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ABSTRACT

Click fraud is a scam that hits a criminal sweet spot by both tap-
ping into the vast wealth of online advertising and exploiting that
ecosystem’s complex structure to obfuscate the flow of money to its
perpetrators. In this work, we illuminate the intricate nature of this
activity through the lens of ZeroAccess—one of the largest click
fraud botnets in operation. Using a broad range of data sources, in-
cluding peer-to-peer measurements, command-and-control teleme-
try, and contemporaneous click data from one of the top ad net-
works, we construct a view into the scale and complexity of modern
click fraud operations. By leveraging the dynamics associated with
Microsoft’s attempted takedown of ZeroAccess in December 2013,
we employ this coordinated view to identify “ad units” whose traf-
fic (and hence revenue) primarily derived from ZeroAccess. While
it proves highly challenging to extrapolate from our direct observa-
tions to a truly global view, by anchoring our analysis in the data
for these ad units we estimate that the botnet’s fraudulent activities
plausibly induced advertising losses on the order of $100,000 per
day.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection—/Invasive Software; K.4.2 [Computers
and Society]: Social Issues—Computer Abuse and Crime

Keywords

Click Fraud; Malware; ZeroAccess; Cybercrime; Measurement

1. INTRODUCTION

Profit drives modern cybercrime. Investments in malware, bot-
nets, bullet-proof hosting, domain names, and other infrastructure
must all be justified by the greater revenue brought in by the scams
that use them. Thus, scammers relentlessly innovate to identify
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more lucrative niches to maximize their returns (e.g., counterfeit
goods, fake anti-virus, ransomware, credit card theft, cryptocur-
rency mining, etc.). Monetization, however, also presents some
of the greatest risks, since it represents both a single point of vul-
nerability in the business model and a potential means of forensic
attribution [18, 24, 27]. Thus, the ideal monetization strategy for an
Internet scammer would not only tap into great wealth, but would
also effectively launder the money trail as well. As we will describe
in this paper, the modern advertising ecosystem is remarkably well-
suited to this need, and modern click fraud provides perhaps the non
plus ultra of all such monetization schemes.

First and foremost, online advertising represents an enormous
revenue stream, generating over $20 billion in revenue in the first
half of 2013 and growing at an estimated 20% per year [35]. More-
over, by design, online advertising is a low-friction market designed
to engage the broadest possible set of participants, and thus presents
few barriers-to-entry for potential bad actors. Unsurprisingly, crim-
inal groups have developed a range of techniques for generating
synthetic advertisement clicks for profit at the expense of legitimate
advertisers and ad networks [4]. Indeed, such click fraud accounts
for as much as 10% of all advertising clicks, potentially defraud-
ing advertisers of hundreds of millions of dollars annually, with
some experts predicting the rate increasing by more than 50% per
year [38].

As a further difficulty, the ecosystem of online advertising is
highly complex, and while occasionally traffic flows directly from
publisher to advertiser, in the common case instead a vast array of
middlemen—syndicators, subsyndicators, traffic aggregators and
resellers—separates the two endpoints of each ad click. While the
path of such a click on the Internet is nominally visible (a chain
of redirects from one domain to the next), the chain of payment
remains largely opaque. Those on the buy-side and the sell-side
of the traffic ecosystem negotiate their contracts bilaterally, with a
wide range of terms and conditions. Thus, no single party comes
remotely close to having comprehensive visibility of who gets paid
what for any given click. Finally, as we describe, modern click
fraud platforms can engage with a wide range of ad networks, who
in turn mix this traffic with other, more legitimate sources, further
complicating any forensic analysis.

In this paper we illuminate these problems by characterizing the
click fraud perpetrated by ZeroAccess. Active in a variety of forms
since 2009 [9], ZeroAccess was one of the largest botnets in oper-
ation, commanding an estimated 1.9 million infected computers as
of August 2013 [33]. More importantly, ZeroAccess was particu-



larly known for monetization primarily via click fraud (with losses
to advertisers estimated at $2.7 million per month [40]). However,
while the technical aspects of ZeroAccess’s design and operations
(e.g., infection vector, peer-to-peer C&C protocol) are well docu-
mented [9, 33, 40, 41], the nature of its click fraud behavior and the
attendant monetization has seen less study. In part, this is because
such analyses require a range of disparate vantage points, including
of the botnet itself, of infected hosts, and of impacted publishers.

By combining an array of data sources, including peer-to-peer
measurements, C&C telemetry from botnet infiltration, and click
information from one of the top ad networks, we have constructed
a deep analysis to illuminate the rich, intertwined nature of modern
click fraud and the advertising ecosystem it exploits. In particular,
our work makes three contributions: First, we provide a detailed
description of the click fraud component of ZeroAccess, the inno-
vations it introduced in hijacking high-quality user search traffic,
and the side effects by which we were able to track its activity.
Second, we show how to match botnet membership data, network
telemetry, and ad network click streams using a combination of
timing information and reactions to external events (in this case the
Microsoft-initiated takedown of ZeroAccess click fraud infrastruc-
ture and the botmaster’s immediate responses). Finally, using this
technique we identify with high confidence 54 individual “ad units”
(here roughly corresponding to distinct traffic sellers) whose traffic
volume (and hence revenue) was predominantly rooted in Zero-
Access. By anchoring our analysis in these ad units, we roughly
estimate that the botnet produced on the order of a million fraudu-
lent clicks a day, plausibly inducing advertising losses on the order
of $100,000 per day. However, the uncertainties involved in ex-
trapolating to this global picture loom large enough that we must
caution that this reflects a coarse-grained estimate, and accordingly
we discuss the challenges involved in forensic accounting of click
fraud payouts.

Taken together, our work illustrates the complex nature of the
click fraud problem and highlights the need for much better mech-
anisms for correlating traffic and payment streams.

2. BACKGROUND

As background, we provide an overview of the advertising
ecosystem on the Web, how attackers defraud Web advertising net-
works, specifically the two methods by which ZeroAccess has per-
petrated click fraud at scale, and insight into the attempted take-
down of the botnet by Microsoft. Throughout we highlight related
work that has also studied the ZeroAccess botnet and various as-
pects of click fraud.

