
Better Flash Access via Shape-shifting Virtual Memory Pages
Anirudh Badam

Microsoft Research
Vivek S. Pai

Princeton University
David W. Nellans
Nvidia Research

Abstract
Today, many system designers try to fit the entire data
set of an application in RAM to avoid the cost of ac-
cessing magnetic disk. However, for many data-centric
applications this is not an option due to the capacity and
high $/GB constraints of RAM. As a result, system de-
signers are relying on NAND-Flash to augment RAM.
However, rewriting applications to efficiently tier data
between memory and storage is a complicated process
and may take months or years. In this paper, we present
Chameleon, a system to transparently augment RAM
with NAND-Flash. Chameleon is the first transparent
tiering system to provide low-latency accesses to both
RAM and NAND-Flash.

We show that applications using Chameleon outper-
form applications using state-of-the-art tiering mecha-
nisms by providing more than two orders of magnitude
improvement in latency for working sets that can fit in
RAM. We also show that Chameleon provides up to 47%
latency improvement for out-of-core applications. Fi-
nally, we show that Chameleon improves the flash de-
vice’s lifetime by up to 8x.

1 Introduction
Driven by trends in social networking and cloud comput-
ing, many applications now require fast access to large
amounts of data. One approach is to place all data in
fast memory [22, 31], but power density and cost limi-
tations make RAM-based system designs hard to scale
as data sets increase in size [28]. Cost-effective servers
typically limit RAM to 64GB per server, while high-end
systems that can accommodate 1TB of RAM or more re-
quire denser RAM that is several times as expensive on
a per-GB basis. So, while RAM access latency is in the
hundreds of nanoseconds [8] it can require a minimum
of 8 rack units (RU) to power and cool a system with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
TRIOS’13, Nov. 03 2013, Farmington, PA, USA
Copyright 2013 ACM 978-1-4503-2463-2/13/11$15.00.
http://dx.doi.org/10.1145/2524211.2524221

4TB of RAM. In comparison, PCIe-connected NAND-
Flash can now scale to 20TB per RU, 6 GBPS sequential
throughput, and 1+ million IOPS at a latency less than
100µsec/request [18], while costing 5-10 times less on a
per-GB basis.

Flash is therefore a natural candidate to augment
RAM at the point where cost or density issues make ad-
ditional RAM unattractive. While flash is denser and
cheaper than RAM, achieving good performance re-
quires moving actively-accessed data to RAM, and us-
ing flash as a lower tier of the memory hierarchy. Leav-
ing this tiering to the application developer is problem-
atic, because obtaining good performance from flash re-
quires understanding its idiosyncrasies [1]. Our previ-
ous approach to this problem was a system called SS-
DAlloc [5], which used fine-grained, library-level vir-
tual memory management to provide applications with
nearly-transparent tiering, at a cost of sacrificing some
RAM capacity. In comparison, using flash as swap
space did not sacrifice RAM capacity, but provided
much worse performance. SSDAlloc formed the basis
for commercial solutions [17] which also showed per-
formance benefits against using the same flash as a disk
cache [40].

In this paper, we present Chameleon, which trans-
parently manages data spread across RAM and flash,
but without sacrificing RAM capacity and without sac-
rificing flash performance. Chameleon uses virtual
address aliasing with physical address allocation to
track sparsely-filled virtual pages, but still pack physi-
cal memory. This allows multiple memory allocations
to share the same physical page, while using differ-
ent virtual pages. The virtual addresses never change,
but the physical memory layout can change over the
data’s lifetime, providing the memory-packing bene-
fits seen in managed runtimes, without breaking tradi-
tional C pointer semantics. This ability to pack mul-
tiple allocations per physical page also eliminates the
RAM capacity overhead of SSDAlloc. More specifi-
cally, Chameleon is the first tiering system to provide
the following properties:

• Transparency: No application modifications are
needed to leverage flash via Chameleon’s tiering
system. Chameleon is a drop-in replacement for
malloc.

• Fine granularity: Chameleon tracks data ac-
cess/dirty information at a granularity smaller than

0.25 0.5 1 2 4 8 16 32

RAM DIMM Size (GB)

0

200

400

600

800

1000
R

A
M

 D
IM

M
 C

o
st

 (
$

)

Figure 1: Cost of an ECC, DDR3 RAM DIMM

a hardware page. This tracking enables the finer
access granularity and more efficient flash usage.

• Low latency: Chameleon packs as much
frequently-used data in RAM as possible, with no
latency penalty for RAM accesses. Additionally,
Chameleon manages flash in a log-structured
manner to reduce flash access overhead and wear.

The rest of this paper is organized as follows: We de-
scribe the motivation behind Chameleon in Section 2.
Section 3 provides a detailed description of the design
and implementation of the system. In Section 4, we
present results from our experiments to demonstrate the
usefulness of Chameleon. We present related work in
Section 5 and we present our conclusions from this work
in Section 6.

2 Motivation
Data centers must serve growing amounts of informa-
tion more frequently and with lower latency, as people
move more of their personal information into the cloud
[15, 16]. Using magnetic disks for this workload is
not attractive due to their high latency and low request
rates [31]. Data-intensive computation with large mem-
ory footprints, like complex graph traversals, also im-
pose tighter latency constraints on data accesses whether
they are distributed [19] or not [27]. The ability to use
flash as RAM augmentation will help these applications
scale transparently.

One easy way to provide applications with more
memory is to increase the RAM in each single system.
There are three main reasons why such an approach
would be difficult:

1. Squeezing more RAM into a machine requires the
usage of high density RAM whose price per GB
increases sharply with density, as shown in Fig-
ure 1. In comparison, flash prices recently fell be-
low 1$/GB [38], a factor of 30 cheaper than the
highest-density RAM.

2. Even the base system prices (without RAM) in-
crease sharply when designed for higher RAM ca-
pacities. For reasons of cost and physics, low-
end servers typically have only 3-4 DIMM slots,
while the most we have seen in high-end servers is

32 64 128 256 512 1024 2048 4096

Maximum RAM Capacity (GB)

0

7K

14K

21K

28K

35K

B
a
se

 S
y
st

e
m

 C
o
st

 (
$
)

Figure 2: Base System Cost (without RAM) for a
given maximum RAM Capacity

24 DIMM slots per RU. Even using high-density
32GB DIMMs, a server would need 640 DIMMs to
match the 20TB/RU density of the high-end flash
memory. Today, systems supporting more than
512GB are NUMA machines with expensive inter-
connects, driving up costs. Figure 2 shows how the
cost of a system increases as its maximum RAM
capacity increases (not including cost of RAM).

3. Higher RAM usage increases power consumption,
heat generation, and cooling requirements, all crit-
ical factors in data center design. High-density
RAM has higher leakage currents, which generate
heat and affect physical design considerations for
servers. For example, the lowest specifications we
have seen for systems capable of supporting 4TB
of RAM requires 12 KW of power and 8RUs. In
comparison, one can fit more than 20TB of flash
(2x10TB units) in a single RU while requiring only
300 Watts [18] to power it.

Using flash-augmented RAM is also an attractive
option for traditional datacenter scale-out techniques,
where applications partition their workloads and run
across machines to aggregate the RAM in all of the
servers. Such systems try to parallelize applications to
reduce network usage [3, 39], and we note that flash la-
tencies have dropped to a point where they are now on
the same order as end-to-end latency in large datacen-
ters. Such techniques are complementary to the solution
that we propose in this paper, and may dramatically help
workloads where the CPU might not be the limiting fac-
tor [33, 44]. In such environments, adding more servers
simply to obtain more RAM is a waste of CPU, energy,
and performance, whereas augmenting RAM with flash
more directly addresses the I/O problem, at much lower
cost.

