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ABSTRACT
The concepts of self-similarity, fractals, and
long-range dependence (LRD) have revolu-
tionized network modeling during the last
decade. However, despite all the attention
these concepts have received, they remain
difficult to use by non-experts. This diffi-
culty can be attributed to a relative com-
plexity of the mathematical basis, the ab-
sence of a systematic approach to their ap-
plication and the absence of publicly avail-
able software. In this paper, we introduce
SELFIS, a comprehensive tool, to facilitate
the evaluation of LRD by practitioners. Our
goal is to create a stand-alone public tool
that can become a reference point for the
community. Our tool integrates most of the
required functionality for an in-depth LRD
analysis, including several LRD estimators.
In addition, SELFIS includes a powerful ap-
proach to stress-test the existence of LRD.
Using our tool, evidence are presented that
the widely-used LRD estimators can provide
misleading results. It is worth mentioning
that 25 researchers have acquired SELFIS
within a month of its release, which clearly
demonstrates the need for such a tool.
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ANIR 9985195, and DARPA award NMS N660001-00-1-
8936, and NSF grant IIS-0208950, and TCS Inc., and DIMI
matching fund DIM00-10071.

1. INTRODUCTION
Self-similarity, fractals, and long-range dependence
(LRD) have emerged as powerful tools for mod-
eling the behavior of real processes and systems.
These concepts have been applied to numerous dis-
ciplines [25] ranging from molecular biology and
genetics [3] [17] to geology [26]. However, in this
work we focus on their application to the measured
behavior of computer networks.

Following the seminal work of Leland et al. [16],
long-range dependence has become a key concept
in analyzing networking traffic data over the last
decade. The community has observed an over-
whelming manifestation of self-similarity in mul-
tiple network aspects such as traffic load, packet
arrival times and queue sizes. As a result, most re-
searchers expect to identify LRD in their analysis
of measurements. Furthermore, realistic simula-
tions require models that exhibit LRD.

Intuitively, the properties of LRD and self-similarity
measure the importance of long-term memory in
the evolution of a process over time. When applied
to networking, we say that a time-dependent pro-
cess (such as packet arrivals, queue lengths, etc.)
is LRD if its current value is strongly correlated
with its previous values far into the past. As a re-
sult, a sequence of measured values from an LRD
process tends to generate similar (rather than in-
dependent) values. Thus, as is well known in the
case of self-similar behavior, changing time scales
through aggregation (i.e., taking the sum or aver-
age of a series of high resolution measurements to
produce a single low resolution measurement) may
have little impact on the apparent smoothness of
an LRD process.

Recognizing the presence of LRD is important for
practitioners, because it can significantly change
the behavior of the network. For example, if the



packet arrival process were LRD, then larger input
buffers would be needed to meet a given packet
loss-rate specification. Moreover, the LRD prop-
erty is completely different from ordinary notions
of the variance of a random process. High variance
only means that individual samples from the pro-
cess may deviate significantly from the global av-
erage value. Nevertheless, if those individual sam-
ples are mutually independent (or they exhibit only
short-range correlations), then the aggregated pro-
cess quickly converges to a smooth function that
is concentrated around the global average. Con-
versely, even a process that exhibits low variance
could be hiding a significant LRD component, in
which case it may continue to exhibit similar vari-
ance despite repeated aggregation.

Unfortunately, despite its widespread presence, the
evaluation of LRD poses significant difficulties es-
pecially for practitioners. We can see several bar-
riers to limit the use of these concepts in the net-
working community.

• Complexity: Many of the concepts are fairly
hard to comprehend both from an intuitive
and a mathematical perspective. There have
been limited efforts to systematize and sim-
plify these concepts, which results in confu-
sion, partial understanding and misinterpre-
tation of terms.

• Confusion: There does not exist a straight-
forward step-by-step approach to quantify LRD.
A measure of the strength of LRD is the Hurst
exponent (H), a scalar. However, the Hurst
exponent can only be estimated and not calcu-
lated in a definitive way. The several different
estimators for the Hurst exponent often pro-
duce conflicting results [14] [18].

• Lack of support: There does not exist a
single source of information or tools. As a
result, compiling and digesting the LRD liter-
ature and developing tools from scratch is a
non-trivial effort.