2.1 Web Advertising and Click Fraud

When a user issues a search query, the resulting page includes or-
ganic search results, for which the linked Web sites do not pay the
search engine, as well as paid search ads, for which the linked Web
sites (the advertisers) pay the search engine for inclusion. These
ads are typically placed above the organic results or alongside on
the right. They are formatted similarly as search results except for a
darker shade background and the word “Ad” or “Sponsored” some-
where nearby.

Search engines select ads based on the user’s search query. The
search query is distilled into a group of keywords after normalizing
to remove misspellings and resolve ambiguities. Advertisers indi-
cate keywords (or groups of keywords) for which they would like
their ad to be considered for inclusion in search results.

Search ad syndication network. Search engines partner with
thousands of Web sites, services, and applications—collectively
called publishers—to extend the reach of the search engine’s adver-
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Figure 1: Anatomy of a typical ad click, showing the various HTTP requests
associated with a user clicking on an advertisement, leading them to an
advertiser’s landing page, and from there possibly to additional interactions.

tisers to users beyond the search engine. Publishers include blog
sites, news sites, niche search engines, ad-supported browser ad-
dons, and other ad networks.

The publisher sends the user’s search query from the publishers
Web site or app, or in the case of blogs and news sites the context of
the article the user is reading, to the search engine’s ad server to re-
trieve relevant ads in exchange for a cut of the advertising revenue.
The publisher can display relevant ads by embedding JavaScript
provided by the ad server, which directs the user’s browser to fetch
the ads as illustrated in steps 1-6 in Figure 1; alternatively, the pub-
lisher can directly fetch relevant ads through server-to-server com-
munication between the publisher and the ad server (not shown in
the figure). If the user clicks the ad, the user is taken to the adver-
tiser’s site through a series of redirects as shown in steps 6-11 in
the figure. Each interaction at the ad server is logged along with
the publisher identifier for the publisher responsible for the traffic.

Publishers can, in turn, (sub)syndicate to other downstream pub-
lishers according to the search ad network’s policy. The down-
stream publisher requests ads from the intermediate publisher,
which then fetches them from the ad server. The search engine
pays the intermediate publisher a cut of the ad revenue. The in-
termediate publisher pays the downstream publisher a smaller cut
and retains the rest in exchange for the service it provided. Thus the
search engine does not directly deal with the downstream publisher,
and in many cases never learns of its existence. Subsyndication ar-
rangements exist to help search ad networks scale to hundreds of
thousands of publishers by distributing the management overhead
down tiers of aggregators.

For example, Google and Bing syndicate search ads to other
search engines including InfoSpace and Yahoo respectively [12,
31]. InfoSpace and Yahoo show these ads on Web sites owned
and operated by them, but additionally subsyndicate to smaller
networks like Publishers Clearing House and Chitika respectively,
which then further subsyndicate to yet smaller publishers.

Revenue share. Search ads are typically charged on a cost-
per-click (CPC) model, i.e., the advertiser pays only if the ad is
clicked.! For clicks on ads shown by a syndicate publisher, the

ICPC ads predominate today in terms of ad revenue [35]. While
other charging models exist for other types of advertising, e.g.,
cost-per-impression (CPM) for display ad networks, and cost-per-
acquisition (CPA) for affiliate ad networks, these other models are
not relevant to this paper.



search engine typically retains 30% of the amount charged to the
advertiser, and pays a 70% cut to the publisher [21]. Publishers that
sub-syndicate set their own revenue sharing agreements with their
downstream publishers.

Click fraud and blending. Revenue sharing with
(sub)syndicate publishers creates an economic incentive for
these publishers to fraudulently attract clicks on ads shown by
them. While a well-known publisher would lose reputation if
caught engaging in click-fraud, followed by financial losses if
ejected from the syndication network, this disincentive does not
exist for less well-known publishers. Less reputed publishers may
not have a reputation to protect, or may be able to reattach to the
syndication network at a different point if ejected. As a result,
click fraud from relatively unknown publishers is rampant [38].

Click fraud techniques have evolved considerably in the past sev-
eral years. The direct approach of hiring people to click on ads
(termed click farms) [10], or running stand-alone scripts that re-
peatedly retrieve the URLs associated with ads to simulating user
clicks (stand-alone bots) [26], are now easily detected by an ad net-
work’s defenses. More complex approaches include search engine
hijacking [36], where a malicious in-browser plugin replaces ad
links in results returned for user searches by other ads, and the rise
of click fraud botnets like ZeroAccess that coordinate large num-
bers of malware-infected hosts to fetch and click ads unbeknown to
the user.

A number of case studies have chronicled the evolution of click
fraud botnets over the years, ranging from the early Clickbot.A bot-
net [3] to the TDL-4 botnet [36], the Fiesta and 7cy botnets [32],
and ZeroAccess itself [40, 34]. Security researchers have similarly
documented more attacks in blog posts and in whitepapers [7, 8,
19]. Unlike previous studies, however, we analyze the ZeroAccess
botnet primarily from the perspective of the advertising network,
supplemented with insight from operational data derived from its
P2P infrastructure and use of DNS. As a result, we are able to
present the first comprehensive characterization of monetization,
distribution, and activity of a massive click fraud botnet.

At the same time, malicious (sub)syndicated publishers have be-
come better at avoiding detection or identification. Using tech-
niques such as referrer cloaking [6], or fetching ads through other
publishers that use the direct server-to-server mechanism, many
sub-syndication publishers remain completely anonymous. Inter-
mediate publishers complicit in this activity blend in traffic from
non-malicious small publishers to present a cleaner appearance in
the aggregate to their syndication parent. This blending results in
even reputed publishers unwittingly facilitating click fraud.

Click fraud mitigation and smart-pricing. Due to the large
number and relative anonymity of publishers in the (sub)syndicate
network, search engines rely primarily on automated means, sup-
plemented with limited manual investigations, to protect their ad-
vertisers from click fraud. Rule-based techniques [39, 22], corre-
lation analysis [29, 30, 42], and bluff ads [16] have focused on de-
tecting clicks from infected users before the advertiser is charged.
Clustering [4] and anomaly detection [5] have focused on detecting
malicious publishers.