Flash’s access characteristics are unlike RAM or even
disk – block reads from flash (both random and sequen-
tial) are fast and efficient, while writes are slow and
energy consuming. Moreover, writes can only be per-
formed to empty blocks, and erasing blocks is a lengthy
operation which can be performed only at a large granu-
larity, typically 128KB or more. Additionally, each such
block can be erased only a limited number of times be-

Flash Fine-granular Low-latency Efficient Transparency
Aware Flash Access RAM Access RAM Caching

Swap-like Systems 3 3

FlashVM [37] 3 3 3

Log-structured Swap 3 3 3

KV Stores (SILT [29] etc.,) 3 3 3 3

SSDAlloc 3 3 3

Chameleon 3 3 3 3 3

Table 1: Comparison of various RAM/Flash tiering systems

fore it stops storing data reliably [1, 7, 9, 23]. Therefore,
flash systems often avoid in-place writes and utilize a
log-structured design to wear the device uniformly.

2.1 State of the art
For several reasons, the assumptions built into mod-
ern operating systems about using swap space for vir-
tual memory are a poor match for the characteristics of
flash. Multiple studies have shown that using flash as
swap space does not provide the raw performance of
flash to the application [32, 37, 5]. Traditional virtual
memory works at a minimum of 4KB granularity in all
popular microarchitectures (x86, ARM, etc.), so swap is
accessed at similar granularities. For workloads using
objects smaller than the page size, pages may therefore
contain a mix of objects, which may differ in important
properties such as usage frequency or read/write behav-
ior. As a result, when an object is read from swap, the
other objects on the page are also loaded, wasting read
bandwidth and increasing latency. Likewise, if an ob-
ject has been modified and is written to swap, the other
unmodified objects on the page are also written, wasting
write bandwidth, increasing the amount of data written
to the flash device, and therefore needlessly decreasing
the device’s lifetime. While the high access latency of
hard disks made such extra traffic a trivial overhead, this
extra traffic is wasteful on flash devices, which often can
provide the highest performance when accessing 512-
byte sectors.

The SSDAlloc [5] system takes a different approach,
and manages virtual memory at the object level, rather
than pages, but it operates transparently by leveraging
virtual memory page-protection mechanisms. At the
virtual page level, SSDAlloc aligns all objects to 4KB
page boundaries and allocates only one object per virtual
page. In this way, when a page is marked dirty due to
an application write, the SSDAlloc library knows which
object was modified. If each virtual page was backed by
a physical page, most of RAM would be wasted when
using small objects, so SSDAlloc avoids this problem
by using most of RAM as an object cache that can con-
tain multiple objects per physical page. This cache is
not directly accessible to the application, but instead,
when the application first page faults for a missing page,

the SSDAlloc library copies the objects from cache or
NAND-flash. Pages that have not been used for some
time are eventually reclaimed, with their corresponding
object placed into the object cache. This approach pro-
vides transparent access for C-style pointers, while pro-
viding performance much closer to raw flash rather than
using flash as swap space.

The main tradeoff in SSDAlloc is the ratio of directly-
accessible pages to object cache pages, which affects
what fraction of RAM can be directly accessed by ap-
plications. Pages that are directly accessible may waste
space, but have better performance due to lowering the
page fault rate. Objects that have to be copied from the
object cache to directly-accessible pages require page
faults, copying, and page table manipulations, all of
which are maintenance overhead. However, making too
many pages directly-accessible reduces the amount of
space available for the object cache, which reduces the
number of objects kept in RAM and thereby increase the
number of accesses to the NAND-flash.

An ideal system would, therefore, have the following
properties: It must be able to detect data usage informa-
tion at a finer granularity and cache data at that granular-
ity in RAM, unlike OS swap. It should be able to provide
applications with the access to the entire physical mem-
ory without page faults, unlike SSDAlloc. Additionally,
it should be able to provide these benefits to the appli-
cation without requiring any code modifications. New
applications should be able to use it purely with existing
system interfaces.

3 Design
Chameleon provides object-based virtual memory, with
multiple virtual page sizes ranging from 512 bytes to 4
KB, and provides transparent access to these pages while
still providing efficient usage of physical memory, and
without requiring any major page faults to access data in
RAM. As a result, it supports applications with full ac-
cess to RAM, while at the same time ensuring that reads
and writes to the flash memory do not waste bandwidth
or create excess wear on the device. Chameleon does not
require any additional hardware support for implement-
ing and managing these small virtual pages. We believe

that Chameleon is the first transparent memory tiering
system to provide the full power of flash and RAM to
the application with the properties shown in Table 1.

Chameleon provides small page support for the heap
of a process by redesigning the heap manager. It takes
this approach because hardware support for efficiently
detecting access happens at the page level, which is 4KB
or larger on most systems. While every read or write
access to a page could be trapped via hardware, using
this process to precisely determine which parts of a page
have been accessed/modified requires so many page
faults as to be impractically slow. Instead, Chameleon
redesigns the heap manager to be a better match for the
hardware’s preferred use of page access detection, once
per page.

Chameleon’s design stems from three central ideas:
discontiguous virtual address allocation, using page-
level information to detect object-level accesses, and
aliasing multiple virtual pages to the the same physical
page. These design principles affect the system in sev-
eral ways:

• When allocating memory to the application,
malloc need not use the virtual memory in a
contiguous fashion. For example, a heap manager
could use only the first 2KB portion of a 4KB page
to allocate memory from and not use the remainder
portion of the 4KB page for allocation. Likewise, it
could also decide to use the last 2KB of the page,
with a similar effect. For all practical purposes,
such a sparsely used virtual memory page can be
treated as containing only 2KB of application data.

• Hardware has a separate page table entry per vir-
tual memory page. Therefore, sparsely allocating
virtual memory pages provides finer granularity ac-
cess information (referenced bit, dirty bit etc.), at
the cost of increasing the number of VM struc-
tures. However, as VM latencies are much lower
than flash latencies, this is a desirable tradeoff.

• The same physical page can be used to store the ac-
tive regions of multiple virtual pages through alias-
ing, as long as the active regions of the virtual pages
do not overlap when mapped to a physical page.
The memory manager can do this by having the
same physical page number in the page table entries
of all the virtual pages. For example, if the heap
manager uses only the first 2KB portion of virtual
page # 1 and only the last 2KB portion of virtual
page # 2 to allocate memory from, then pages 1
and 2 can share a physical memory page.

• Over an object’s lifetime, the set of physical pages
backing its virtual page may change, and the set of
virtual objects mapped to the same physical page
may change. Since none of these mappings overlap

Page Size Allowed Shapes

0.5 KB
S0.5KB

0 , S0.5KB
0.5K , S0.5KB

1K , S0.5KB
1.5K

S0.5KB
2K , S0.5KB

2.5K , S0.5KB
3K , S0.5KB

3.5K
1.0 KB S1KB

0 , S1KB
1K , S1KB

2K , S1KB
3K

2.0 KB S2KB
0 , S2KB

2K

4.0 KB S4KB
0

Table 2: Allowable shapes for pages in Chameleon

on the physical page,

Since existing library functions like malloc make no
guarantees about where allocations occur, applications
should be to use Chameleon’s allocation strategy with-
out modification. Buggy applications that access mem-
ory outside their allocations are already not guaranteed
any specified behavior, but even these can be somewhat
accommodated by simply having Chameleon add some
configurable padding to each application request.

3.1 Shape-shifting Virtual Memory Pages
Chameleon can choose how much space to allocate
within each 4KB page and the offset within an actual
4KB virtual memory page where the allocation resides.
We will represent each such page using the notation
SSize

O f f set to represent the “shape” of a page in Chameleon
for the rest of the paper. We call such pages shape-
shifting virtual memory pages (SVMP). In a regular vir-
tual memory system, all pages would be of the shape
S4KB

0 . Other than this, regular virtual memory pages and
SVMPs are similar in all other respects – each has its
own page table entry, an underlying physical page when
it is resident, and a TLB mapping when the SVMP is in
use by a CPU.

In our implementation, we restrict the sizes of SVMPs
to 0.5KB, 1KB, 2KB and 4KB. For each size, we re-
strict the offsets to be multiples of that size starting from
0. For example, the allowed shapes for a 2KB SVMP
are S2KB

0 , and S2KB
2K . Table 2 presents the allowed shapes

for all the SVMPs in our system. This policy simplifies
the actual allocation process, which is described in more
detail in Section 3.4.

