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ABSTRACT WS-SecurityPolicy 10], built on the WS-Policy §] and WS-

PolicyAssertion 9], is a declarative XML format for programming

WS-SecurityPolicy is a declarative configuration language for driv- . . .
how web services implementations construct and check WS-Secu-

ing web services security mechanisms. We describe a formal se-'. head : v check data i
mantics for WS-SecurityPolicy, and propose a more abstract link "'ty headers. By expressing security checks as XML metadata in-

language for specifying the security goals of web services and their stead of imperative code, policy-based web services conform to the

clients. Hence, we present the architecture and implementation of 98N€ral principle of isolating security checks from other aspects
fully automatic tools that (1) compile policy files from link specifi- of message processing, to aid human review Of. security. More-
cations, and (2) verify by invoking a theorem prover whether a set 9V€': coding security checks as XML metadata aids |nteropgrabll-
of policy files run by any number of senders and receivers correctly !ty sllnce the _metada(tjgﬁmay ealsH%/ be exchanged between different
implements the goals of a link specification, in spite of active at- imp gellrnzr!tqtlons obn ! e_rent plat o_rmsf. . licy i
tackers. Policy-driven web services implementations are prone to Sll, r|V|ng';:_we dserv_lce_s securltywrson; WS_—SgchJ_rltych_J |cy||s
the usual subtle vulnerabilities associated with cryptographic pro- lno planacia. '|rst, ESDEG_'E na(rjne,h k-' %(_:u_gty Io icy _rlver? ogv-
tocols; our tools help prevent such vulnerabilities, as we can verify '€V MeC adnlsms that IUI anr check indivi t;Ja securltyl' ead-
policies when first compiled from link specifications, and also re- ers; we need a way to relate policies to more abstract, application-

: - . PR P level goals such as message authentication or secrecy. Second, the
verify policies against their original goals after any modifications . S ; ! - R
durifrzlgpdeploymgnt. 9 9 y configuration files, including WS-SecurityPolicy files, of a SOAP-

Categories and Subject Descriptors¥.3.2 [Theory of Computa- based system Iarge_ly det_ermine its vulnerability to XML rewriting
tion]: Logics and meanings of programsemantics of Program- attack_s, WS-Securlty.Pollcy gives freedo_m to invent new crypto-
ming Languages graphic protocols, which are hard to get right, in whatever guise.
General Terms: Security, Languages, Theory, Verification We propose anew Iangyage anq.two. new tools to addrgss these
Keywords: Web Services, Pi Calculus, XML Security problems. Our high-level Ilnk sp_ecmcatlon language descrlb_es in-

' ' tended secrecy and authentication goals for messages flowing be-

tween SOAP processors; our link language is a simple notation,
1. INTRODUCTION covering some common cases, and could easily be generated from a

Web services can protect SOARJ messages sent over inse- simple Ul or a systems modelling tool. Our first tool compiles link
cure transports by embedding security headers. The WS_Securityspecifications to WS-SecurityPolicy configuration files. In part be-
standard 17] defines how such headers may include signatures, Cause of the subtle semantics of policy files, it is safer to generate
ciphertexts, and a range of security tokens, such as tokens idenihem fror_n link specifications than write them dir_ectly. Our sec-
tifying particular principals. Relying on generic implementations ©Nd tool is an analyzer to check (prior to execution) whether the
in libraries, web service programmers can pick and mix headers S€curity goals of a link specification are achieved by a given set of

for messages, depending on their security needs, thereby designingVS-SecurityPolicy files. Our analyzer works by constructing a for-
their own application-level protocols above SOAP. mal model of a set of SOAP processors, together with the security

Like all networked systems secured via cryptography, web ser- checks _they perform, in the Tulal_:al_e scripting language, a dialect
vices may be vulnerable to a class of attacks, first described by of the pi calculus. We then run existing tools for TulaFale to check
Needham and Schroedetd| and first formalized by Dolev and automatically whether the security goals of the formal model are
Yao [11], where an attacker may intercept, compute, and inject VuInerable to any XML rewriting attacks. ) )
messages, but without compromising the underlying cryptographic e have implemented the techniques of this paper for a partic-
algorithms. In the setting of SOAP security, we refer to these as Ular policy-driven implementation of Web Services security, the
XML rewriting attacks as opposed to attacks on web services im- Web Services Enhancements toolkit (WSE}|[ and in the process

plementations, such as buffer overruns or SQL injection. found and corre_cted several security problems. In principle, our ap-
proach can easily be adapted to other systems based on WS-Secu-

rityPolicy. For the sake of readability, we suppress most details
Permission to make digital or hard copies of all or part of this work for Of the XML wire format in this paper, and instead use an abstract
personal or classroom use is granted without fee provided that copies arenotation for policies; honetheless, our implementation directly con-
not made or distributed for profit or commercial advantage and that copies sumes and produces the XML files used by WSE.
bear this notice and the full citation on the first page. To copy otherwise, to Our work builds on much recent research on developing auto-

republish, to post on servers or to redistribute to lists, requires prior specific : - .
permission and/or a fee. matic analyses of abstract descriptions of cryptographic protocols.