Smart-pricing [11] takes an economic approach to mitigating the
impact of click fraud. At a high level, smart-pricing maintains a
normalization factor between 0 and 1 for each publisher based, in
part, on the probability of conversions generated by traffic sent by
that publisher [13]. Conversions are actionable business results as
defined by the advertiser such as an online sale, newsletter sign-up,
etc. Advertisers inform the ad server of a conversion by embedding
JavaScript provided by the ad server on the Web page correspond-
ing to the conversion (Figure 1, steps 12-16). The ad server uses

cookies to link the conversion to an earlier ad click, which is then
associated with the publisher that was responsible for the click. For
a simplistic illustration, consider otherwise identical publishers X
and Y that both send 100 legitimate users, but X additionally blends
in 100 fraudulent clicks. Consider further that 10 legitimate users
convert in each case. X therefore has half the conversion proba-
bility of Y (5% vs. 10%). Smart-pricing normalizes CPC for X
to effectively be half of that for Y, such that the advertiser has the
same effective cost per conversion.” Implicit in the smart-pricing
mechanism is the assumption that click fraud traffic will not result
in conversions, an assumption that the Serpent module (Section 2.2)
of ZeroAccess specifically tries to defeat.

Our ZeroAccess case study informs this debate with the latest
generation of click fraud botnets, and identifies potentially fruitful
directions for building the next generation of mitigation capabili-
ties.

2.2 Evolution of ZeroAccess

ZeroAccess is a vast and complex peer-to-peer (P2P) botnet that
serves as a delivery platform to distribute a variety of malware mod-
ules, each with its unique command-and-control (C&C) and mone-
tization strategy [1].

Initial reports of the ZeroAccess rootkit date to 2009 [9]. By
2010, the main module delivered via ZeroAccess was FakeAV,
which claimed to be anti-virus software to extort users into pay-
ing money to remove fictitious infections. An estimated 250,000
computers were infected. A radically new version of ZeroAccess
emerged in May 2011 that changed its distribution, communication,
and monetization strategies [33]. This version spread via exploit
packs (e.g., BlackHole [17]) and social engineering [15, 41].

The defining feature of this iteration of the botnet was the in-
troduction of a decentralized, P2P communication protocol. The
protocol used cryptography and obfuscation as well as other com-
mon P2P features such as “supernodes” that served to orchestrate
large portions of the network’s activity. The network allowed the
botmasters to maintain decentralized control while relaying com-
mands and payloads to infected computers worldwide [40].

In addition, the monetization strategy changed with this genera-
tion. ZeroAccess moved away from FakeAV payloads and instead
began distributing Bitcoin miners and click fraud modules.> From
a technical perspective, the primary click fraud malware module
used in this era operated in the indiscriminate “auto-clicking” fash-
ion we describe in more detail later in this section.

This iteration of the botnet also saw an increase in botnet popu-
lation. At the height of infections in early 2012, estimates placed
the botnet population at over 500,000 [28].

In July 2012, ZeroAccess evolved into the form predominant as
of its disruption by Microsoft in December 2013. According to
Symantec, by August 2013 this generation had an estimated popu-
lation of over 1.9 million computers [33]. This iteration again in-
cluded several changes to the malware structure, the protocol, and
the payloads. The monetization strategy also evolved, introducing
and massively disseminating a new click fraud payload performing
search-hijacking, which we have named Serpent and discuss later
in this section. Serpent has been linked to the MagicTraffic click
fraud affiliate program [20].

2In practice, smart-pricing takes multiple features into account, and
applying the normalization factor given dynamic bidding and pub-
lisher diversity is not as straight-forward

3ZeroAccess’s shift away from FakeAV occurred just before a ma-
jor takedown that resulted in the closure of most FakeAV pro-
grams [23].



P2P communication. The P2P C&C substrate of ZeroAccess
functions solely to deliver modules to infected machines. This P2P
protocol is well understood, has common P2P properties such as
peer lists and supernodes [33, 37, 40], and allows ZeroAccess in-
fected computers to communicate with each other directly without
the need for a centralized C&C server. Without payloads, Zero-
Access infections simply maintain their P2P membership and func-
tionality, but perform no malicious actions on their own.

Infected ZeroAccess machines generate UDP P2P traffic on four
well-known ports. The protocol is constructed in such a way that
super nodes in the network have a vantage point of a large portion
of the infected population. ZeroAccess has distributed several mod-
ules with various monetization strategies over its five-year lifespan.
In this paper we focus on the two most recent modules distributed
throughout 2013. Both these modules perform click fraud and both
have a separate HTTP-based C&C channel distinct from the P2P
network.

Auto-clicking module. The ZeroAccess auto-clicking module
performs click fraud by simulating normal Web browser behavior
of a user clicking an ad. These clicks occur rapidly, require no
user participation, and are not visible to the user of the infected
computer. Some users, however, may be alerted to the presence of
this module by the increased network activity; in one instance, we
observed about 50 MB of click traffic per hour.

The auto-clicking module invokes an actual client Web browser,
enabling realistic Web browsing behavior including proper han-
dling of HTML, CSS, JavaScript as well as browser-specific quirks.
The module periodically contacts the auto-clicking C&C to fetch a
list of publisher Web sites for the bot to visit. It navigates to the
URL provided by the C&C in a hidden window, locates the ad on
the page, and simulates a user clicking on the ad by requesting the
advertiser’s URL. The browser faithfully follows the sequence of
redirects from the URL until it loads the advertiser site. The auto-
clicking module then closes the hidden window and starts anew
with the next publisher in the list provided by the C&C. Notably,
the auto-clicking module does not simulate any user actions on the
advertiser page and thus does not trigger any conversions.

Serpent module. The Serpent module interposes on a user’s
normal interaction with various search engines to redirect the un-
witting user to an ad. Whereas the auto-clicking module simulates
a user, Serpent sends a real user to the advertiser.