Chameleon is a runtime system that has multiple
threads to perform background tasks, as well as a page-
fault handler to trap application accesses to SVMPs cur-
rently not in RAM. To provide transparent tiering to the
application, it needs efficient sub-systems for managing
physical memory, and flash memory. It also needs effi-
cient methods to bring pages in from flash to RAM and
vice versa:

Physical memory management: Physical memory
must be managed such that allocation and deallocation
of RAM should be quick. It must be able to allo-
cate physical memory space for incoming SVMPs (from
flash) and also reclaim space from outgoing SVMPs

(to flash) preferably in O(1) operations. Additionally,
Chameleon should waste as little physical memory as
possible even in the presence of sparse virtual memory
usage. It must be able to compact as many active SVMPs
as possible into physical memory, emulating LRU be-
havior with as little overhead as possible.

Flash memory management: Chameleon must mask
flash’s shortcomings from the application. It must trans-
parently manage flash such that all the writes hap-
pen sequentially in the background to minimize the
application-perceived latency. Chameleon organizes the
data on flash in a log-structured fashion to achieve this
goal. It must perform garbage collection and compaction
in an efficient manner to provide the full benefits of flash
to the application. Additionally, the SVMPs must be
stored on flash so that each SVMP can be read in pre-
cisely one read operation, to maximize the application
perceived IOPS.

Page-in process: When the application requests an
SVMP that is currently not resident in RAM, Chameleon
should be able to satisfy such a request with low la-
tency. It must find a free physical memory location to
map the SVMP to, and then it must read the SVMP from
flash and populate the SVMP with data before returning
the control back to the application. While Chameleon’s
physical memory manager provides the location of free
physical memory or a location that has not been used
recently, we still need a mechanism to efficiently find
where the SVMP is located on Flash.

Page-out process: When the application requests an
SVMP from flash and all of the physical memory is
in active use, Chameleon needs to be able to evict an
SVMP from RAM. Ideally, such an SVMP should not
have been recently used. Therefore, Chameleon needs
to keep track of the recency of usage of SVMPs that are
in RAM, and to write dirty objects to flash in the back-
ground, so that space is available on demand without in-
curring the write latency.

Virtual memory management: In a traditional vir-
tual memory system, a memory allocator like malloc
allocates all the objects to the application using virtual
memory pages of size 4KB. However, in Chameleon
memory allocators have many choices for page sizes and
shapes as shown in Table 2. Section 3.4 describes how
we modify malloc to make the best use of SVMPs.

3.2 RAM Organization
Chameleon manages the lists of active and free SVMPs,
using a two-FIFO Clock algorithm based on the one
used by the Linux kernel, with the extension that free
lists are maintained for sub-page allocation sizes, rather
than only using full pages. Physical memory needs to
be organized scalably so that unused data can be re-
tired easily to the flash device to make space for SVMPs

Reference Bit Set

Active Page FIFO

T
a
i
l

H
e
a
d

Reference Bit Not Set

Reference Bit Not
Set

Free Page List

Flash Memory Device

Clean Page

Dirty Page

New Page

Inactive Page FIFO

T
a
i
l

H
e
a
d

Figure 3: Chameleon uses two FIFOs to track activ-
ity of SVMPs instead of pages

that the application requires. Linux maintains two FIFO
queues of pages to implement a version of the Clock al-
gorithm [20]. One FIFO (active FIFO) contains pages
that have been used in the recent past and another FIFO
(inactive FIFO) contains pages that have not been used
in the recent past. The OS uses the referenced bit (R-bit)
in page table entries to detect if a page was referenced
recently.

The main idea in the two-FIFO Clock scheme is to use
one FIFO to track active pages, and then move inactive
pages to a second FIFO, which is used to select victim
pages. Every new page is added to the head of the active
FIFO with its R-bit unset as shown in Figure 3. When
the active FIFO fills up, the OS checks the R-bit of the
page at the tail. If the R-bit is set, then the OS moves the
page to the head of the active FIFO. If not, it is moved to
the head of inactive FIFO. When the OS needs to evict
a page, it inspects the R-bit of the page at the tail of the
inactive FIFO. If the R-bit is set then the page is moved
back to the head of the active FIFO with its R-bit unset
as shown in Figure 3. If it is not set, then this page is
a good candidate for replacement. If no such page is
detected after many iterations, then the OS picks one at
random from the tail for replacement. If the replaced
page is dirty then the OS writes it to secondary storage.
We refer to this two-FIFO clock scheme as TF-Clock.
Additionally, the OS maintains a free list that contains
a list of free physical pages that is always checked first
before replacing an existing page.

Chameleon emulates the TF-Clock algorithm for each
SVMP shape, so that allocations can not only get the ap-
propriate size, but also the appropriate placement within
a page, which is important when an previously-allocated
object needs physical memory, and its alignment on the
page already exists. Therefore, when an application re-
quests a new SVMP or an SVMP that currently resides

on flash, the OS needs to find a physical memory page
that can accommodate an SVMP of a given shape at a
given location. If the OS cannot find such a free range
that matches, then it needs to find a physical memory
page where that range has not been recently used. There-
fore, the OS needs to track free and TF-Clock informa-
tion of physical memory at a much finer granularity.
Fine granularity free list: We implement a free list for
each of the permitted shapes, keeping track of the allo-
cation status of every physical page with regard to all
the known shapes. For example, if a physical page is
free in the first 2KB portion, then it is free to accom-
modate pages of the following shapes: S0.5KB

0 , S0.5KB
0.5K ,

S0.5KB
1K , S0.5KB

1.5K , S1KB
0 , S1KB

1K , and S2KB
0 . However, such a

free range is added only to the free list corresponding to
the shape S2KB

0 to reduce metadata overhead.
Contiguous free ranges within a single page are al-

ways coalesced when the combined free range can be
moved to a free list that contains larger ranges. We store
enough metadata for every physical memory page to be
able to do the coalescing efficiently. For example, a
physical page range of shape S1KB

1K will be in the free
list corresponding to its shape if and only if the same
physical page has some SVMP of shape S1KB

0 mapped to
it and is currently in core. When that SVMP is freed by
the application, the free list manager coalesces these two
free ranges and adds the combined free range to the free
list corresponding to the shape S2KB

0 .
Allocation requests can also split a larger free range,

so if the application requests a physical page of the shape
S0.5KB

1K , the free list manager would split this page of
shape S1KB

0 , and allocate the portion with shape S0.5KB
1K

to the application and add the portion with shape S0.5KB
1.5K

to its corresponding free list. The free list manager then
appropriately modifies the metadata for the underlying
physical page that would later be needed for coalescing.
Fine granularity TF-Clock: If the free list manager
cannot satisfy a request, then Chameleon needs to know
a physical page that has not been used recently in a re-
quired range. For example, if the free lists correspond-
ing to the shapes S2KB

0 and S4KB
0 are empty, and the ap-

plication wants to bring in a new page of shape S2KB
0 ,

then Chameleon needs to find a physical page that has
not been recently used in the range corresponding to the
shape S2KB

0 .
Chameleon maintains separate active and inactive FI-

FOs of physical page ranges for each permitted shape by
using the the R-bit in a slightly different manner when
managing the active and inactive FIFOs. When a phys-
ical page has been detected as referenced in the range
corresponding to the shape S1KB

0 , it is also treated as ref-
erenced in the ranges corresponding to the shapes S0.5KB

0 ,
and S0.5KB

0.5K . This overloading of information ensures that
an SVMP with shape S0.5KB

0 page would not replace the

page with shape S1KB
0 . Similarly, when a physical page

has been detected as referenced in the range correspond-
ing to the shape S0.5KB

0 , it is also treated as referenced in
the ranges corresponding to the shapes S1KB

0 , S2KB
0 and

S4KB
0 .