CCS'04,0ctober 25-29, 2004, Washington, DC, USA. Specifically, it is part of our attempt to give a formal semantics to
Copyright 2004 ACM 1-58113-961-6/04/001G55.00.



web services securitylp, 2, 4. We rely on previous models of IPoIicies:
WS-Security in the pi calculus, and compose these models to SUP-part : Part =

Message Parts

port declarative security policies. To the best of our knowledge, Headeftag : string SOAP Header

the tools described here are the first to check implementation files Body SOAP Body

configuring SOAP security protocols for vulnerabilities to XML e

rewriting attacks. Having tools construct the formal model to be tK:Token := Token Descriptions

analyzed is advantageous as it eliminates any human error arising X509 ) X.509 Ce.rt

from constructing ad hoc models by hand. It also enables the sys- X509(sub : string with subject sub

tematic testing of the policy files used to deploy web services. Username , User/Password
The paper is organized as follows. In Sect®ywe review and Usernaméu : string with user u

discuss security policies for web services, and set up notations.pol : Pol ::= Policies

Section3 describes the architecture of our formal tools. In Sec- None Empty, true

tions 4 and5, we explain their implementation, first as an opera- All (ps : List(Pol)) Conjunction

tional semantics for policies expressed as TulaFale predicates, then OneOrMorgps : ListPol)) Disjunction

as a translation of links to policies and to security checks. Se6tion Integrity(tk : Token pts : ListPart) Integrity

explains the formal security results we can automatically derive for Confidentiality(tk : Tokenpts : Lis{Par)) Confidentiality

the policies generated from these links. Secfiafiscusses some | !

extensions of our basic results. Sect®ooncludes. A technical WS-Palicy structures policy files as logical formulas obese

report [3] provides detailed examples and the formal scripts used to assertionsthat can be composed using operators for conjunction,

verify their correctness. All[...], and disjunction, OneOrMore[...]. In the following, we

omit other features of WS-Policy seldom used for security, such as
the ExactlyOng..] operator and the Rejected and Optional modi-
fiers—our assertions are all implicitly Required.

2. SECURITY POLICIES FOR

WEB SERVICES (REVIEW) WS-SecurityPolicy defines two base assertions for integrity and
confidentiality. Each assertion refers to a key, either from an X.509
2.1 Web Services and their Configuration certificate or derived from a shared secret associated with the client.

In SOAP envelopes, this is implemented by embedding either an
multiple machines. Each processor may send and receive SOA .509 token or a username token in the security header. Although
0the actual key is provided at runtime from a local database, the

envelopes for various services. The envelope format is processe h ificall bi Each .
by generic system libraries driven by declarative configuration files, 8SS€rtion may specifically request a subject name. Each assertion

whereas the envelope payload is processed by imperative applicalS also parameterized by a list of pqrts, dgnoting target elements of
tion code. For instance, a simple (unprotected) envelope may be oft€ €nvelope to be encrypted or jointly signed. Each part may be

We consider systems of SOARJ processors distributed across

the form: specified by its header name, or more generally using an XP2th [
expression. For each integrity assertion, a XML digital signature
<Envelope> token is embedded in the security header. For each encrypted part,
<Header> i the target element is replaced with its encryption.
<To>http://bobspetshop.com/service. asnRo> On the receiver side, a SOAP envelope is accepted as valid, and
<Action>http://petshop/premiuryAction> S e L o .
<MessageId>uuid:5ba86b04 </MessageId></Header> passed to the application, if its policy is satisfied for this envelope.
<Body> Conversely, on the sender side, the protocol stack generates SOAP
<GetOrder><orderId>20</orderId></GetOrder></Body> envelopes that satisfy its policy. Normally, the sender policy should
</Envelope> be at least as demanding as the receiver policy. This may be en-

. . . . forced by exchanging and comparing policies beforehand, using
(For the sake of brevity, we omit XML namespace information auxiliary protocols.

in this paper.) This envelope has a message body, representing a As an example. the following policy mav be used to secure the
method call at the service, preceded by optional WS-Addresgjng [ envelope shovx?n in Section.1 %S en():/rypti)rllg its message body

headers that provide the URIs of the target service and action and ausing the service’s X.509 public encryption key, and by signing

unique message identifier. To return the resu@f0rder (20), all its elements using a shared secret associated with the client.
the service may send a response envelope that includes a header

<Re1ate§To>uuid:5ba86b04. . .</RelatesTo> instead okTo> All [ Integrity(Username, [Headet(fo"),Headert Action"),
and<Action> to route the response to the requester. Header(MessageId"),Body])
SOAP envelopes can be protected usingsacurity> header Confidentiality(X509(BobsPetShop"),[Body]) ]
containing security tokensly]. For instance, message integrity
may be protected by a token embedding an XML digital signature,
whereas the identity of the sender may be passed as a second token . .
embedding an X.509 certificate. Parts of the envelope may be en-2.3  Policy Maps (in WSE)
crypted, possibly using a third token to indicate how to derive the  Since a SOAP processor may host (and interact with) many ser-

decryption key. vices with diverse security requirements, it is essential to specify
. . . how policies are associated with services and envelopes. In this
2.2 WS'POI|Cy and WS-SecurltyPollcy paper, we select the policies for processing SOAP envelopes via

Next, we define an abstract syntax for the policies considered in two partial maps from SOAP endpoints to individual policies, for
this paper. We omit the explicit choice of algorithms for canonical- incoming and outgoing envelopes, respectively. We use the fol-
ization, secure hash, shared-key encryption, and so on, and assumwing abstract syntax for policy configurations. (It is based on the
a fixed algorithm for each purpose. We use the constructor List for local configuration format in a preliminary version of WSE 2.0, and
ML-style lists, separated by commas and enclosed within brackets. differs a little from the format used in the released versith).)