The Serpent module includes a browser component that lays dor-
mant until the user performs a search on one of many search en-
gines. The module silently sends a copy of the search query to the
Serpent C&C. The C&C responds with a set of URLs that corre-
spond to ad click URLs for ads related to the search query. Mean-
while, the browser renders the original search result page as the
user expects. When the user clicks on a search result Serpent inter-
cepts the click and prevents the browser from navigating to the site
intended by the user. Instead, the module redirects the browser to
one of the URLs it received from the C&C, in effect creating the ap-
pearance of the user having clicked an ad after performing a search
on the publisher’s site (as opposed to the site on which the user
actually performed the search). If the user does not notice having
been unwittingly redirected to the advertiser’s site (a different site
than intended), the user may continue browsing as normal. Since
the advertiser site is relevant to the user’s search query, the user
may even convert. Note that since all Serpent activity is gated on
legitimate user activity, this type of click fraud attack is extremely
hard for an ad network to detect.

Parallel to this search-hijacking activity, Serpent also used a sep-
arate C&C protocol to perform a type of auto-clicking. This auto-
clicking protocol and ad network structure were separate from the

original auto-clicking module, although the auto-clicking behavior
is largely similar.

DNS queries. Serpent ships with a list of C&C IP addresses
hard-coded into each module. These C&C IP’s are encoded in-
side ASCII strings that appear to be domain names ending in . com,
but are in fact an obfuscated encoding of the numeric IP address.
For each Serpent C&C function the malware selects one of these
pseudo-domains, decodes the domain into an IP address, and then
initiates a connection to that IP. Note that the malware does not
need to perform a DNS query since the IP address is encoded
in the domain name itself. However, for some unknown reason,
the malware authors coded the module to perform a DNS query
via Google’s public DNS server each time it decodes the pseudo-
domain—resulting in a DNS query for each C&C operation—and
discards the resulting DNS response (if any).

Most of the ZA Serpent pseudo-domains were not registered
prior to our study. For this study we registered all available pseudo-
domains, and by observing these DNS queries we are able infer op-
erations the malware is performing. Section 3 discusses this DNS
data, and the inferences it enables, in more detail.

Takedown attempt. On December 5, 2013, Microsoft’s Digital
Crimes Unit and Europol orchestrated a takedown of the Serpent
and auto-clicking C&C servers [25]. Since both click fraud mod-
ules had a centralized C&C server, a simple seizure of these ma-
chines was able to temporarily disrupt click fraud activity. Since
the ZeroAccess P2P substrate was still intact the perpetrators were
able to distribute an updated module with new C&C IP addresses
within hours and fraud resumed. For reasons unknown, the follow-
ing day the malware authors distributed a new set of modules that
halted all click fraud activity but left the P2P network intact. In-
spection of these modules revealed the ASCII text “WHITE FLAG”
in apparent surrender [14].

Three months later, on March 21, 2014, the malware authors
used the P2P network to revive the botnet by issuing a new Serpent
module. This module removed all search-hijacking functionality,
leaving only the auto-clicking aspect of the Serpent module intact.
As of August 2014, the ZeroAccess Serpent module is active and
performing auto-clicking click fraud.

3. DATA SOURCES AND QUALITY

Our study draws upon extensive, disparate sets of data. The
individual datasets all suffer from limitations or skews of various
forms. Constructing our large-scale picture in a sound fashion fre-
quently requires cross-correlating different data sources in order to
filter out spurious activity and bring out the underlying signals that
reflect different facets of ZeroAccess’s click fraud activity. In this
section we sketch each of the data sources, our use of it, and its
associated data-quality issues. A summary of all data used in this
study is given in Table 1.

Click data. Via our partnership with one of the top ad networks,
we acquired access to the “clicks” that the network logged from
Nov 28-Dec 6 2013, spanning the Takedown event. The ad network
views this data as highly sensitive from a business perspective and
thus in our study we use the data at reduced fidelity and present
certain facets of it only in relative terms rather than using absolute
values.

In abstract terms, each “click” datum consists of a count of ad-
following Web requests observed arriving at the ad network from a
given source, during a given interval, and associated with a given ad
unit. In the context of this work, an ad unit maps roughly to distinct
traffic sellers. In particular, our click data aggregated individual
clicks into tuples consisting of { one-hour interval, /24 subnet, ad
unit, count ). We believe this data to be of high quality: none of our



[ Dataset | Granularity | Quantity |
ZA DNS telemetry, Dec 1-Dec 4
Timestamp millisecond 16,208,758
Domain Full query 12
iy /24 336,609
Supernode data, Dec 1-Dec 6
Timestamp millisecond 260,811,204
1P /32 1,137,118
iy 124 637,736
Bot type 32/64 bit OS 2
ZA module distribution, Jun 18-Apr 25
Timestamp second 51
Module ID 64-bit ID 51
Module MD5 Full MD5 sum 51
Milker data, Sept 10-Dec 5
Ad replacements | Full URL 1,766
Redirects Full URL 10,796
Click data, Nov 28-Dec 6*

Timestamp hour buckets

IP address /24 Ozt;r ;OTIE
Clicks hourly sum servirvlvod s
Ad unit Anon ID ) &

Ad unit data, Nov 28-Dec 6*

Timestamp hour buckets

IP address 24 Aro;)fni 21;3
Clicks hourly sum gervervro s
Ad unit Anon ID ) &

Table 1: Summary of datasets used in our study. *Precise quantities for
click and ad unit data intentionally omitted due to business sensitivities.
We only use this data in aggregate.

analyses or cross-checks raised questions regarding any potential
inaccuracies or missing values.

Ad unit data. Our ad network partner also provided information
for selected ad units in terms of the conversion percentage for their
ads, and their mean and median smart-pricing discounts, with these
latter being in normalized form so as not to reveal sensitive busi-
ness information. The data included those ad units we identified as
very likely tainted by ZeroAccess activity, as well as two randomly
sampled populations of comparable size, and global baseline fig-
ures aggregated across all ad units.

This data covers the same time period as the click data discussed
above. It allows us to explore the relative effects of ZeroAccess’s
activity compared to regular ad unit costs and conversion efficacy.