Such a tracking mechanism allows Chameleon to re-
tire cold data from RAM to flash at a much finer granu-
larity – only the smallest cold SVMP mapped to a phys-
ical page is written to flash. Also, it helps pack every
physical page with hot data – multiple small hot SVMPs
could be mapped to each physical page. Therefore, each
physical page in the system is potentially much more
useful to the application compared to the traditional vir-
tual memory system where cold and hot data could be
co-located on a page.

Our replacement policy considers larger SVMPs as
candidates for replacement by a smaller SVMP. Simi-
larly, a larger SVMP can also replace multiple smaller
contiguously mapped SVMPs that have not been re-
cently used. Our free list can choose to split free ranges
for mapping multiple SVMPs and it always coalesces
free ranges within a single physical page.

3.3 Flash Organization
The aim of our flash organization is to minimize latency
of reads and writes. We minimize the latency of reads
by ensuring that there is enough metadata in RAM to be
able to perform all page fetches in a single read opera-
tion. We minimize the latency of writes by ensuring that
all writes are performed in the background in a sequen-
tial manner.

Structuring the flash as a log [36, 1, 4, 6] not
only provides wear-leveling, but also maximizes write
bandwidth by performing as few erases as possible.
Chameleon organizes flash as a log of SVMPs. This
design allows Chameleon to be flash aware, and to
maximize performance on low-end flash devices that
do not internally perform write remapping. On flash
devices that remap writes at page level, this approach
still provides benefits by packing multiple small SVMP
writes into a page. For devices that can perform
remapping at a sector level, where Chameleon’s log-
structuring is redundant, this functionality can be dis-
abled in Chameleon.

Similar to the system page tables, Chameleon uses a
hierarchical page table that is indexed by virtual memory
address to store the location of SVMPs on flash. We
refer to this index as the SVMP table and we store it in
RAM. In the future, to reduce RAM overhead, we could
overload the system page tables to store the location of
SVMPs that reside on flash.

Any live objects not in memory reside only in the
log, and any object re-written to the log potentially cre-
ates garbage because any older image of that object is

not needed, so Chameleon needs a log cleaner to ensure
space in log. Chameleon operates over the log in rounds,
where each round involves four phases – read, mod-
ify, write, and commit. In the read phase, Chameleon
reads into memory a 256KB block containing multiple
SVMPs from the head of the log. In the modify phase,
it discards any of these SVMPs that are garbage, poten-
tially creating gaps within the blocks’ in-memory copy.
It then fills these gaps with as many dirty SVMPs as it
can. In the write phase, it writes the block to its loca-
tion on flash. Finally, in the commit phase, it modifies
the SVMP table to reflect the new location on flash of
the dirty SVMPs, making their old locations garbage.
Additionally, Chameleon marks the system page tables
corresponding to these SVMPs as non-resident before
the modify phase. The next time the application ac-
cesses these pages, it incurs a page fault that is served
by Chameleon. We further describe this process in Sec-
tion 3.5.

In the modify phase, Chameleon needs to know if a
certain SVMP on flash is garbage. To find this informa-
tion, Chameleon stores a back-pointer for each SVMP
on flash pointing to its SVMP table entry. If the loca-
tion of the SVMP agrees with the location stored in-
side its SVMP table entry, then the SVMP is live, or
else it is garbage. We store these reverse pointers in the
header of each 256KB block on flash. While this infor-
mation could be stored in RAM, flash is substantially
cheaper, so we chose to store these reverse pointers on
flash along with the SVMPs. The decision to store these
reverse pointers in the header of a block was made so
that SVMPs can be properly aligned to 512 byte bound-
aries on flash. Such an alignment leads to quicker IO
operations – each SVMP access reads exactly the size of
the SVMP from the flash device.

While the writes happen in the background, reads
from flash are triggered on-demand by application page
faults. In the page fault handler, Chameleon obtains a
free physical page range or victimizes one to accommo-
date the desired SVMP. It then consults the SVMP ta-
ble, finds the SVMP on flash, and reads it into the target
physical memory location. Finally, it marks the page as
resident and returns control to the application.

3.4 Memory Allocator
To achieve full transparency, Chameleon also imple-
ments its own version of the malloc memory alloca-
tor so that even memory-allocation calls do not need to
be modified, as they were in SSDAlloc. In traditional
malloc implementations, the library interacts with the
operating system at the level of pages, and any subdivi-
sion of pages is tracked only within the library itself.

In Chameleon’s memory allocator, the allocation pol-
icy is tied to the request size as well as the permitted

page shapes. Requests that span multiple pages are allo-
cated via large contiguous regions obtained from the op-
erating system. Requests that are within the range of the
SVMP sizes, starting with requests for more than half
the smallest SVMP size, are rounded to the higher size,
and then allocated as an SVMP. Requests that are smaller
than half the smallest SVMP size are first rounded to the
next power of two, and then packed into a minimum-
sized SVMP.

When picking which offset to use for a given sized
SVMP, our malloc simply cycles through all possi-
ble offsets for that size. For example, for creating 64
byte chunks, our malloc would begin by dividing a
page of shape S0.5KB

0 into 64 byte regions. In the next
round of creation of 64 byte chunks, our malloc uses a
page of shape S0.5KB

0.5K . It would iterate this process all the
way through to the shape S0.5KB

3.5K and circle back to the
shape S0.5KB

0 . The rationale behind such cycling is that,
at steady state the shapes are uniformly distributed such
that they can be fit into physical pages compactly.

Reducing the size of SVMPs helps reduce the read
and write sizes for flash device operations, leading to
better utilization of the flash device and potentially
higher performance. At the same time, reducing the
minimum SVMP size has other less desirable ramifica-
tions. For example, we do not set the minimum size
as low as 64 bytes, because creating a large number of
extremely small sparse pages would bloat the virtual ad-
dress space consumption of the application and increase
TLB pressure. Additionally, each sparse page has its
own page table entry (8 bytes), an additional SVMP ta-
ble entry, and RAM overhead from the free list and also
from the recency tracker. Limiting the smallest SVMP
to be 0.5KB keeps the metadata overhead less than 5%
of RAM.

The policies described above are largely design
choices, and one can imagine alternatives that optimize
for different properties. For example, there are other
rounding strategies that waste less space [25] at a cost
of higher management overhead. It may be possible to
use these selectively for applications where the inter-
nal fragmentation caused by powers of two is excessive.
Also, some optimization could be performed for larger
regions. Requests for memory allocations of size more
than 4KB are allocated using contiguous pages of shape
S4KB

0 . In our current implementation, Chameleon creates
SVMPs using pages from anonymously mapped mem-
ory regions. This choice creates more VM objects inside
the OS, and if their management becomes an issue, it
may be possible to have Chameleon request a smaller
number of larger ranges and handle subdivision itself.

RAM Flash

Unprotected Virtual Memory

Applications

Unprotected Virtual Memory

System Page Table SVMP Table

Access
In-Core
Pages

Access
Out-of-

Core Pages

Unhindered
Access

Chameleon Page Fault Handler

Convert Virtual Memory Address to
Location on Flash Device

malloc / calloc

Allocate Protected Memory

Figure 4: Overview of how Chameleon services a
page fault triggered when application accesses a page
on flash. Pages in RAM are freely available.

3.5 Implementation Details
We implement most of Chameleon in roughly 8000 lines
of code in the C programming language as a library that
can be plugged into any application as a runtime system.
The library exports interfaces for malloc, calloc,
realloc and free, taking over the corresponding
functionality from the standard library. Chameleon
tracks page accesses by allocating read/write protected
virtual memory pages to the application. When the ap-
plication accesses any protected virtual memory regions,
it takes a page fault. Chameleon receives these page
faults from the OS and services them appropriately. Fig-
ure 4 presents a high level overview of how Chameleon’s
page fault handler works.