Configurations: For instance, an essential limitation of the core policy language is

Iuri : URI ::= anyLegalXnlUri Set of URIs that it is stateless, that is, its interpretation does not depend for

addr: Addr = SOAP Endpoints example on previously-received messages. This calls for extension
Default Any service, any action mechanisms for properties that concern series of messages, such as
ToDefaul(suri : URI) Service suri, any action correlation between successive requests to the same service.
ToAction(suri : URl,ac : URI) Service suri, action ac

map : Polmap i Policy Maps 3. ARCHITECTURE OF POLICY TOOLS
Sendaddr : Addtpol : Pol) Send Policy for addr We present the design and implementation for our tools, leaving
Receivéaddr : Addtpol : Pol) Receive Policy at addr most details to the next two sections. Our general approach, de-

picted in Figurel, is to develop an operational model for web ser-
| vices that (1) closely reflects their actual deployments and (2) sup-
As an example, we give a configuration for the client that sup- POrts automated verification of security properties. As well as run-
ports the request and response for http://bobspetshop.com. Thelng web services applications using WSE, we symbolically verify
configuration consists of a send policy map for generating requests,their security using TulaFale, a scripting language for expressing
and a receive policy map for checking responses: XML security protocols.

clientConfig = 3.1 TulaFale, a Security Tool for Web Services

[ Send(ToAction(http://bobspetshop.com/service.asmx",

cfg : Config := polmaps : ListPolmap  Configurations
|

"http://petshop/premium"), TuIaF_aIe B is a typed language _based on the applied pi calcu-
Integrity(Usernameq), lus [1] with support for XML processing, built on top of ProVer,|
Receive(Default,Integrity(X5098obsPetShop"),Resp) ] 5], a cryptographic protocol verifier. The language has terms, pred-
icates, and processes.
Reg= [Header(To"),Header(Action"),Header{MessageId"), Terms combine XML and symbolic “black-box” cryptography,
Header(Created"),Body] parameterized by a set of rewrite rules. For instance, we define

Resp= [HHeea;deés(,Fcl;‘)em;B’egfig%%ﬁateSTo")’Headermessage:[d")’ AES symmetric encryption and decryption in TulaFale as follows:
The configuration maps requests WAtlb>"http: //bobspetshop. gggtsrtgfé?éé&%?xtlzegy(gﬁz?,bki%teess;':bytes

com/service.asmx"</> and<Action>"http://petshop/premium" with decryptAES(k,AES(k,b)) = b.

</>to a policy that signs the message body, relevant WS-Addressing

headers, and a creation timestamp header. The receive policy maps Prolog-style predicates operate on terms; they are used to reflect
all responses to a similar policy that ensures that the relevant re-the syntax and informal semantics of web services specifications.

sponse message parts are signed using an X.509 certificate assignetPr instance, the following predicate gives a (simplified) account

to "BobsPetShop". The message parRegandRespin this config- of a WS-Security username tok_en, by describing how to build this
uration represent the minimum set that need to be signed for safety;XML token and compute a derived key from usernameecret
hence they appear several times in this paper. pwd, timestamyt, and noncen:

predicatemkUserTokenKey (tok:item,u,pwd,t:string,n:bytes,k:bytes) :
tok = <UsernameToken>

2.4 Discussion

Policies can be rather weak: for the receiver, the policy Integrity <Username> U </>
[X509("Alice"),[Body]] only guarantees that a client with an Al- <Password Type="None"></>
ice certificate sent an envelope with the received message body, <Nonce> base64(nkx/>

<Created>t</></>,

to some service, at some point. It provides neither message au- | _ pshal(pwd.concat(n utf(n)).

thentication nor replay protection, as an attacker can rewrite any-
thing else in intercepted envelopes. As another example, the policy Processes express configurations of principals that send, receive,

All[Integrity(t,[Header('MessageId")]),Integrity(t,[Body])] for a and transform terms using these predicates. Processes can gener-

token t is weaker than Integrity(t,[Heade&MessageId"),Body]) ate names modelling secrets, nonces, and message identifiers; pi

since the former accepts an envelope with separate signatures forcalculus scoping tracks knowledge of freshly generated names.

the message identifier and contents. We model the attacker as some arbitrary process context, running
The choice of a policy usually depends on the service and its in parallel with the system configuration, and thus able to mount

implementation; for instance, authentication of #Te> and the< any active attack combining communications, cryptography, and

Action> elements matters if the same certificate is used for differ- XML rewriting. The only restriction is that fresh names are not
ent services and actions. Similarly, elements used to implement re-initially known by the attacker.
play protection or message correlation (typically the message iden- To check formal security properties, we compile our TulaFale
tifier and the sender’s timestamp) should be authenticated by de-scripts to the applied pi calculus, and then invoke ProVerif. For
fault, even if the application ignores them. More generally, headers each property, either ProVerif succeeds, and establishes the prop-
trusted by the application, say for transaction management, shoulderty for all runs, in any context, or it fails with a trace that we can
be authenticated. Conversely, given intermediate SOAP processors(usually) decompile into a TulaFale counterexample that describes
a service should not expect all headers to be signed. an attack, or it diverges. (With a little user adjustment of scripts,
Independently, the implementation of policies in a SOAP proto- divergence can usually be avoided in practice.) Properties include
col stack is non-trivial. For instance, the ordering of encryption and confidentiality (some name remains secret for all runs) and authen-
signing operations obviously matters, but is left unspecified. ticity (expressed as correspondences between special events per-
Finally, one cannot realistically hope to capture all security needs formed by processes to mark their progress). Since TulaFale scripts
with a simple declarative syntax, so it is important to understand define processes, the general theory of the pi calculus can also be
how basic needs expressible in policies can be supplemented withusefully applied, for instance to prove complementary properties
ad hoc mechanisms, relying for instance on custom security tokens.by hand, or to generalize automatically-proved properties.
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Figure 1: Generating and Checking Web Services Security Policies

Although we successfully applied TulaFale to verify a series of specification is much easier than understanding the security impli-
SOAP configurations, and reflected a significant part of WS-Securitycations of every detail in a configuration. For instance, they can
as a TulaFale library, modelling in TulaFale remains delicate: only be designed so that automatically-generated configurations avoid
experts can be expected to write scripts and safely interpret the re-common pitfalls, thereby providing “secure by default” web ser-

sults of ProVerif. vices configurations.
. o . Both our new tools take a link specificatitras input. The first
3.2 Compiling Policies to TulaFale Scripts (“configuration generator” in Figuré) generates WSE policy con-