ZeroAccess DNS telemetry. As discussed previously, vestigial
code in Serpent’s modules leads it to issue DNS requests to a num-
ber of different domains based on its current activity. Each dif-
ferent Serpent function has a different set of domains associated
with these lookups; as far as our extensive analysis could tell, the
malware chooses randomly among the set for a given function. The
malware does not process any replies it receives for associated DNS
requests, and thus does not even require that the domains exist.

Indeed, during our study most of the domains did not exist. Be-
ginning on Nov 28 2013 we registered all such ZeroAccess do-
mains not already registered (6 out of 12), and immediately began
receiving queries for them. The queries all came from Google’s
public DNS server, 8.8.8.8, and thus nominally did not identify the
associated ZeroAccess system. However, Google includes support
for an EDNSO option [2] that identifies the subnet originally asso-
ciated with requests that resolvers such as theirs issue. Thus, our
data from this source has the form of tuples consisting of ( times-
tamp, domain, /24 subnet ), where the timestamp has high precision
(sub-second) as recorded at our DNS server.

The domains we registered included 3 of the 5 associated with
Serpent modules reporting that users had searched, and the sole

domain associated with Serpent reporting that a user had clicked on
a substituted search ad. (The other domains related to functionality
not relevant for our click fraud study.)

At first blush this data held promise for illuminating the fine-
grained activity of (nearly) each Serpent infectee. However, exten-
sive analysis of the data revealed that lookups did not have a one-
for-one correspondence to individual Serpent actions. The data also
included significant activity clearly associated with timers, but not
so sharply timer-driven that we could readily distinguish it from le-
gitimate activity. However, the data does provide us with a virtually
complete list of IP addresses associated with ZeroAccess’s Serpent
module, which allowed us to cross-check against ZeroAccess su-
pernode data to assess its completeness.

Supernode data. From a partner we acquired a list of nodes
discovered by crawling the ZeroAccess peer-to-peer network from
Dec 1-6 2013. Each entry consists of ( timestamp, address, ZA-
network ), where timestamp is high precision, address is the full
/32 IP address, and ZA-network reflects on which of the two (“32-
bit” and “64-bit”) P2P networks the crawl found the node.

Note that these nodes should reflect a superset of Serpent nodes,
since not all ZeroAccess infectees ran Serpent. Thus, from a click
fraud perspective this data is potentially more complete than that
derived from the DNS data described above. However, by cross-
checking the /24s seen in the DNS data with the equivalent /24s
seen in this data, we found that the supernode data included only
200,708 of the 336,609 Serpent /24s. This discrepancy is explained
by the design of the P2P crawl resulting in a incomplete view of the
P2P network. Thus we conclude that this data reflects only about
60% of the entire ZeroAccess population. This shortfall becomes
crucial in our subsequent analysis as we aim to determine which ad
units present in the ad network’s click data clearly had significant
ZeroAccess-generated clicks in their traffic.

ZA module distribution information. Beginning on Dec 4
2013, we ran ZeroAccess infectees in 56 long-running, contained
VM environments to allow them to participate in the P2P network
and thus receive module updates. Whenever one of them received
a new module, we detected the event in real-time and captured a
copy of the module. This data allows us to track the evolution of
the botnet’s functionality.

In particular, this data source allows us to track the botnet’s par-
tial recovery post-Takedown (when the auto-clicking modules were
updated), which we use in our subsequent analysis as one of the
signals for identifying ad units whose traffic has significant taint
from ZeroAccess activity. It also allows us to study the blending of
Serpent traffic with auto-clicking.

Milker data. Drawing upon extensive reverse engineering, we
developed an emulator for the ZA-C&C protocol used by Serpent to
request ads to substitute into those present in a user’s search results.
The emulator enabled us to “milk” ad replacements out of the C&C
server by repeatedly requesting ads from it, though the C&C server
appeared to “dry up” in its ability to provide new replacements after
repeated queries. (The rate at which this drought occurred varied.)

Each C&C reply provided a URL to click on (along with a
matching Referer). We followed the URL using a fully functional
headless Web browser displaying the curl User Agent (such a User
Agent prevents advertisers from being charged from our seeming
clicks), which in general would continue for each click until it ends
at an advertiser’s landing page. In total, we captured the redirection
chains for 1,766 such clicks for a small sampling of search terms
we selected from trending shopping queries. 367 of the clicks tran-
sited our partner ad network.

Based on our DNS telemetry correlated with our click data, and
supported in part by our small scale milking experiment, we believe



that the global impact of ZA was likely an order of magnitude larger
than seen by our partner ad network.

4. ANALYZING FRAUD

To build up our overall picture of ZeroAccess’s large-scale click
fraud activity, we start with the data most central to assessing Zero-
Access’s impact, namely the Click data provided by our ad network
partner. We then draw upon our other data sources to identify ac-
tivity (primarily ad units) associated with ZeroAccess clicks. We
employ two main approaches—analyzing the behavior of sources
to the Takedown event, and looking at source “demographics” in
terms of which subnets contribute clicks—and then cross-correlate
these two to develop our overall picture.

4.1 Takedown Dynamics

The Dec 5 2013 Takedown event abruptly severed C&C for Zero-
Access’s click fraud activity, which in principle should manifest as
a striking change in the activity of any source fueled by ZeroAccess
clicks. We then face the basic question of how to reliably detect
this presumably sharp signal without inadvertently treating benign
variations in traffic rates as stemming from ZeroAccess.

Figure 2 shows the relative clicks per hour for four exemplary
ad units, with the leftmost vertical line marking Takedown. Here
we have partitioned the examples into “good” ad units that do not
primarily receive ZeroAccess traffic and “dirty” ones that do (using
a methodology we will describe shortly). Normal click behavior
prior to Takedown exhibits the expected diurnal pattern. For good
ad units, this pattern continues (Figure 2a), while for dirty ones,
precisely at Takedown their clicks cease or dramatically decrease
(Figures 2c and 2d).