Chameleon also includes a kernel component neces-
sary to interface to the virtual memory system in ways
not provided to user applications. Chameleon requires
the ability to map multiple virtual memory pages to the
same physical memory page. It uses a loadable kernel
module that can modify page tables to provide this func-
tionality. It uses the same kernel component to obtain
read/write access to the dirty bit and recency bit in the
page table entries. The dirty bit is used to detect if a
page is dirty and the recency bit is used to implement the
two FIFO SVMP replacement algorithm of Chameleon.
Additionally, this kernel component allows Chameleon
to map a physical page to a virtual memory page that
is protected at the user level. This enables Chameleon
to provide thread-safe operations for concurrent appli-
cations. Without such support, Chameleon would have
to unprotect the page to service the page fault at the user
level, read data from flash and write to its virtual mem-
ory page location. While the page is being populated
in the unprotected state, another thread could potentially
freely read garbage data.

In our current implementation, we reserve a large
pool of physical memory pages (spanning most of the
available RAM) in the system. For security purposes,
these are the only pages that are used to implement
Chameleon’s RAM organization – additionally, physi-
cal pages are shared (via multiple SVMPs mapped to
it) only within the process. Chameleon manages the
flash device as a raw disk operating directly without any
caching or write-back support enabled. This provides
low-latency reads and writes to the device and avoids
other unnecessary filesystem overheads.

3.6 Chameleon’s Overhead
Chameleon has memory usage overhead from the way it
organizes RAM and flash, but many of these are imple-
mentation artifacts and as such can be reduced using op-
timizations that we propose in this section. We quantify
computational overheads from using more virtual mem-
ory using experiments as described in the next section.
In this section, we focus on the storage overhead.

The SVMP table tracks the location of pages on flash.
It is implemented as a three level page table, with an
overhead of roughly 8 bytes in RAM per page. This
overhead can be minimized simply by overloading the
system page tables to store the location of pages on flash.
We chose a separate SVMP table in our current imple-
mentation because we needed additional bits to represent
the size (two bits for representing four sizes) and shape
of an SVMP (three bits for representing eight shapes). If
the flash location information is moved to system page
tables, the size of SVMP page tables, now necessary
only for maintaining size and shape information, would
be reduced to 1 byte per SVMP. Since we primarily fo-
cus on large-memory workloads, we currently keep the
SVMP tables in RAM to avoid having to read them from
flash.

On-flash metadata that stores the back-pointers for
SVMPs has an overhead of roughly 10 bytes per SVMP
on flash. Chameleon stores additional information for
each SVMP that is in core. It needs to store the informa-
tion necessary for implementing the TF-Clock algorithm
and the free list. This overhead is 128 bytes per physical
page.

4 Evaluation
We compare Chameleon with three other state of the art
tiering systems, across various workloads including mi-
crobenchmarks, sorting, graph search and bloomfilters.

4.1 Experimental Setup
In all our experiments, we use a server with a quadcore
Intel Xeon 3GHz CPU with 16GB RAM. We use two
SSDs for evaluation – the OCZ-VERTEX4, and the Intel
520. In each experiment, we compare Chameleon with

10GB RAM, 0GB Flash 1MB RAM, 10GB Flash

Memory Configuration

0.0625

0.25

1

4

16

64

256

1024

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

SSDAlloc Chameleon Log-Swap Swap

(a) 90% Reads & 10% Writes

10GB RAM, 0GB Flash 1MB RAM, 10GB Flash

Memory Configuration

0.0625

0.25

1

4

16

64

256

1024

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

SSDAlloc Chameleon Log-Swap Swap

(b) 10% Reads & 90% Writes

Figure 5: Microbenchmarks with random reads/writes on 0.5KB objects. Chameleon matches the lowest la-
tency for random accesses under all settings when compared to SSDAlloc and Log-Swap.

these three tiering systems:

• Swap: We use the in-built swap mechanism in
Linux as the base system against which we compare
the rest of the systems. We will refer to this sys-
tem simply as the “Swap” in the rest of this section.
Swap was originally designed as the worst-case
protection mechanism for applications that may run
out of memory. In addition, it was originally de-
signed for the magnetic disk and therefore, was
not optimized to exploit the low-latency and high-
concurrency characteristics of modern SSDs. To
provide a fair comparison, we use our memory allo-
cator (Section 3.4), as opposed to using the default
malloc.

• Log-structured Swap: We built a log-structured
swap system. We simply configured our malloc
to use pages of only 4KB in size – pages of shape
S4KB

0 . This will let the application use only 4KB
pages in Chameleon. The performance of this sys-
tem will give us a close approximation of the char-
acteristics of a page based system. We will refer to
this system simply as the “Log-Swap” in the rest of
this section. We also compared against OS-swap.
As reported in previous work [5, 32, 37], we find
that OS-swap performed consistently worse com-
pared to log-structured swap because of synchro-
nized random writes. Therefore, we report compar-
isons only against log-structured swap for the rest
of the paper.

• SSDAlloc: We compare Chameleon against our
previous work on SSDAlloc [5]. While SSDAlloc
is extremely useful network bottlenecked, memory-
intensive applications like HTTP caches, query
caches like Memcache, it was not designed to ex-
plicitly support computationally intensive tasks like
graph traversals.

The purpose of our evaluation is to demonstrate the
capabilities of Chameleon when compared to the other
systems under various circumstances. We use the Mi-
crobenchmarks in Section 4.2 to show the limiting per-

formance of these systems. We use the sorting bench-
marks in Section 4.3 to demonstrate the performance
of Chameleon when application’s hot objects are spread
across the flash device, but can be compactly cached
in RAM. We use the graph search benchmarks in Sec-
tion 4.4 to evaluate the computational overhead from ex-
cessive usage of virtual memory in Chameleon. Finally,
we use the bloomfilter benchmarks in Section 4.5 to
demonstrate the benefits for Chameleon for write-heavy
workloads.

4.2 Microbenchmarks
We present some experimental results using mi-
crobenchmarks to demonstrate the limits of each sys-
tem. We allocate 10GB worth of 0.5KB objects and
perform random read/write operations on them. Specif-
ically, we test read:write ratios of 10:90 and 90:10. Ad-
ditionally, for each setting, we present RAM-driven and
flash-driven performance. In the RAM-driven setting,
we ensure that all the objects fit in RAM. In the flash-
driven setting we ensure that only a handful of the ob-
jects can reside in RAM (10MB worth) at any point of
time.

We find that Chameleon, SSDAlloc and Log-Swap
have 15.8 µsec of software overhead to service page
faults on average – this includes memcpy’s required to
bring in the new page and move the old page to a buffer,
the overhead from managing the free list and TF-Clock,
and the system calls needed to read/modify page table
entries. This does not include the read latency of flash
(typically 100–150µsec), however. The results with the
combined latency are presented in Figure 5.

Figure 5(a) presents the results for the case when
90% of the random operations on these objects are
reads. When all the objects can fit in memory,
Chameleon matches the performance of Log-Swap and
Swap. Essentially, when enough memory is available,
Chameleon, even with higher virtual memory usage, can
match the random access performance of Log-Swap, and
Swap – because random accesses do not provide any lo-

cality in the TLB. SSDAlloc, on the other hand, needs
page faults to access pages that are cached in RAM
non-transparently. When the amount of RAM is mea-
ger compared to the data set size, Chameleon matches
the out-of-core performance of SSDAlloc. Unlike Log-
Swap and Swap, Chameleon and SSDAlloc access only
0.5KB per operation. Log-Swap, and Swap access a full
4KB page every time and incur 15.7%, and 67.4% higher
latency respectively.

Figure 5(b) shows the comparisons when 90% of the
operations are writes. In this case, Chameleon and
SSDAlloc perform 43.23% better than Log-Swap, and
2.65X better than Swap. Even though the writes happen
in the background, they influence the latency of reads
necessary for the page-in process by keeping the device
occupied. Chameleon and SSDAlloc write substantially
less data to flash compared to Log-Swap, and Swap be-
cause of fine-grained access. Chameleon, like SSDAl-
loc, operates over flash at a granularity of 0.5KB while
Log-Swap, and Swap operate at 4KB. This decreases the
total data written to flash by 8x. Such savings are es-
pecially useful considering the fact that flash’s blocks
can be written only a limited number of times. The
poorer performance of Swap when compared to Log-
Swap is primarily because of the random write behavior
of Swap [5, 37].