The overarching goal of this work is to demys-
tify LRD and make it accessible to non-experts.
Therefore, we have developed SELFIS, a SELF-
similarity analysIS tool, a first step towards sup-
porting a community-wide reference implementa-
tion of the major algorithms used for self-similarity
analysis. For this reason, SELFIS is: a) free, b)user-
friendly, and c) extensible. The need for such a tool

has been demonstrated by the 200 researchers1 who
downloaded the tool. It is implemented in java to
avoid the need of costly commercial software. Fur-
thermore, its modular open-source design allows
for a collaborative development that can integrate
the community expertise. More specifically, the
design goals for SELFIS include:

• Ease of use and accessibility: Through
a straightforward graphical user interface, it
enables non-experts to use self-similarity by
making the tool valuable both for research
and educational purposes. The simplicity of
the interface allows for effortless use of the ca-
pabilities of SELFIS, while the visualization
of the output of LRD test algorithms offers a
quick sanity check and educational aid. How-
ever, simplicity does not depreciate the power
of the analysis. Together with our analysis
of LRD algorithms (e.g., section 4, [14] [13]),
SELFIS is a powerful yet simple and intellec-
tually accessible tool.

• Repeatability and Consistency: Results
and observations from different research ef-
forts can be replicated and validated. SELFIS
offers a common reference platform for self-
similarity analysis so that researchers will not
be required to implement sophisticated algo-
rithms from scratch.

• Evaluation: Observations can be made about
the performance, capabilities and limitations
of various long-range dependence estimators.
In addition, future versions of SELFIS will in-
corporate algorithms and heuristics to over-
come the statistical limitations to allow for
robust estimation.

In addition to implementing well-known long-range
dependence estimation algorithms, SELFIS also in-
corporates an intuitive approach to verify the ex-
istence of long-range dependence. We call this
methodology randomized buckets. The method
allows us to independently control the amount of
correlations at different scales in a given dataset.
In randomized buckets, the initial time-series is
1The researchers span multiple disciplines such as com-
puter science, electrical engineering, mathematics, psychol-
ogy. Apart from its academic appeal, it has attracted the
interest of various research labs around the world such as
Telstra Research Laboratories, the Chinese Academy of Sci-
ence, Ericsson Research, USC/ISI, and Swiss Federal Insti-
tute of Technology.



permutated in a controlled fashion, and the statis-
tical properties of the initial and the randomized
series are compared. The approach extends and
subsumes the methodology used in [7] in 1996.

We extend the initial method in two ways. First,
we enable multiple levels of permutations in or-
der to separate user-defined “medium” correlations
from long and short. Second, we enable different
ways of randomizing the time-series apart from the
permutations: we allow sampling with repeatable
values.

Finally, to demonstrate the value of SELFIS, we
use it to evaluate various long-range dependence
estimators in a variety of test cases. Our results
show that the estimators have significant limita-
tions and interpretation of results is not trivial.
First, several estimators seem to be sensitive to
short-range dependence. Using the randomized buck-
ets methodology, we create series without long-
range dependencies; however, some of the estima-
tors continue to report the same Hurst exponent
values indicating long-range dependence. Second,
even in synthesized long-range dependent series,
many of the estimators fail significantly to report
the correct Hurst exponent value.

The rest of this paper is structured as follows. Sec-
tion 2 is a brief overview of self-similarity and long-
range dependence and summarizes previous find-
ings of self-similarity in network traffic. Section 3
presents SELFIS, our self-similarity analysis tool.
Section 4 is a case study that presents the function-
ality of SELFIS: randomized buckets and a study
of the reliability of long-range dependence estima-
tors. Section 5 concludes our work.

2. DEFINITIONS - BACKGROUND
Self-similarity describes the phenomenon where cer-
tain properties are preserved irrespective of scaling
in space or time. Of interest to network traffic pro-
cesses is second-order self-similarity. Second-order
self-similarity describes the property that the cor-
relation structure of a time-series is preserved ir-
respective of time aggregation. This correlation is
captured by the autocorrelation function (ACF),
which measures the similarity between a series Xt,
and a shifted version of itself, Xt+k. Simply put,
the autocorrelation function of a second-order self-
similar time-series is the same across multiple ag-
gregation levels. For detailed description of self-
similarity, see [20].