To verify declarative SOAP configurations, we introduce a new figurationsC(L) to implement_. The second (“configuration com-
tool that compiles these configurations to TulaFale scripts, thereby Piler” in Figure 1) generates a TulaFale scrip{C,L), which con-
giving a precise operational semantics to their specifications. The Sists of a formal model of the policy configurationplus security
core of our “configuration compiler” (see Figui¢ consists of a  goals extracted frorh.
translation from WS-SecurityPolicy formulas to TulaFale predi-  ForanyL, we can check correct generation@(l) by compiling
cates on envelopes relying on (our existing model of) WS-Security. to the scripts(C(L),L), and running the TulaFale verifier. Alter-
Pragmatically, our tool also collects the policy maps of a WSE im- natively, we can use a different (or a modified) configurat@®n
plementation and automatically generates its TulaFale script. Fromfor instance by handwriting some of the policies, and check that
that point, one can handwrite relatively short security properties the amended configuration still meets the original security goals,
for the configuration and verify them using TulaFale. More su- by verifying the scripts(C',L). In this case, we automatically ver-
perficially, the tool can also detect and report common errors in ify formal security guarantees, without the need to manipulate Tu-
policy configurations (often apparent in TulaFale), such as unau- laFale scripts. For instance, one could run the verifier whenever
thenticated routing information. the configuration is edited, before committing the changes to a live

Crucially, our tools and the actual web service runtime take as system.
input the same policy configurations. Hence, we can directly de-
termine web services vulnerabilities caused by misconfiguration of
policy files. In contrast, in previous work, protocol verifiers work 4. FROM POLICIES TO PROCESSES
on ad hoc, handwritten, abstract d'escriptions_ o_f security protoco_ls, From policy configurations, the configuration compiler of Fig-
and the gap between the handwritten description and the runningyre 1 generates scripts representing distributed systems of SOAP
code can lead to errors, and is tedious to check and to maintain. Inprocessors, with an arbitrary number of senders and receivers. These
other words, many formal techniques for verifying cryptographic - gcrints provide our formal semantics; they can be read as concurrent
protocols are now available, but their systematic application here rograms coded in the pi calculus. This section explains important
to reflect actual distributed deployment of protocols is new. parts of these scripts, partly by example. We also experimented

. . .. with variants of these scripts with richer models of processors and
3.3 Generating Security Goals and Policiesfor ;7 cyers, discussed in Sfctmn P
Abstract Configurations A script essentially implements a single, generic SOAP proces-

In the absence of an existing XML schema for writing high-level sor. It consists of the composition of four subprocesses, with the
security goals, we design our own simple format $ecure links active attacker being an implicit process running in parallel. Two of
between SOAP endpoints hosting sets of principals acting as clientsthese subprocesses, UsernameGenerator and X509Generator, code
and servers. This format can mention a few basic security proper- an abstract interface for managing secrets; they model our assump-
ties, such as message authentication, but is otherwise very limited:tions on principals, trust, and insider attacks; they do not depend on
indeed, our goal here is that links be much easier and safer to con-the configuration. The two remaining subprocesses, GenericSender
figure than policy maps. and GenericReceiver, code SOAP processors that send and receive

The link language is considerably more abstract (and less ex- envelopes on behalf of principals; they rely on predicates compiled
pressive) than policy maps, so that reviewing the security of a link from policy maps.



4.1 Principals, Trust, and Insider Attacks in dbChan(sid)in dbChan(rid);

i ini i ; i ; ; new freshid;

St il e ety it (1), 5 s sty o

e . . ’ ~ filter linkAssert(sid,rid,env,a)-ain begin (Log,a);//* cf. Sectiorb
certificate, and their username in username tokens. In WSE, prin- oyt (httpChan, outenv)
cipals provide code describing which envelopes to send and what__ .
to do with received envelopes. These details of the application are 1 NiS process attempts to enforce the send policy for messages be-
best left implicit in our model. Instead, we implement a control tWeen these principals by rewriting env into a policy-compliant
interface that enables the attacker to make these decisions. In addi€nvelope outenv, then sending this new envelope on httpChan, a
tion, we provide a control interface enabling the attacker to trigger Public channel representing the network. To this end, it first cre-

the generation of certificates and shared secrets for arbitrary prin-ates & fresh message identifier, freshid. Then, it useitie..in

cipals, and to control whether they are leaked. construct to call TulaFale predicates mkConformant and linkAssert
The generation of shared passwords is modelled as follows: before actually sending the new envelope. ) )

Policy enforcement depends on the configuration, via the pred-

processJsernameGenerator() = icate mkConformant, defined below. This predicate picks a send

(fin genUPChan(u);
new pwdu;
let entry =<UserPassword>

policy and attempts to enforce it for some set of principals by per-
forming cryptographic operations on the input envelope.

<Username>U</><Password>pwdi</></> in Symmetrically, our SOAP receiver takes an envelope from the at-
(‘out dbChan(entry))) tacker on channel httpChan, instantiates the sending and receiving
|(Yin genLeakUPChan(u); principals, and checks the receive policy for the intended destina-
new pwdu; tion before accepting the envelope.
let entry =<UserPassword> ] )
<Username>U</><Password>pwdw</></> in processGenericReceiver() =
((begin Leak(u);out publishChan(pwdu)) (!out dbChan(entry)))) lin httpChan(env);