However, we cannot simply attribute ZA-dirtiness to any source
that precipitously fell at the time of Takedown, because such behav-
ior also manifests for benign sources (per Figure 2b). Such behav-
ior can be attributed to advertising budget depletion or the end of
specific advertising campaigns. This behavior necessitates the need
for incorporating multiple signals to soundly identify dirty sources.

One such signal concerns the effects of a secondary Takedown
event. The dotted line in Figure 2 corresponds to the release of
a new auto-clicking module as a response to the attempted take-
down. This module contained new C&C IP addresses, and resulted
in auto-clicking click fraud resuming for a subset of the botnet. We
can see that some sources exhibit a spike in activity coincident with
this module’s appearance (Fig. 2d) while others do not (Fig. 2c).

Armed with these signals, we attempted to robustly identify dirty
sources based on statistical testing. We undertook numerous eval-
uations looking for robust indications of behavioral shifts. For ex-
ample, we compared the volume of each source’s click activity as
seen during the hour of the Takedown (denoted H-hour) versus dur-
ing the previous hour (H — 1). Using the null hypothesis that the
relationship between these counts remained unaffected by the Take-
down, we applied Fisher’s Exact Test to assess the consistency of
the shift between those hours as seen on a non-Takedown day ver-
sus that seen on Takedown day.

The test identified a large number of sources with statistically
significant deviations in the shift for those hours, even for quite
low p values (e.g., 0.001).* Manual inspection of the most extreme
examples confirmed that many appeared to clearly reflect instances
of ZeroAccess-affected behavior.

However, when we then tested one non-Takedown day against
another non-Takedown day, we likewise found many statistically

“We used a one-sided test since we only had interest in a shift to-
wards an abnormally low H-hour level.

significant deviations, which clearly had nothing to do with the
Takedown and thus presumably nothing to do with ZeroAccess ac-
tivity. The clear conclusion (backed up by manual assessments of
exemplars) is that the null hypothesis often fails to hold due to fre-
quent non-stationarity in the data. That is, a given click source’s
patterns from one day to the next can exhibit striking variations;
two separate days are not well-modeled as independent samples
from the same underlying population. (Figure 2b shows such an
instance.)

This lack of stationarity significantly complicates our analysis,
and means that statistical testing can only serve as a guide to help
direct manual analysis due to the risk of false positives. (In addi-
tion, the non-stationarity serves as a caution for applying any sort
of training-based machine learning to the problem of identifying
fraudulent ad click sources.)

4.2 Subnet overlap

Conceptually separate from the Takedown dynamics, we can
seek to identify dirty ad units by assessing each source’s degree
of “ZA taint” (i.e., proportion of individual sources potentially as-
sociated with ZeroAccess activity). This taint can then provide us
additional context with which to interpret a given source’s Take-
down dynamics.

ZA taint. For each ad unit, we consider its full set of clicks. Due
to restrictions of the dataset, we identify clicks based on one-hour
granularity and /24 subnet of the source of each click. For each
hour, we compute the proportion of subnets appearing in the ad
unit’s traffic that also appeared during that hour in our Supernode
data. We then term the mean value of that proportion as the ad
unit’s “ZA taint”. (We limit this computation to hours up to but
not including H-hour, so as to not skew the taint by the Takedown
dynamics.)

Limitations of the supernode comparison. The Supernode
data suffers from incompleteness. By the nature of the ZeroAccess
P2P network, no single node has a complete vantage point of the
entire network, and thus the matching for our taint computation
may incur significant false negatives. To gauge the impact of these
false negatives, we compared the ZeroAccess supernode data with
our DNS telemetry. Our DNS telemetry gives us complete /24 sub-
net views of the Serpent portion of the ZeroAccess botnet, but no
vantage of the auto-clicking portion. Still, any Serpent subnet miss-
ing from the Supernode data likely reflects incompleteness in the
latter. If we look for DNS telemetry subnets to show up within
1 hour in the Supernode data, then we find about an 80% match. If
we look for matches within 1 minute, this drops to 60%. Infectees
repeatedly show up in the Supernode data with such frequency that
this latter comparison may in fact provide a better estimate than the
former (which allows for a degree of IP address churn to introduce
false positives).

A further limitation of our data is the reduction of address infor-
mation to /24 subnets, which results in us tainting all clicks from a
given subnet as bad. Such false positives will result in some benign
ad units having increased ZeroAccess taint.

4.3 Combining Signals

Given the limitations of the Supernode data, we cannot use the
presence of these IPs as a sole indicator. Instead, we look for ad
units that exhibit both a high fraction of ZeroAccess taint as well as
uncharacteristic behavior at the various Takedown-related events.

To combine notions of taint and Takedown response, we calcu-
late the Igatio of the amount of click traffic at H-hour to the previous

hour, 7. Ratios closer to 0 denote sharp drops in traffic. Dirty ad

units might not exhibit a ratio of exactly 0 because of traffic from
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Figure 2: Clicks per hour prior to and after Takedown for 4 exemplary ad units. The thick vertical line marks Takedown (8AM PST, Dec 5 2013). The dotted
line to its right indicates the release by the ZeroAccess botmaster of a new auto-clicking module to counteract the Takedown. The thinner line to its right
indicates the “WHITE FLAG” module release (per Section 2.2). The plot titles also give the “ZA taint” (Section 4.2) pre- and post-Takedown (per Section 4.2).
(a) shows a typical large ad unit that does not see a significant drop in click traffic post-Takedown. The ad unit in (b) exhibits a large drop in traffic that occurred
prior to Takedown, highlighting the surprising benign dyanmics manifest in the data. (c) shows an ad unit whose traffic almost entirely consisted of fraudulent
clicks. The ad unit in (d) clearly had a substantial proportion of ZeroAccess traffic, but mixed in with legitimate or non-ZeroAccess clicks.
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Figure 3: Comparison of ad-unit click volume before and after the Takedown hour (H-hour) to the amount ZeroAccess taint. The left shows this comparison
on the day prior to Takedown, and the right across Takedown. A large population of ad units has both higher-than-average ZeroAccess taint and also shows a
strong shift towards much fewer clicks on Takedown. The harmonics at x = 0.5, x = 1.0, x = 1.5, etc., arise from ad units with very low click volumes.

other sources, or click-fraud events already “enqueued” from prior
to the Takedown.

