherwise π̂ni .
9: Roll-out with πout

i for T − t− 1 steps to evaluate

ĉ(a) = K`(e(at))1[a = at].

10: Generate a feature vector Φ(xi, st).
11: π̂ni+1 ← Train(π̂ni , ĉ,Φ(xi, st)).
12: Augment I = I ∪ {π̂ni+1}
13: else
14: Follow the trajectory of a policy π drawn ran-

domly from I to an end state e, predict the cor-
responding structured output yie.

15: end if
16: end for

is improving on the reference policy.

Our approach is based on the ε-greedy algorithm which
is a common strategy in partial feedback problems. Upon
receiving an example xi, the algorithm randomly chooses
whether to explore or exploit on this example. With proba-
bility 1−ε, the algorithm chooses to exploit and follows the
recommendation of the current learned policy. With the re-
maining probability, the algorithm performs a randomized
variant of the LOLS update. A detailed description is given
in Algorithm 2.

We assess the algorithm’s performance via a measure of
regret, where the comparator is a mixture of the reference
policy and the best one-step deviation. Let π̄i be the aver-
aged policy based on all policies in I at round i. yie is the
predicted label in either step 9 or step 14 of Algorithm 2.
The average regret is defined as:

Regret =
1

N

N∑
i=1

(
E[`(y∗i ,yie)]− βE[`(y∗i ,yieref

)]

− (1− β)

T∑
t=1

min
π∈Π

Es∼dtπ̄i [Q
π̄i(s, π)]

)
Recalling our earlier definition of δi (4), we bound on the
regret of Algorithm 2 with a proof in the appendix.

Theorem 5. Algorithm 2 with parameter ε satisfies:

Regret ≤ ε+
1

N

N∑
i=1

δni ,

With a no-regret learning algorithm, we expect

δi ≤ δclass + cK

√
log |Π|
i

, (5)

where |Π| is the cardinality of the policy class. This leads
to the following corollary with a proof in the appendix.

Corollary 2. In the setup of Theorem 5, suppose further
that the underlying no-regret learner satisfies (5). Then
with probability at least 1− 2/(N5K2T 2 log(N |Π|))3,

Regret = O

(
(KT)2/3 3

√
log(N |Π|)

N
+ Tδclass

)
.

5. Experiments
This section shows that LOLS is able to improve upon
a suboptimal reference policy and provides empirical ev-
idence to support the analysis in Section 3. We conducted
experiments on the following three applications.

Cost-Sensitive Multiclass classification. For each cost-
sensitive multiclass sample, each choice of label has an
associated cost. The search space for this task is a bi-
nary search tree. The root of the tree corresponds to the
whole set of labels. We recursively split the set of labels
in half, until each subset contains only one label. A trajec-
tory through the search space is a path from root-to-leaf in
this tree. The loss of the end state is defined by the cost.
An optimal reference policy can lead the agent to the end
state with the minimal cost. We also show results of using
a bad reference policy which arbitrarily chooses an action
at each state. The experiments are conducted on KDDCup
99 dataset5 generated from a computer network intrusion
detection task. The dataset contains 5 classes, 4, 898, 431
training and 311, 029 test instances.

Part of speech tagging. The search space for POS tagging
is left-to-right prediction. Under Hamming loss the trivial
optimal reference policy simply chooses the correct part of
speech for each word. We train on 38k sentences and test
on 11k from the Penn Treebank (Marcus et al., 1993). One
can construct suboptimal or even bad reference policies, but
under Hamming loss these are all equivalent to the optimal
policy because roll-outs by any fixed policy will incur ex-
actly the same loss and the learner can immediately learn
from one-step deviations.

5http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html

 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Learning to Search Better than Your Teacher

roll-out→
↓ roll-in Reference Mixture Learned

Reference is optimal
Reference 0.282 0.282 0.279
Learned 0.267 0.266 0.266

Reference is bad
Reference 1.670 1.664 0.316
Learned 0.266 0.266 0.266

Table 2. The average cost on cost-sensitive classification dataset;
columns are roll-out and rows are roll-in. The best result is bold.
SEARN achieves 0.281 and 0.282 when the reference policy is
optimal and bad, respectively. LOLS is Learned/Mixture and
highlighted in green.

roll-out→
↓ roll-in Reference Mixture Learned

Reference is optimal
Reference 95.58 94.12 94.10
Learned 95.61 94.13 94.10

Table 3. The accuracy on POS tagging; columns are roll-out and
rows are roll-in. The best result is bold. SEARN achieves 94.88.
LOLS is Learned/Mixture and highlighted in green.

Dependency parsing. A dependency parser learns to gen-
erate a tree structure describing the syntactic dependen-
cies between words in a sentence (McDonald et al., 2005;
Nivre, 2003). We implemented a hybrid transition sys-
tem (Kuhlmann et al., 2011) which parses a sentence
from left to right with three actions: SHIFT, REDUCELEFT
and REDUCERIGHT. We used the “non-deterministic or-
acle” (Goldberg & Nivre, 2013) as the optimal reference
policy, which leads the agent to the best end state reach-
able from each state. We also designed two suboptimal
reference policies. A bad reference policy chooses an ar-
bitrary legal action at each state. A suboptimal policy ap-
plies a greedy selection and chooses the action which leads
to a good tree when it is obvious; otherwise, it arbitrarily
chooses a legal action. (This suboptimal reference was the
default reference policy used prior to the work on “non-
deterministic oracles.”) We used data from the Penn Tree-
bank Wall Street Journal corpus: the standard data split for
training (sections 02-21) and test (section 23). The loss
is evaluated in UAS (unlabeled attachment score), which
measures the fraction of words that pick the correct parent.