in dbChan(sid)in dbChan(rid);
This process has two replicated inpuia)'on channels genUPChan filter isConformant(env,[sid],[rid],outenv)- outenvin _
and genLeakUPChan. Whenever the environment sends the name u filter linkAssert(sid,rid,outenv,a}- ain end (Log,a);//* cf. Sectiorb
of a principal on channel genUPChan, this message is received
by the first replicated input, a fresh secret password pwdu is gen- This process uses the predicate isConformant, defined below, that
erated few pwdu), and the username and password are recordedpicks a receive policy and checks that the envelope conforms to it
as a replicated message entry sent on channel dbCbat). ('As for some set of senders and receivers.
opposed to genUPChan, channel dbChan is private to the SOAP .- .. .
processor: the entry may be read by the senders and receivers de4-3 Compiling Policies to Predicates
tailed in Sectior4.2 below, but not by the environment (including The policy configuration of the SOAP system is enforced using
the attacker). two predicates, mkConformant and isConformant, whose clauses
The channel genLeakUPChan implements a similar service thatare compiled from send and received policies, respectively. We as-
models passwords leaked to the attacker. As above, each messagsume that each policy has a unique identifier that can be used as its
on genLeakUPChan triggers the generation of a fresh secret passname. We present the clauses generated from the client side con-
word for u and its recording on dbChan. In addition, the pass- figuration clientConfig given in Sectidh Our configuration has a
word is sent on public channel publishChan, and can thus be readsingle send policy'(ClientToService") requiring a signature on
by the environment. Before leaking the password, however, an five message parts keyed using a password-based key. This yields
event Leak(u) is issued, indicating that principal u can no longer the predicate:
be trusted. Such eve_nts are invisible to the SOAP processor, theypredicatehasSendPoIicyClientToService(env:item, sids, rids, fresh:items,
are used only to specify proof goals that account for leaked secrets. outenv:item)
Our model assumes that passwords are cryptographically strong, sids = [user @ ],
that is, are not subject to guessing attacks; we leave extensions to isUserPassword(user,u,p),

the web services policy framework to protect weak user-memorable ~ fresh = [NewMessageldnt @], _
passwords as future work. hasRequestParts(env, Toitm,Actionitm,Messagelditm,

CreatedItm,Bodyitm),

The_ generation_of certificates i_s similar:_ _XS(_)QGenerat_or in_ the Messagelditm <MessageId>NewMessageky/>,
technical report3] implements a single certification authority with mkUserTokenKey(utok,u,p,n,,K),
two public channels genXChan and genLeakXChan. mkSignature(sighmacshal k,

. . [Toitm,Actionitm,Messagelditm,Createditm,Bodyitm]),
4.2 Generic Senders and Receivers outenv =<Envelope>
L . . <Header>

O_ur SOAP processors act on _behalf of principals by_ reading th_elr Toitm Acitm Messagelditm
entries on channel dbChan. Without loss of generality, our script <Security>
can thus include a single generic sender and a single generic re- <Timestamp>Createditra/>
ceiver. (Formally, we can show that a configuration with multiple utok sig</></>
SOAP processors is observationally equivalent to a configuration Bodyitm </>

with a single generic processor hosting all pr_incipals.) The predicate first extracts a username and password (u,p) for the
The SOAP sender, illustrated below in a simple case, re'pe""tedlysigning principal from the sids database. Here, sids is a list of items,

inputs an envelope env from the environment on channel initChan o herator @ denotes list concatenation, dsén unnamed vari-

and then instantiates the sending and receiving principals by read-ypje standing for the tail. The predicate then extracts three fresh

ing their entries, sid and rid, from dbChan. names: the message identifier for the envelope, a nonce, and a time-

processGenericSender() = stamp for generating a password-based key. Next, it parses the en-
lin initChan(env); velope to extract the five message parts correspondiRgtphere



we use a predicate call to hasRequestParts as shorthand for the fiv&inks and Link Specifications:
calls. The predicate then creates a RéwssageId> element with

I
secr : Secr = Clear| Encrypted Secrecy level

the fresh message identifier. The mkUserTokenKey predicate 9€N-ps : PrincipalSet = Any | pset : Liststring) Set of principals
erates a new username token utok and password-based key K fofjnk - Link -: = Links

the principal u using the password p and the fresh nonce and time- (suri: UR, Service URI
stamp. The mkSignature predicate uses the key k to construct an actions : ListURI), Enabled actions
XML signature sig that signs the five message parts. Finally, the clientPrin : PrincipalSet Authorized clients
predicate constructs an output envelope outenv with the signed in- servicePrin : PrincipalSet Service principals

put message parts, new message identifier, and the new username secrLevel : Sedr Body secrecy
token and signature. . _ L:LinkSpec := List(Link) Link specification

Each send policy P is thus translated to a different predicate | I
hasSendPolicyP. Each send policy map, Send(addr,P), is then trans- We allow at most one link for each service URI in any link spec-
lated to a clause of mkConformant that invokes hasSendPolicyP if ification. Each link consists of the web service URI (suri), the set
the destination service and action of an envelope matches addr. Foiof allowed actions (actions), the set of principals that can act as

instance, the send policy map in clientConfig translates to: clients (clientPrin) or as the web service (servicePrin), and the se-
crecy level (secrLevel) for both directions. Recall that a principal
predicatemkConformant(env:item,sids, rids, fresh:items,outenv:item) : name is the username in a user/password combination or the sub-
hasHeaderTo(env, Toitm, Toval), ject name in an X.509 certificate. The secrecy level can either be
hasHeaderAction(env,Actionitm,Actionval), Clear, meaning no encryption, or Encrypted, meaning that both re-
Toval ="http://bobspetshop.com/service.asmx", quests and responses must have encrypted bodies. For encryption,

Actionval ="http://petshop/regular",

; : ] ar’, both the client and server principal must use X.509 certificates. As
hasSendPolicyClientToService(env,sids,rids,fresh,outenv).

an example, consider:
Lo =[("http://bobspetshop.com/service.asmx",

The second policy (ServiceToClient) in clientConfig is a receive ["http://petshop/premium"], Any, ["BobsPetShop"], Clear)]
policy that checks that five message paRegp in the response . . .
message are signed with an X.509 certificate issued to the princi- | IS SaYS Servicettp: //bobspetshop. com/service . asmx of-
pal BobsPetShop. The corresponding receive policy map (for the [€rS an actiomttp: //petshop/premiun. Its clients can act on
Default address) is translated to a clause of the isConformant pred-2€half of any trusted principal, but the service acts only on behalf

icate that simply invokes hasReceivePolicyServiceToClient. of BobsPetShop. All messages are authenticated, but encryption
is not required.