Figure 3 shows a comparison of the traffic-drop ratio to Zero-
Access taint for each ad unit. We do this for H-hour on both the day
before Takedown (left) and the day of Takedown (right). The first
plot shows a population of ad units with higher-than-average Zero-

Access taint centered around a drop ratio of 1 (no major change
across H-hour) on the day prior to Takedown. The second plot
shows a dramatic shift to a greatly reduced volume of traffic at H
for that same population of ad units with high ZA taint, with a large
number of them approaching zero traffic.
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of Gaussian jitter to prevent coincident points from completely overlapping.

Figure 4 explores the stability of traffic of each ad unit across H-
hour over time. We plot the Takedown traffic ratio across H-hour
against the minimum H-hour ratio for all previous days. Solid red
circles denote ad units with > 0.4 ZA taint. A large population of ad
units with high ZeroAccess taint exhibits atypically low H-hour ra-
tios (below 0.5) compared to their previous minimum (above 0.5).
We deem these ad units as likely ZeroAccess dirty.

Secondary takedown information. Figure 5 shows the behav-
ior of each ad unit across another Takedown event, the distribution
of the auto-clicking module shortly after Takedown, which we de-
note as R-hour. Not all ZeroAccess infectees ran the new module,
but those that did would result in a dramatic rise in click activity
at R-hour compared to just before R-hour; a change in the opposite
direction as what we would observe at H-hour. The figure shows
the traffic drop ratio across R-hour plotted against the drop across
H-hour, again using solid red circles to denote ad units with > 0.4
ZA taint. Clearly, many ZeroAccess-tainted ad units showed sharp
reactions to both Takedown and the advent of the new module.

The distribution of an updated auto-clicking module at R-hour
immediately restarted ZeroAccess’s click fraud. We would expect
the resumption of click fraud to result in dirty ad units having low
ZeroAccess taint in the time between H-hour and R-hour (since
no C&C servers exist to drive click fraud), followed by a sudden
increase in taint at R-hour.

Figure 6 compares taint as seen during these two regions of time
(H-hour to R-hour, and after R-hour). The left plot reflects a (pre-
sumably typical) non-Takedown day, while the right plot shows
Takedown day. The shift between the two is clear: a large num-
ber of ad units that had significant taint prior to Takedown (solid
red) show a jump in pre-R vs. post-R taint, reflecting the activation
of a significant number of ZeroAccess subnets within their traffic.

Finalizing determination of dirty ad units. Using these signals
we generated a large set of potentially dirty ad units, about 2,000 in
number. We then manually inspected the activity of each and pro-

duced a list of 54 we deem with high confidence as significantly
“dirty”” with ZeroAccess traffic.

S. ASSESSING ZA-DIRTY AD UNITS

Having identified these dirty ad units, we now employ them as
the basis for evaluating the strategy used by the more sophisticated
Serpent module to circumvent smart-pricing. We also leverage this
conservative set of ad units to estimate the total amount of fraud
perpetrated by ZeroAccess, an undertaking that strongly empha-
sizes the need for better attribution in the ad ecosystem.

5.1 Conversions and Smart-pricing

We next use our data to explore potential reasons for why Zero-
Access may have used both auto-clicking and Serpent styles of
click fraud. Recall from Section 2 that ad networks use automated
approaches to either detect (and block) specific click fraud attacks,
or mitigate the impact of click fraud (e.g., through smart-pricing)
when ad networks can only estimate the amount of click fraud in
the aggregate. Clearly Serpent, which confuses a real user into
clicking, is harder to detect (and block) than auto-clicking.

We first examine whether we see evidence that Serpent indeed
increases the chance of users converting and, if that is the case,
whether the blending of Serpent and auto-clicking avoids the smart-
pricing mitigation.

Figure 7 shows a clear but modest correlation between Zero-
Access’s use of Serpent (via ad units with increased Serpent taint)
and growing conversion, though with significant variation across ad
units. Keep in mind that other than Serpent, all of the ad unit’s con-
versions will be due to legitimate user activity and not ZeroAccess.
This result shows that the use of Serpent does add conversions of
fraudulent click activity.

Next, to understand if the combined blending of Serpent and
auto-clicking avoided the smart-pricing mitigations, we compare
our sample of 54 dirty ad units to a random sample of ad units
of similar size. We find that compared to a random sample, those
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flagged as ZeroAccess dirty had conversions rates of up to three
times less. As a result, these dirty ad units were indeed subject to
the smart-pricing discount. Thus, it appears that if the intent of the
Serpent module leveraging real users was to avoid smart-pricing,
then it failed to do so since the users forced to go to the advertiser
pages did not convert enough. If the intent behind leveraging real
users, however, was simply to avoid detection while accepting the
smart-pricing discounted income, then it was successful.

5.2 [Estimates and Challenges

Formulating a sound estimate of the global impact of ZeroAccess
proves very difficult, not only due to limitations in our data sets, but

more fundamentally because of the sharply limited visibility that
the ad network ecosystem provides. Using some plausible assump-
tions, we can derive estimates of ZeroAccess’s impact perhaps
within an order of magnitude, and note that these paint roughly a
similar picture to that developed in the work of others [40]. Clearly,
however, the important question of just which parties make how
much profit due to this illicit activity poses thorny methodological
challenges.

Limitations within our ad network. Although our ad network
partner provided access to the complete click payout information
for the 54 dirty ad units we identified, those ad units make up only
a subset of the likely total ZeroAccess traffic abusing their network.
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Methodologically, we require an ad unit to exhibit a baseline level
of traffic before we can label it as fraudulent (via manual analy-
sis). Ad units, however, exhibit a very long tail in their level of
activity. The vast majority provided (individually) so little traffic
that although they exhibited numerous ZeroAccess characteristics,
such as high ZeroAccess taint, for any given such ad unit we could
not rule out these characteristics occurring simply by chance, and
thus could not definitively label them as bad. In aggregate, how-
ever, such ad units potentially account for a large volume of traf-
fic, much more than those of the 54 definitively dirty ad units that
we identified. How to soundly attribute a portion of that traffic as
fraudulent remains an open question.