For each task and each reference policy, we compare 6 dif-
ferent combinations of roll-in (learned or reference) and
roll-out (learned, mixture or reference) strategies. We also
include SEARN in the comparison, since it has notable
differences from LOLS. SEARN rolls in and out with a
mixture where a different policy is drawn for each state,
while LOLS draws a policy once per example. SEARN

roll-out→
↓ roll-in Reference Mixture Learned

Reference is optimal
Reference 87.2 89.7 88.2
Learned 90.7 90.5 86.9

Reference is suboptimal
Reference 83.3 87.2 81.6
Learned 87.1 90.2 86.8

Reference is bad
Reference 68.7 65.4 66.7
Learned 75.8 89.4 87.5

Table 4. The UAS score on dependency parsing data set; columns
are roll-out and rows are roll-in. The best result is bold.
SEARN achieves 84.0, 81.1, and 63.4 when the reference pol-
icy is optimal, suboptimal, and bad, respectively. LOLS is
Learned/Mixture and highlighted in green.

uses a batch learner, while LOLS uses online. The policy
in SEARN is a mixture over the policies produced at each
iteration. For LOLS, it suffices to keep just the most recent
one. It is an open research question whether an analogous
theoretical guarantee of Theorem 3 can be established for
SEARN.

Our implementation is based on Vowpal Wabbit6, a ma-
chine learning system that supports online learning and
L2S. For LOLS’s mixture policy, we set β = 0.5. We found
that LOLS is not sensitive to β, and setting β to be 0.5
works well in practice. For SEARN, we set the mixture pa-
rameter to be 1− (1−α)t, where t is the number of rounds
and α = 10−5. Unless stated otherwise all the learners take
5 passes over the data.

Tables 2, 3 and 4 show the results on cost-sensitive multi-
class classification, POS tagging and dependency parsing,
respectively. The empirical results qualitatively agree with
the theory. Rolling in with reference is always bad. When
the reference policy is optimal, then doing roll-outs with
reference is a good idea. However, when the reference pol-
icy is suboptimal or bad, then rolling out with reference
is a bad idea, and mixture rollouts perform substantially
better. LOLS also significantly outperforms SEARN on all
tasks.

Acknowledgements
Part of this work was carried out while Kai-Wei, Akshay
and Hal were visiting Microsoft Research.

6http://hunch.net/˜vw/

http://hunch.net/~vw/

Learning to Search Better than Your Teacher

References
Abbott, H.L and Katchalski, M. On the snake in the box

problem. Journal of Combinatorial Theory, Series B, 45
(1):13 – 24, 1988.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and
Games. Cambridge University Press, 2006.

Collins, Michael and Roark, Brian. Incremental parsing
with the perceptron algorithm. In Proceedings of the
Conference of the Association for Computational Lin-
guistics (ACL), 2004.

Daumé III, Hal and Marcu, Daniel. Learning as search op-
timization: Approximate large margin methods for struc-
tured prediction. In Proceedings of the International
Conference on Machine Learning (ICML), 2005.

Daumé III, Hal, Langford, John, and Marcu, Daniel.
Search-based structured prediction. Machine Learning
Journal, 2009.

Daumé III, Hal, Langford, John, and Ross, Stéphane.
Efficient programmable learning to search.
arXiv:1406.1837, 2014.

Doppa, Janardhan Rao, Fern, Alan, and Tadepalli, Prasad.
HC-Search: A learning framework for search-based
structured prediction. Journal of Artificial Intelligence
Research (JAIR), 50, 2014.

Goldberg, Yoav and Nivre, Joakim. Training deterministic
parsers with non-deterministic oracles. Transactions of
the ACL, 1, 2013.

Goldberg, Yoav, Sartorio, Francesco, and Satta, Giorgio. A
tabular method for dynamic oracles in transition-based
parsing. Transactions of the ACL, 2, 2014.

He, He, Daumé III, Hal, and Eisner, Jason. Imitation learn-
ing by coaching. In Neural Information Processing Sys-
tems (NIPS), 2012.

Kuhlmann, Marco, Gómez-Rodrı́guez, Carlos, and Satta,
Giorgio. Dynamic programming algorithms for
transition-based dependency parsers. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies-
Volume 1, pp. 673–682. Association for Computational
Linguistics, 2011.

Langford, John and Beygelzimer, Alina. Sensitive error
correcting output codes. In Learning Theory, pp. 158–
172. Springer, 2005.

Marcus, Mitch, Marcinkiewicz, Mary Ann, and Santorini,
Beatrice. Building a large annotated corpus of English:
The Penn Treebank. Computational Linguistics, 19(2):
313–330, 1993.

McDonald, Ryan, Pereira, Fernando, Ribarov, Kiril, and
Hajic, Jan. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of the Joint
Conference on Human Language Technology Confer-
ence and Empirical Methods in Natural Language Pro-
cessing (HLT/EMNLP), 2005.

Nivre, Joakim. An efficient algorithm for projective depen-
dency parsing. In International Workshop on Parsing
Technologies (IWPT), pp. 149–160, 2003.

Ross, Stéphane and Bagnell, J. Andrew. Efficient reduc-
tions for imitation learning. In Proceedings of the Work-
shop on Artificial Intelligence and Statistics (AI-Stats),
2010.

Ross, Stéphane and Bagnell, J. Andrew. Reinforcement
and imitation learning via interactive no-regret learning.
arXiv:1406.5979, 2014.

Ross, Stéphane, Gordon, Geoff J., and Bagnell, J. Andrew.
A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the
Workshop on Artificial Intelligence and Statistics (AI-
Stats), 2011.

Zinkevich, Martin. Online convex programming and gen-
eralized infinitesimal gradient ascent. In Proceedings
of the International Conference on Machine Learning
(ICML), 2003.