predicatehasReceivePolicyServiceToClient(env:item, sids, rids:items, 5.1 Generating Policy Configurations

outenv:item) - We now describe the configuration generafgr-) of Figurel
hasResponseParts(env,Fromitm,RelatesToitm,Messagelditm, g g angr-) g )

Createditm, Bodyitm) that translates a list of links to a configuration consisting of a list of
hasSecurityHeader(env,toks)’, ' policy maps. We give the translation for the exarripje The com-
xtok in toks, sigin toks, panion technical repor8[ deals with the general case, and provides
isX509Token(xtok!BobsPetShop" k,sids), detailed rules for generating policy configurations.
isSignature(sigirsashal" Kk, ) )

[Fromitm, RelatesToitm,Messagelditm,Createditm, Preq = OneOrMore[ Integrity(Usernanteeq, Integrity(X509Req]

Bodyitm]) Presp = OneOrMore][ Integrity(UsernamtfobsPetShop"),Resp,
outenv = env. ' Integrity(X509('BobsPetShop"),Resp]

A= ToAction("http://bobspetshop.com/service.asmx",
predicateisConformant(env:item, sids, rids:items, outenv:iter) : _ "http://petshop/premiun")
hasReceivePolicyServiceToClient(env,sids,rids,outenv). Cc = [Sendf\Preq), Receive(DefaulBesp)]

Cs = [Receiveh,Preq), Send(DefaulBresp)]
Co=C(Lo) =C. @GCs

“Our request policyPeq requires a digital signature on (at least)
the message parReqsigned by a principal using one of their
X.509 certificates or shared client passwords. Our response pol-
icy Presp requires a similar signature drResp signed specifically
by BobsPetShop.

The policy configuration at the servi€® consists of a receive

policy map for requests t& and a send policy map for responses.

5. FROMLINKS TO POLICIES Conversely, at the client, the configuratiGa consists of a send

A link defines high-level security goals for SOAP sessions be- policy map for requests thand a receive policy map for responses.
tween clients and servers, for a given service. In the simplest caseIn general,C(L) generates request policy maps for each (action,
each session has a single message. Although this is the only caselient principal, server principal) tuple, and response policy maps
considered in this section, our tools and methodology extend to for each (client principal, server principal) pair in We model
more complicated sessions; for example, Secfiahows how to the configuration of the distributed system by the concatenation of
address request-response correlation. Each link specifies basicthe client and server configurations. For our example ligkthis
strong security properties for the request messages from client toconfiguration is calle@.
service, and for the response messages from service to client. Th . .
messages in each direction must be authenticated and optionallg%-2 Embedding Security Goals
encrypted. A signature must cover the web service, the message The configuration compilet§(—, —) of Figurel, makes explicit
body, and a message identifier. The formal syntax is as follows:  the security goals of a link as proof obligations in TulaFale, us-

The hasReceivePolicyServiceToClient predicate extracts the mes
sage parts correspondingRespand checks that the envelope has
an X.509 token, foBobsPetShop, and has a signature keyed with
this token that covers all the response message parts.



ing specialevent messagdbat mark important operations made The proof is fully automated. All the theorems in this paper are
by principals and key generators. Hence, before emitting a con- proved by invoking ProVerif on a generic desktop computer with a
structed envelope on httpChan, the generic sender of Settton  3GHz Pentium 4 processor and 1GB of memory. For this theorem,
emitsbegin Log(a) to mark its intention. Similarly, the generic re-  ProVerif takes around 3 minutes to prove the security goals for the
ceiver emitend Log(a) when it accepts an envelope as valid. 520 line generated TulaFale script.

Informally, wheneverend Log(a) is emitted, we would expect Our proof technique can be extended to establish theorems on
beginLog(a) to have been emitted, with matching arguments (a). general classes of policy configurations and link specifications. We
The arguments to these events are automatically extracted from linkpresent two theorems in this direction, although we omit the more
descriptions, via the generated predicate linkAssert. (Crucially, this complex scripts and the (human-proved) lemmas involved in their
extraction is independent from the lower-level policy maps imple- proofs. While the automated part of the proof of TheoZztakes
mented in our scripts.) a few minutes, Theorertakes about ninety minutes.

The technical report3] defines general rules for embedding our The following formalizes the intuition thail configurations gen-
security goals in TulaFale, including the clauses for linkAssert for erated from link specifications are safe:
authenticity. Here, we define linkAssert for the request envelopes

of our example link_o. THEOREM 2. For any link specification L, process(C(L),L)

is robustly safe.
predicatelinkAssert(sid, rid:item, env:item, a:items) :

hasUid(sid,sender), hasUid(rid,responder) The next result covers the common case of remote principals

hasHeaderTo(env, Toitm, to), trusted to implement some unknown security policy. For instance,
hasHeaderAction(env,Actionitm,action), they may use their signing keys to generate signatures requested in
hasHeaderMessageld(env,Messagelditm,id), arbitrary policies.

hasHeaderCreated(env,Createditm,t), . . . .
hasBody(env,bitm,body), THEOREM 3. For any link specification L and configuration C

to = "http://bobspetshop.com/service.asmx", such that C and”(L) have the samBReceivepolicy maps, the pro-
action ="http://premium", cessS(C,L) is robustly safe.

respondem ["BobsPetshop"], . . o . . . .

a = [sender respondéRequest" to action id timestamp body]. This asserts: if server policies suffice to validate a link specifi-

. . cation, Send policies are immaterial for authenticity. Clearly, we
The seven hasXyz predicates collect the arguments recorded in the P Y Y

& two princinal identifi | lected el s of th tannot hope to retain functional adequacy in this case. Dually, a
event. two principalidenthiers plus selected elements of the enve- ;o general result on secrecy depends only on the Send policies.
lope. The following three equations test to, action, and responder

against the parameters provided in the high-level link. If these tests Z EXTENDED SECURITY MODELS

succeed, the arguments are returned as the last, a. Arguments ar

similarly collected for the response envelopeggfusing a second In this section, we present extensions of the technical results in
clause for linkAssert (the technical report has full details). Sections4, 5, and6. We present details on incorporating secrecy

and encrypted links, we explain how message correlation is en-
6. VERIFYING LINK-BASED SCRIPTS coded, and we give a logical refinement relation on policies.