Limitations across ad networks. A further complication arises
in identifying the breakdown of fraud between our ad network part-
ner versus other networks targeted by ZeroAccess. Our “milking”
data provides a qualitative impression of what this balance might
look like, finding that 367 of the 1,766 click chains transited our
ad network partner. Superficially this suggests that in total, Zero-
Access click activity might be about five times what our ad network
partner sees. However, along with the limited scale of the milking
data, other basic factors, such as how presented ads (and thus click
chains) are influenced by IP address or search term, could result
in major shifts in this ratio. In addition, the milking data only re-
flects one instance of Serpent activity, and we do not know if its
distribution of ad networks accords with that of the auto-clicking
module.

Limitations in DNS data. While our DNS telemetry gives us
visibility into Serpent ad clicks, the data suffers from significant
noise. Moreover, we do not know how to extrapolate from pure
Serpent activity to the behavior of the auto-clicking module. When
merging the DNS data with other sources, we also encounter is-
sues with both the granularity of the IP address information and
IP address churn, making attribution within our partner’s ad net-
work problematic.

Assumptions and estimates. Given those major caveats, we
now formulate some rough estimates to get a sense of the overall
scale of activity.

The 54 dirty ad units we identified generated over 100K clicks
per day. It appears certain that aggregate ZeroAccess activity far

exceeds this lower bound, which we view as very solid (we have
high confidence those ad units all reflect ZeroAccess activity) but
also very conservative. Building on this foundation, given the large
volume of suspicious-but-not-definitive ad units we investigated—
both the “long tail” with dubious but sparse activity, and those that
appear to carry ZeroAccess traffic blended with non-ZeroAccess
traffic—we would argue that likely the total activity within our ad
network partner was at least a factor of 2x larger.

If we then take the 5x factor seen in our limited click chain milk-
ing to represent the volume of traffic seen in other ad networks,
we have a total extrapolation of 10x to our original conservative
estimate, yielding 1M fraudulent clicks per day. This range is con-
sistent with the order of magnitude of fraudulent clicks estimated
from our DNS data.

According to our ad partner, the cost-per-click of this traffic after
smart-pricing normalization would be between 10-30 cents. Tak-
ing the low end of these ranges, we can construct an estimate of the
total click fraud impact of ZeroAccess as on the order of $100,000
per day, which aligns with the estimate from Sophos of ZeroAccess
generating up to $2.7 million in click fraud per month [40].

We highlight, however, that enough uncertainties exist that our
figure can only reflect a “best guess” estimate. We also note that
given the available data sources, we lack the ability to gauge what
fraction of this money makes it into the hands of the botnet owners
after the long chain of (sub)syndicates take their cut.

5.3 Discussion

Subsyndication is a problem. Subsyndication is the key busi-
ness model enabling large-scale click fraud. Even a single (trusted)
publisher that is allowed to subsyndicate opens the flood gates for
click fraud traffic (blended with other legitimate traffic) entering the
ad network unwittingly through that publisher. Our Serpent milker
encountered syndication chains as long as 13 domains deep. It is
no surprise therefore that we were able to definitively conclude sig-
nificant ZA dirtiness for only 54 ad units. There were many more
where our analysis was inconclusive due to high levels of blending
that diluted the otherwise sharp signal presented by the Takedown.

One might argue that anonymous subsyndication is the real prob-
lem, and if publishers could be forced to identify themselves, the
search engine would be able to better police the ad network. While
this is true, we feel it is impractical. The level of blending we see
suggests that many publishers are complicit in click-fraud, espe-
cially since everyone along the syndication chain benefits finan-
cially from it. Even if the search engine could recursively force
(sub)syndicates to set a policy that requires identifying their traffic
sources—a hard problem in itself—there would be little reason for
the (sub)syndicates to enforce it.

Low signal to noise ratio. Our analysis would not have been
possible absent the strong signal injected into the ZeroAccess bot-
net by the Takedown. Even then we had to combine three large
datasets from three different vantage points. Such strong signals
are too few and far between to be an effective means of policing
ad networks. The capability to inject more frequent (but perhaps
less intense) disruptions into botnets could create a strong temporal
signal that could serve as a basis for ongoing click fraud policing.

6. CONCLUSION

We have undertaken a detailed examination of the activity of
one of the largest click fraud botnets in operation, ZeroAccess.
Through reverse-engineering and controlled execution, we mapped
out ZeroAccess’s click fraud component, including the innovations
it introduced in hijacking high-quality user search traffic. In the
process we discovered side channels in the form of vestigial DNS



lookups that enabled us to track its large-scale activity. We then
combined this perspective with partial “supernode” data capturing
the botnet’s peer-to-peer C&C activity in order to match up botnet
activity data with ad-unit click stream data provided by our major
ad network partner.

By leveraging the striking shifts induced in click activity by Mi-
crosoft’s attempted takedown of ZeroAccess in Dec 2013, along
with the ZeroAccess botmaster’s subsequent response, we com-
bined these diverse data sources to identify with high confidence
54 individual ad units whose traffic volume (and hence revenue)
primarily derived from ZeroAccess. Our ensuing analysis of these
ad units revealed that while the latest generation of click fraud bot-
nets have circumvented many detection approaches, they are still
mitigated (for now) by the smart-pricing mechanism. Extrapolat-
ing from the known-bad ad units, we constructed an estimate that
ZeroAccess likely generated on the order of a million fraudulent
clicks per day across all ad networks, with the overall ecosystem
revenue diverted by the botnet’s activity roughly on the order of
$100,000 per day.

Finally, we note that the complexity of the online advertising
ecosystem is such that no one party comes remotely close to hav-
ing comprehensive visibility into who gets paid what for any given
click. The hodgepodge of data sources required for our analysis
starkly illustrates both the tangled nature of the click fraud prob-
lem space and the pressing need for much better mechanisms for
correlating traffic and payment streams.
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