4.3 Sorting Workload
We use a sorting workload to demonstrate the benefit
of Chameleon’s free list and TF-Clock implementation.
SVMPs allow the application to transparently cache data
in RAM at a finer granularity than 4KB. When an ap-
plication’s hot objects (smaller than 4KB) are spread
across the flash device, the smaller pages provided by
Chameleon make more effective use of RAM. Each
physical page contains more hot objects in Chameleon
when compared to Log-Swap because multiple 0.5KB
SVMPs can be packed into the same physical page.

To demonstrate this benefit, we perform the follow-
ing experiment. We create 100GB worth of 0.5KB
records. Chameleon uses all the allowed shapes for
0.5KB SVMPs shown in Table 2 uniformly to create
them. SSDAlloc uses only the shape S0.5KB

0 to create
them to emulate one object per page. Likewise, Log-
Swap uses only the shape S4KB

0 for allocating them –
however, each such page is used to create eight 0.5KB
records. We select a small number of these records at
random and sort them in place, using quicksort, accord-
ing to randomly-generated 8 byte keys. We vary the
number of records sorted and we also vary the amount
of RAM in the system.

We begin with sorting 10GB worth of randomly-
selected 0.5KB records in two configurations. In one
configuration, the system has 10GB of RAM. We

Working Set
Fits in RAM

0.25

1

4

16

64

256

1024

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

Working Set
Too Large for RAM

0.0

0.25

0.5

0.75

1.0

1.25

1.5

SSDAlloc Chameleon Log-Swap Swap

Figure 6: Sorting workload finds in-memory and out-
of-core sorting performance of the three systems.

use this configuration to demonstrate the benefits in
Chameleon of being able to map more than one 0.5KB
SVMPs on to the same 4KB page so that each physical
page in RAM contains eight 0.5KB records that are hot.
Log-Swap, and Swap on the other hand can cache only
at 4KB granularity and have to cache many cold 0.5KB
records in RAM along with the hot ones. Pages of Log-
Swap, and Swap are static and therefore cache a lot of
records in RAM that are not even part of the data be-
ing sorted – roughly speaking, only 1

8
th

of each page is
of interest to the sorting workload. The rest of the page
simply wastes RAM space by storing only cold data that
is colocated with hot data. This effectively, brings down
the RAM utilization of Log-Swap down to a mere 1

8
th

of
ideal.

Figure 6 shows how Chameleon outperforms Log-
Swap by 475x for this reason. While SSDAlloc can
cache all the hot records in RAM in a compact fash-
ion, it cannot provide page-fault free access to all of
them. More specifically, for 0.5KB records, only 1

8
th

of the entire RAM is available to the application without
page faults – each physical page has one 0.5KB record
mapped to it and the rest of the 3.5KB of the page is
used for caching records non-transparently. A page fault
is needed to access them and page faults have a high
overhead as shown in Section 4.2. Figure 6 shows how
Chameleon outperforms SSDAlloc by a factor of 105x
for this reason. Log-Swap performs 3.81 times better
than Swap because it reduces the number of random
writes by using the SSD sequentially.

In another configuration, the system has 10MB of
RAM. We use this configuration to demonstrate the
benefit of fine-granularity dirty information. When
quicksort pivots, Chameleon only needs to swap 0.5KB
records on flash, while Log-Swap on the other hand
would have to swap entire 4KB pages containing the
0.5KB records being pivoted. Figure 6 presents the re-
sults. SSDAlloc and Chameleon perform 36.3% and
37.8% better when compared to Log-Swap because of
their fine granularity flash access. We believe that the
slight advantage of Chameleon over SSDAlloc is be-

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Total RAM in the System (GB)

0.25

1

4

16

64

256

1024

P
e
rf

o
rm

a
n
ce

 G
a
in

 F
a
ct

o
r

Gain over SSDAlloc Gain over Log-Swap

Figure 7: Performance gain of Chameleon over SS-
DAlloc and Log-Swap when the amount of RAM in
the system is varied. Chameleon’s efficient RAM us-
age enables it to obtain these benefits.

cause of its more efficient usage of the meager, but use-
ful, RAM in the system. More importantly, Chameleon
writes 8x less data when compared to Log-Swap for the
same in-place sorting workload improving average flash
access latency. This is primarily because, like SSDAlloc,
Chameleon can operate on flash at a 0.5KB granularity
for managing the 0.5KB records.

Figure 7 shows the performance gains that Chameleon
obtains for different amounts of RAM in the system
when sorting 1GB worth of randomly selected 0.5KB
records. We vary the RAM in the system from 0.4GB
to 1.6GB in steps of 0.2GB. When the RAM in the sys-
tem is larger than the working set (≥ 1GB), Chameleon
is the only system which is able to utilize most of the
RAM to not only cache the entire working set but also
provide page-fault free access to it. Chameleon is able to
avoid using flash for this workload and provides the im-
pressive gains over Log-Swap. Chameleon is also able
to minimize page faults unlike SSDAlloc and provides
gains over SSDAlloc. When the working set is larger
than the RAM in the system (< 1GB), Chameleon out-
performs Log-Swap and SSDAlloc by upto 632% and
72%, respectively. However, the margins are lower be-
cause the benefits are masked by flash access latency that
is more than 150µsec as shown in Section 4.2.

4.4 Graph-Search Workload
We use a graph traversal benchmark to demonstrate the
performance implications of increased virtual memory
usage because of the SVMP model. We also use this
workload to demonstrate benefits of fine-grained access
for read-heavy applications similar to the Graph500 [21]
workload. We generate a directed acyclic graph on
which we perform depth first search (DFS). We use the
Graph500 reference code to perform these experiments.
We modify the reference code to generate graphs in
memory using the four systems that we wish to compare
to manage the tiering.

Entire Graph
Fits in RAM

Memory Configuration

0.5

1

2

4

8

16

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

SSDAlloc Chameleon Log-Swap Swap

RAM is Too Small
to Hold the Graph

0.0

0.25

0.5

0.75

1.0

1.25

Figure 8: Searching workload – testing in-memory
and out-of-core graph traversal performance of the
three systems.

We generate a graph using Graph500’s graph genera-
tor with 228 vertices and 232 edges. The size of the graph
generated is 127GB when generated using our memory
allocator (Section 3.4). We also generate another graph
with 224 vertices and 228 edges. The size of the smaller
graph generated is 7.9GB.

We modify the reference code to use SSDAlloc,
Chameleon, Swap, and Log-Swap for managing the tier-
ing of data between DRAM and the SSD. Similar to the
sorting scenario, Chameleon uses 0.5KB SVMPs to allo-
cate the vertices; SSDAlloc uses 0.5KB pages for alloca-
tions; while Chameleon uses pages with the shape S4KB

0
to allocate them. On these graphs, we then perform DFS
on 30 different 64 byte keys (search for all instances of
the key) using the Graph500 reference benchmark.

There are two settings in which we perform the ex-
periment. In the first setting, we benchmark the per-
formance of each system when searching the smaller
graph that fits entirely in DRAM. Figure 8 shows that
Chameleon outperforms SSDAlloc by a factor of 9.85x.
This is primarily because Chameleon provides unhin-
dered access to RAM to the application while SSDAl-
loc provides only a portion of RAM in such a manner.
Similarly, Log-Swap outperforms SSDAlloc by a factor
of 10.88x. Log-Swap obtains higher performance ben-
efits because it uses significantly fewer virtual memory
pages (8x less) to perform the graph search. Therefore,
it incurs fewer TLB misses. Swap performs 9.8% better
compared to Log-Swap because it does not have the ad-
ditional overhead from the internal data structures that
Log-Swap (Chameleon based system) has to maintain
internally.