We can now state the formal security properties checked by our 7.1 Secrecy
tools. Recall thaC(L) is the policy configuration generated from The link language allows encrypted links that require that mes-

a link specificatiorL, and thatS(C,L) is the TulaFale script (es- 546 podies in both directions be kept secret from the attacker. For

sentially a pi calculus process, with some embedded assertions)iygiance, consider the following encrypted variation of our example
generated from a policy configurati@hand a link specificatiof. link specificatiorLo.

HenceCo = C(Lo) andS = $(Cop, Lo) are the policy configuration

and pi calculus process, respectively, for our example link. L1 =[("http://bobspetshop.com/service.asmx",

["http://petshop/premium"],

Authentication and Adequacy Goals for Processes: Any, ["BobsPetShop"], Encrypted)]

I 1 . . . . . . . .

A processP is robustly safewhen, for any run in any context, if The following configuration implements this link specification:
end Log(a) occurs, then eithéegin Log(a) orbegin Leak(u) with Preq = Alll Integrity(X509,Req,

[a=u @-_] previously occurred. Confidentiality(X509(BobsPetShop"),[Body])]

P is functionally adequate for avhen, for some run in some con-  Presp=All[ |r(l:tegg_ig(xfol_?('&%lazl’[egsﬁrﬁ"),Resr)
onftiaentiall ,|BO
|t ext, endLog(a) occurs. I Cc = [Sendf\Preg), Recei\Ye(DefaulE,’resi,/)]
Cs = [Receiveh,Preq), Send(DefaulBesp)]
These observational properties have a direct security interpreta-C; = ¢(L;) =C. @Cs
tion for processes modelling web services configurations since, by
construction, the emission of observed events (for instance, for ro-
bust safetybeginLog([u] @ ass),end Log([u] @ ass), andbegin
Leak(u)) are carefully controlled (for instance, they are emitte
only when a sender sends an envelope, a receiver accepts an enve-
lope, and the password generator leaks a password, respectively). to
Continuing with our running exampl& andLg, our first theo-
rem illustrates how our tools can be used to verify the correctness
of a fixed policy configuration against a link specification.

Here, the request and response policies require the Body to be en-
crypted, and since username tokens do not support encryption, both
d principals must use X.509 certificates.
The script generated from this link(Cy, L, ), extendss(Co, Lo)

two ways. First, the send and receive policies are now translated
predicates that also implement the encryption of the body. Sec-
ond, whenever the generic sender inputs a request envelope from
the attacker for recipient u, it may replace the body by a secret
name B after issuing the evebeginLogS(u). The secrecy goal

THEOREM 1. The process(Cp,Lo) is robustly safe, and func-  is then that the attacker cannot capture or compute B unless u is
tionally adequate for someeof the form[_ "BobsPetShop" untrusted. A new predicate mkLinkEnvelope implements the body
"Request"@ -] and[ "BobsPetShop"_ "Response"@ - ]. replacement.



Secrecy Goal for Processes:

I 1
P preserves secreayhen, for any run in any context where B does
not occur, if the context obtairs thenbegin Leak(u) andbegin

KnowsSecret(u) previously occurred.
| |

The following theorem states that the policy configurat{n
generated fronh; preserves the secrecy goald.gf it is automat-
ically proved by ProVerif in a few minutes.

THEOREM 4. The TulaFale script generated from land G
preserves the secrecy Bf

We also establish the theorems of Secttofor C; instead ofCy,
and prove that all link-generated configurations preserve secrecy.

7.2 Correlation

7.3 Towards a logical theory for Policies

One can treat security policies as logical formulas with integrity
and confidentiality assertions as atomic propositions, combined us-
ing conjunction and disjunction. This leads to a natural notion of
refinement: one policy refines another if any message that satisfies
the latter also satisfies the former. Such a refinement can be used to
develop rules for safely modifying policy configurations that have
been proved to be secure. For instance, we can establish that refin-
ing a link-generated receive policy preserves robust safety.

Compilation to TulaFale provides an ad hoc model of the logic:
we can check that the basic axioms hold, and can be pushed through
process configurations (for instance, comparing parallel composi-
tions of servers to disjunctions of policies); we can also exhibit
additional laws that hold in our model, for instance, authentication
without signature for username tokens, and transitivity of multiple

For request-response exchanges, we require an additional ausignatures sharing a fresh name.
thentication prope_rty. When the client accepts a response messages . .oiver Policy Refinement for Link-Based Safetyp = g
from the web service, we want to guarantee that this message wag :
generated in response to a particular earlier request. To formalizeWe say thafp refinesqg, written p = g when, for all link specifica-
this property, we use modified TulaFale script$C,L): instead tion L and policy configuratiof[_] with a placeholder as a Receive
of generic senders and receivers, we model generic clients and serpolicy, if $(C[q],L) is safe, thes(C[p],L) is also safe.
vices. A generic client sends a request and then waits for a responsé

that matches the request. A generic service is symmetric.
As an example, we present the generic client¥¢Co, Lo):

processGenericClient() =

lin initChan (env);

in dbChan (cid)jn dbChan (sid);

new freshid;

filter mkConformant(env,[cid],[sid],[freshid],outenw): outenvin
filter linkAssert(cid,sid,env,aReq)> aReqin

beginLog(aReq);

out httpChan(outenv);

in httpChan(respenv);

filter isConformant(respenv,[sid],[cid],resp} respin
filter hasCorrelator(resp,freshid,cid}in

filter hasLinkAssert(sid,cid,resp,aResp)aResgn
end Log(aResp);

end LogCorr(aReq,aResp)

Similarly, for some given security goals, one can define a notion
of refinement for sender policies, and for policy configurations. Re-
finement provides an abstract way of extending our results to poli-
cies that are apparently more demanding. We give some sample
refinement properties, which can be established using logical re-
finement on TulaFale predicates generated for these policies.

Refinements of Receive Policies:
I 1

pol; = pol, pol, = pols
pol = pol pol; = pol;
Vi

pol; = OneOrMorepoly, ..., poly]
Vi : pol=pol,
pol = All[ polq,...,pol]
T € {X509,Usernam¢

All[ poly,...,pol] = pol;

As in GenericSender, the client accepts an envelope from the envi- Integrity(T (s),L) = Integrity(T, L)

ronment and enforces the send policy on it by invoking the predi-
cate mkConformant. It then issubegin Log(aReq), where aReq

is the assertion for request messages, before sending the request
message out on httpChan. Then, the client process waits for the re-

sponse, checks that it conforms to a receive policy and that it is cor-
related to the request before issuing the eventsLog(aResp) and

end LogCorr(aReq,aResp). The symmetric GenericService process

issuedegin LogCorr(aReq,aResp) before generating the response.

Correlation Goal:

IA processP correctly correlates requests and respongéen, folr
any run in any context, iend LogCorr(al,a2) occurs, then either
beginLogCorr(al,a2) obeginLeak(u) previously occurred with
Ial: u@.ora2=u@..

L'CL
Integrity(t, L) = Integrity(t,L")
T € {X509,Usernam¢, H = Header(“Messageld”)
All[Integrity (T (s), [H]@L1),
Integrity(T (s), [H]@L2)] = Integrity(T (s), [H]@L1@L)

The first two rules express reflexivity and transitivity of refinement,
while the next three encode disjunction and conjunction of policies.
The last three rules express refinement properties of the Integrity
assertion. Requiring a more specific token or signatures over more
message parts leads to a stronger receive policy. Requiring two sig-
natures that both sign the fresh message identifier is equivalent to
requiring a single signature that covers both sets of message parts.
Each of these rules is established by manual proofs about the cor-

If no user secrets are leaked, then the key to correlation is checkingr®sponding process translations. As an example of the last refine-
that the RelatesTo field of the response echoes the fresh Messagel@ent rule, letC’" be the configuration formed by replacing the re-
in the request. If insider attacks are allowed, however, this mecha- SPONse policy, Integrity(X5098obsPetShop"),Resp, in Co by:

nism does not suffice. So, we extend responses (in mkConformant, All[Integrity(X509("BobsPetShop"),

isConformant) to additionally include and sign the user token used [Header(MessageId"),Bodyl),

to authenticate the request. The predicate hasCorrelator checks that ~ Integrity(X509('BobsPetShop"),

: : : : [Header(MessageId"),Header(From"),
the response contains both the freshid and cid used in the request. Header(RelatesTo") Header{Created")])]

THEOREM 5. The processs’(Co,Lg) correctly correlates re-

quests and responses. THEOREM 6. S(C/,Lp) is robustly safe.
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APPENDIX

A.

SAMPLE POLICY CONFIGURATION

The following is the XML policy configuration corresponding to
C1=C(L1). The first two policy maps form the client configuration
C. while the last two form the service configuratiGg The overall
format is based on the config files of WSE while the policy format
conforms to WS-SecurityPolicy.

<PolicyMappings>
<SendPolicy>

<To>http://bobspetshop.com/service.astiRo>
<Action>http://premiunx/Action>
<Policy Id="ClientToServerl">
<All>
<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3K/TokenType>
<Claims>
<SubjectName>BobsPetShogf/SubjectName>
</Claims></SecurityToken></TokenInfo>
<MessageParts>Body()</MessageParts>
</Confidentiality>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3/TokenType>
</SecurityToken></TokenInfo>

<MessageParts>Body() Header(To") HeaderfAction")
Header(MessageId") Header(Created")
</MessageParts></Integrity>
</A11></Policy></SendPolicy>
<ReceivePolicy>
<To>defaulk/To>
<Action>defaulk/Action>
<Policy Id="ServerToClient2">
<All>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>X509vX/TokenType>
<Claims>
<SubjectName>BobsPetShofy/SubjectName>
</Claims></SecurityToken></TokenInfo>
<MessageParts>Body() Header(From")
Header(RelatesTo") Header(MessageId")
Header(Created")</MessageParts></Integrity>
<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>X509vX/TokenType>
</SecurityToken></TokenInfo>
<MessageParts>Body()</MessageParts>
</Confidentiality></A11></Policy></ReceivePolicy>
<ReceivePolicy>
<To>http://bobspetshop.com/service.asnRo>
<Action>http://premiuns/Action>
<Policy Id="ClientToServer3">
<All>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>
</SecurityToken></TokenInfo>
<MessageParts>Body() Header(To") Header(Action")
Header(MessageId") Header(Created")
</MessageParts></Integrity>
<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>
<Claims>
<SubjectName>BobsPetShofy/SubjectName>
</Claims></SecurityToken></TokenInfo>
<MessageParts>Body()</MessageParts>
</Confidentiality></A11></Policy></ReceivePolicy>
<SendPolicy>
<To>defaulk/To>
<Action>defaulk/Action>
<Policy Id="ServerToClient4">
<All>
<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>
</SecurityToken></TokenInfo>
<MessageParts>Body()</MessageParts>
</Confidentiality>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>
<Claims>
<SubjectName>BobsPetShof/SubjectName>
</Claims></SecurityToken></TokenInfo>
<MessageParts>Body() Header(From")
Header(RelatesTo") Header(MessageId")
Header(Created")</MessageParts></Integrity>
</A11></Policy></SendPolicy></PolicyMappings>


http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/xpath
http://www.w3.org/TR/soap12
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