In the second setting, we configure the system to have
1MB of RAM and perform the searches on the larger
graph to demonstrate out-of-SSD performance of each
system. Figure 8 shows that Chameleon and SSDAlloc
perform 21.2% and 22.4% better than Log-Swap. They
obtain these performance benefits by reading the device
at a granularity of 0.5KB. The performance improve-

0.0

0.25

0.5

0.75

1.0

1.25

1.5

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

SSDAlloc Chameleon Log-Swap Swap

Figure 9: Out-of-core performance for bloomfilter
insertions. Chameleon and SSDAlloc outperform
Log-Swap by a margin of 46.7%

ments are slightly lower compared to the flash-driven
sorting due to the fact that this is a read-only workload.

4.5 Bloomfilter Workload
We use a bloomfilter workload to demonstrate the per-
formance benefits of SVMPs for write-heavy workloads.
In this experiment, we build a bloomfilter using the three
systems. In each system, we implement the bloomfilter
over an array of pages. For Chameleon and SSDAlloc,
we pick a page of size 512 bytes. For this experiment,
we present only the flash-driven setting by restricting the
RAM size to 10MB. The total size of the bloomfilter we
use is 80 billion bits(10GB). We perform several inser-
tions of 20 byte keys in the bloomfilter using eight differ-
ent hash functions that would touch eight different loca-
tions in the bloomfilter. We do not perform any look-ups
so as to study a write-heavy workload.

Figure 9 presents the results. Chameleon outperforms
Log-Swap by 46.7% for write intensive workloads – the
background writes increase the latency of the page-in
process. Chameleon matches the performance of SS-
DAlloc for such workloads. Additionally, Chameleon
writes 8x less data to flash when compared to Log-Swap.
Due to excessive amount of random writes, Swap perfor-
mance 4.12X poorer compared to Log-Swap.

5 Related Work
FlashVM [37] optimizes the Linux swap subsystem [20]
to make flash aware decisions like batching writes. It pri-
oritizes dirty data over clean data when evicting pages to
improve batching efficiency. However, similar to other
flash based swap systems [26, 30, 32], FlashVM works
at a 4KB page granularity and cannot provide the full
benefits of RAM and flash to the application.

SSDAlloc [5] addresses this problem by aligning ap-
plication objects to page boundaries and using the vir-
tual memory page level access information to deign ob-
ject level access information. However, SSDAlloc does
not make an effective use of RAM in the system because
most of the RAM in SSDAlloc is trapped behind a page
fault.

Other systems that use flash as part of the program’s
memory usually build non-transparent object stores [2,
4, 12, 13, 29]. These systems can fully exploit the ben-
efits of flash and RAM. However, using these object
stores within applications will need intrusive modifica-
tions to the code where objects are allocated and used.
We believe that packaging and tiering flash under RAM
transparently via virtual memory will lead to a wider and
quicker adoption of flash as program memory.

The aim of Chameleon is to expose flash as a
slower, but denser form of memory rather than pro-
viding support for durability of data by leveraging the
non-volatility of flash. Many existing systems provide
these properties for various non-volatile memory tech-
nologies [10, 11, 34, 32, 42], and can be implemented in-
side Chameleon. However, obtaining transactional sup-
port may require source code modifications.

Many modern scale-out systems are proposing the use
of RAM only to build systems [22, 31, 33, 44] to im-
prove latency. Chameleon can help these systems scale
the limitations of RAM and help them quickly adopt
flash without any application modifications.

Multiview [24] uses virtual address aliasing with
physical allocation for fine-granular distributed shared
memory. Chameleon uses SVMPs for paging to flash at
a fine granularity. Additionally, Chameleon implements
an efficient replacement mechanism for these SVMPs
and transparently manages RAM and flash for the ap-
plication so that the RAM is fully packed with hot data.
Additionally, our malloc is co-designed with the pag-
ing system.

Mondrian memory protection (MMP) [43] is a fine-
grained hardware-level protection for arbitrarily sized
virtual memory regions. Such fine-grained protection
can allow fine-grained flash access by producing page
faults at a fine-granularity. However, MMP requires
hardware modifications. The aim of Chameleon is to
provide the benefits of flash and RAM without any ap-
plication or hardware modifications.

Hardware solutions have been proposed to use RAM
at a finer granularity than a page to obtain benefits sim-
ilar to Chameleon’s SVMPs [14, 28, 35, 41]. These
systems architect RAM the way CPU caches are archi-
tected. The aim of Chameleon is to provide most of the
benefits of such systems without any hardware modifi-
cations.

6 Conclusion and Future Work
Flash has caused a disruption in the storage and mem-
ory hierarchy by providing a distinct third tier in what
has long been, conceptually, a two-tier system. Com-
pared to RAM, flash is higher density, lower cost, and
more power efficient, but these advantages comes with
a hundred-fold latency penalty. To leverage the advan-

tages of flash at the application, most systems have cho-
sen to simply use flash as a disk replacement. While
applications can access their stored data more quickly
without need to modify the application, unfortunately,
for a growing number data-intensive applications flash
memory cannot compete with the low price per GB of
magnetic media. In this work, we take an alternative ap-
proach and tier flash-memory behind RAM rather than
in front or in place of of magnetic disk.

Chameleon uses flash to expand the application mem-
ory space into the multi-terabyte range and then, trans-
parently migrates application memory between DRAM
and flash. Chameleon uses sparsely-allocated virtual
memory pages to gain fine-grained data usage informa-
tion to operate efficiently on flash. It has the ability
to hold important application data compactly in RAM.
We show that applications using Chameleon outperform
applications using state-of-the-art tiering mechanism by
providing more than two orders of magnitude improve-
ment in latency for working sets that can fit in RAM. We
also show that Chameleon provides up to 47% latency
improvement for out-of-core applications. Additionally,
we show that Chameleon can decrease the data written
to flash by 8x for the same write workload.

In the future, we wish to use the system page tables
to store the location of SVMPs on flash to save RAM
space required for the SVMP table. We also wish to
further investigate into the problem of increased TLB
pressure. Further, we wish to investigate better strategies
to maintain the free list and also to find better SVMP
packing algorithms to further improve RAM locality.

7 Acknowledgments
We would like to thank our shepherd, Brad Chen, as well
as the anonymous ACM SOSP’13, and ACM TRIOS’13
reviewers. This research was funded in part by the NSF
Award CNS-0916204, and was performed while the lead
author was finishing his PhD at Princeton University.

References
[1] N. Agarwal, V. Prabhakaran, T. Wobber, J. D.

Davis, M. Manasse, and R. Panigrahy. Design
Tradeoffs for SSD Performance. In Proc. USENIX
ATC, Boston, MA, June 2008.

[2] A. Anand, C. Muthukrishnan, S. Kappes,
A. Akella, and S. Nath. Cheap and Large CAMs
for High Performance Data-Intensive Networked
Systems. In Proc. 7th USENIX NSDI, San Jose,
CA, Apr. 2010.

[3] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Sto-
ica. PACMan: Coordinated Memory Caching for

Parallel Jobs. In Proc. 9th USENIX NSDI, San
Jose, CA, Apr. 2012.

[4] D. G. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan. FAWN:
A Fast Array of Wimpy Nodes. In Proc. 22nd ACM
SOSP, Big Sky, MT, Oct. 2009.

[5] A. Badam and V. S. Pai. SSDAlloc: Hybrid
SSD/RAM Memory Management Made Easy. In
Proc. 8th USENIX NSDI, Boston, MA, Mar. 2011.

[6] A. Birrell, M. Isard, C. Thacker, and T. Wob-
ber. A Design for High-Performance Flash Disks.
SIGOPS OSR, 41(2):88–93, Apr. 2007.

[7] S. Boboila and P. Desnoyers. Write Endurance
in Flash Drives: Measurements and Analysis. In
Proc. 8th USENIX FAST, San Jose, CA, Feb. 2010.

[8] J. A. Brown and D. M. Tullsen. The Shared-Thread
Multiprocessor. In Proc. 22nd ACM ICS, Island of
Kos, Greece, June 2008.

[9] F. Chen, D. A. Koufaty, and X. Zhang. Understand-
ing Intrinsic Characteristics and System Implica-
tions of Flash Memory Based Solid State Drives. In
Proc. ACM SIGMETRICS, Seattle, WA, June 2009.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. NV-
Heaps: Making Persistent Objects Fast and Safe
With Next-Generation, Non-Volatile Memories. In
Proc. ACM ASPLOS, Newport Beach, CA, Mar.
2011.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
D. Burger, B. Lee, and D. Coetzee. Better I/O
Through Byte-Addressable, Persistent Memory. In
Proc. 22nd ACM SOSP, Big Sky, MT, Oct. 2009.

[12] B. Debnath, S. Sengupta, and J. Li. SkimpyStash:
RAM Space Skimpy Key-Value Store on Flash. In
Proc 30th ACM SIGMOD, Athens, Greece, June
2011.

[13] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt,
J. F. Naughton, and A. Halverson. Turbocharg-
ing DBMS Buffer Pool Using SSDs. In Proc 30th
ACM SIGMOD, Athens, Greece, June 2011.

[14] X. Dong, Y. Xie, N. Muralimanohar, and N. P.
Jouppi. Simple but Effective Heterogenous Main
Memory with On-Chip Memory Controller Sup-
port. In Proc. SC, New Orleands, LA, Nov. 2010.

[15] Dropbox TPS.
http://www.dropbox.com/press.

[16] Facebook Message Workload.
https://www.facebook.com/note.
php?note_id=454991608919.

[17] Fusion-io: Extended Memory API.
http://www.fusionio.com/products/
iomemorysdk/.

http://www.dropbox.com/press
https://www.facebook.com/note.php?note_id=454991608919
https://www.facebook.com/note.php?note_id=454991608919
http://www.fusionio.com/products/iomemorysdk/
http://www.fusionio.com/products/iomemorysdk/

[18] Fusion-io: ioDrive Octal.
http://www.fusionio.com/
platforms/iodrive-octal/.

[19] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-
parallel computation on natural graphs. In Proc.
10th USENIX OSDI, Hollywood, CA, Oct. 2012.

[20] M. Gormen. Understanding the Linux Virtual
Memory Manager. Prentice Hall, 2004.

[21] Graph500: Graph Search Benchmarks.
http://www.graph500.org/index.
html.

[22] M. Grund, J. Krueger, H. Plattner, A. Zeier, and
P. C.-M. S. Madden. HYRISE–A Main Memory
Hybrid Storage Engine. In Proc. 36th VLDB, Sin-
gapore, Singapore, Sept. 2010.

[23] L. M. Grupp, J. D. Davis, and S. Swanson. The
Bleak Future of NAND Flash Memory. In Proc.
10th USENIX FAST, San Jose, CA, Feb. 2012.

[24] A. Itzkovitz and A. Schuster. Multiview and Mil-
lipage – Fine-Grain Sharing in Page-Based DSMs.
In Proc. 3rd USNIX OSDI, New Orleans, LA, Feb.
1999.

[25] Jemalloc Memory Allocator.
http://http://www.canonware.com/
jemalloc/.

[26] S. Ko, S. Jun, Y. Ryu, O. Kwon, and K. Koh. A
New Linux Swap System for Flash Memory Stor-
age Devices. In Proc. ICCSA, Perugia, Italy, June
2008.

[27] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. In
Proc. 10th USENIX OSDI, Hollywood, CA, Oct.
2012.

[28] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Ar-
chitecting Phase Change Memory as a Scalable
DRAM Alternative. In Proc. 36th ACM SIGARCH,
New York, NY, June 2009.

[29] H. Lim, B. Fan, D. Andersen, and M. Kamin-
sky. SILT: A Memory-Efficient, High-Performance
Key-Value Store. In Proc. 23rd ACM SOSP, Cas-
cais, Portugal, Oct. 2011.

[30] M. Lin, S. Chen, G. Lv, and Z. Zhou. Optimizing
Linux Swap System for Flash Memory. In IEEE
Electronic Letters, 2011.

[31] J. Ousterhout, P. Agrawal, D. Erickson,
C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra,
A. Narayanan, G. Parulkar, M. Rosenblum, S. M.
Rumble, E. Stratmann, and R. Stutsman. The Case
for RAMClouds: Scalable High-Performance
Storage Entirely in DRAM. SIGOPS OSR,
43(4):92–105, Jan. 2010.

[32] R. Pearce, M. Ghokale, and N. M. Amato. Mul-
tithreaded Asynchronous Graph Traversal for In-
Memory and Semi-External Memory. In Proc. SC,
New Orleands, LA, Nov. 2010.

[33] R. Power and J. Li. Piccolo: Building Fast, Dis-
tributed Programs with Patitioned Tables. In Proc.
9th USENIX OSDI, Vancouver, Canada, Oct. 2010.

[34] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou.
Transactional Flash. In Proc. 8th USENIX OSDI,
San Diego, CA, Dec. 2008.

[35] M. K. Qureshi and G. Loh. Fundamental La-
tency Trade-offs in Architecting DRAM Caches.
In Proc. 45nd IEEE MICRO, Vancouver, Canada,
Dec. 2012.

[36] M. Rosenblum and J. K. Ousterhout. The Design
and Implementation of a Log-Structured File Sys-
tem. ACM Trans. on Computer Systems, 10(1):26–
52, Feb. 1992.

[37] M. Saxena and M. M. .Swift. FlashVM: Virtual
Memory Management on Flash. In Proc. USENIX
ATC, Boston, MA, June 2010.

[38] Slashdot: Most SSDs Now Under a $ Per GB.
http://hardware.slashdot.org/
story/12/10/05/2156209/most-ssds-
now-under-a-dollar-per-gigabyte.

[39] M. Stonebreaker, S. Madden, D. J. Abadi, S. Hari-
zopoulos, N. Hachem, and P. Helland. The End
of an Architectural Era: (It’s Time for a Complete
Rewrite). In Proc. VLDB, Vienna, Austria, 2007.

[40] K. Sudan, A. Badam, and D. W. Nellans. NAND-
Flash: Fast Disk or Slow Memory? In Proc. 3rd
NVMW, San Diego, CA, Mar. 2012.

[41] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi,
R. Balasubramonian, and A. Davis. Micro-Pages:
Increasing DRAM Efficiency with Locality-Aware
Data Placement. In Proc. ACM ASPLOS, Pitts-
burgh, PA, Mar. 2010.

[42] H. Volos, A. J. Tack, and M. M. Swift.
Mnemosyne: Lightweight Persistent Memory. In
Proc. ACM ASPLOS, Newport Beach, CA, Mar.
2011.

[43] E. Witchel and K. Asanovic. Mondrian Memory
Protection. In Proc. 10th ACM ASPLOS, San Jose,
CA, Oct. 2002.

[44] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient Distributed Datasets: A
Fault-Tolerant Abstractions for In-Memory Cluster
Computing. In Proc. 9th USENIX NSDI, San Jose,
CA, Apr. 2012.

http://www.fusionio.com/platforms/iodrive-octal/
http://www.fusionio.com/platforms/iodrive-octal/
http://www.graph500.org/index.html
http://www.graph500.org/index.html
http://http://www.canonware.com/jemalloc/
http://http://www.canonware.com/jemalloc/
http://hardware.slashdot.org/story/12/10/05/2156209/most-ssds-now-under-a-dollar-per-gigabyte
http://hardware.slashdot.org/story/12/10/05/2156209/most-ssds-now-under-a-dollar-per-gigabyte
http://hardware.slashdot.org/story/12/10/05/2156209/most-ssds-now-under-a-dollar-per-gigabyte

	Introduction
	Motivation
	State of the art

	Design
	Shape-shifting Virtual Memory Pages
	RAM Organization
	Flash Organization
	Memory Allocator
	Implementation Details
	Chameleon's Overhead

	Evaluation
	Experimental Setup
	Microbenchmarks
	Sorting Workload
	Graph-Search Workload
	Bloomfilter Workload

	Related Work
	Conclusion and Future Work
	Acknowledgments