If the ACF decays hyperbolically to zero then the
process shows long-range dependence. Long-range
dependence measures the memory of a process. In-
tuitively, distant events in time are correlated. On
the contrary, short-range dependence is character-
ized by quickly decaying correlations (e.g. ARMA
processes). The strength of the long-range depen-
dence is quantified by the Hurst exponent (H). A
series exhibits LRD when 1

2 < H < 1. Further-
more, the closer H is to 1, the stronger the depen-
dence of the process is.

More rigorously, a stationary process Xt has long-
memory or is long-range dependent [5], if there ex-
ists a real number α ∈ (0, 1) and a constant cp > 0
such that

lim
k→∞

ρ(k)/[cpk
−α] = 1

where ρ(k) is the sample Autocorrelation func-
tion (ACF):

ρ(k) =
E[(Xt − µ)(Xt+k − µ)]

σ2

where µ, σ are the sample mean and standard de-
viation respectively. The definition states that the
autocorrelation function of a stationary long-range
dependent process, decays to zero with rate ap-
proximately k−α, where H = 1 − α

2 is the Hurst
exponent. For traffic modeling purposes stationar-
ity implies that the structure of a time-series does
not depend on time.

Another way to characterize long-range dependence
is to study the properties of the aggregated pro-
cess X(m)(k) which is defined as follows:

X(m)(k) =
1
m

km∑

i=(k−1)m+1

Xi, k = 1, 2...., [
N

m
].

To evaluate long-range dependence, the effect of
aggregation on various second-order statistics is
evaluated. For example, if there is no correlation in
the time-series then the variance of the aggregated
series should decrease as 1

m [5]. Slower decaying
variance will imply long-range dependence.

Research dealing with self-similarity and long-range
dependence can be classified in two general cate-
gories. The first includes studies on the manifes-
tation of such phenomena in networking, their ori-
gins and their effects. The second category involves
reports on modeling and estimating long-range de-
pendence, as well as showing the complexity and
difficulty in its correct use and interpretation.



There has been ample evidence of long-range de-
pendence and scaling phenomena in many differ-
ent aspects of networking. The first experimen-
tal evidence of self-similar characteristics in local
area network traffic were presented in [16]. The
authors perform a rigorous statistical analysis of
Ethernet traffic measurements and were able to
establish its self-similar nature. Similar observa-
tions were presented for wide area Internet traffic
in [22] and World Wide Web traffic in [6] where the
underlying distributions of file sizes were shown
to be the main cause of self-similarity. In [32],
the authors discuss the failure of Poisson modeling
in the Internet. Scaling phenomena [10] [29] and
the factors that contribute to self-similarity and
long-range dependence have been extensively stud-
ied [19] [33] [31] [9] [8]. Furthermore, in [11] [24] [12]
the relevance and the effects of the self-similarity
on various metrics of network performance are ex-
amined.

The second major aspect of research dealing with
self-similarity and long-range dependence is esti-
mation of the Hurst exponent. An overview of
a large number of these estimation methodologies
can be found in [27] [5] [28]. Relatively little ef-
fort has been devoted to studying the accuracy
of the estimation methodologies [27] and pointing
out difficulties in long-range dependence estima-
tion [18] [14]. The authors present pitfalls when
estimating the intensity of long-range dependence
in the presence of trends, non-stationarity, period-
icity and noise. Furthermore, the limitations of the
variance-time estimator have been analyzed in [15].

Of major importance is also the development of
models for simulating long-range dependence. Pro-
posed models like the one in [23] or generators
for long-range dependent time-series [21] are hard
to evaluate in practice. Thus, there are hardly
any studies that assess the various models or com-
pare the different generators. In general, this sug-
gests the need for practical tools and a system-
atic methodology to estimate, validate and gener-
ate long-range dependent time-series.

3. THE SELFIS TOOL
The SELFIS tool [1] (fig. 1) is developed to pro-
vide all the necessary functionality for a complete
and systematic analysis. Our goal is to estab-
lish SELFIS as a reference point in self-similarity
analysis. It is a java-based, modular, extendible,
freely distributed software tool, that can automate
time-series analysis. We chose to develop an inde-

pendent platform instead of relying on commercial
products. Our purpose was to give to the commu-
nity a ready to use tool, without further obligations
of purchasing any software.

The SELFIS tool is a collection of self-similarity
and long-range dependence estimation methodolo-
gies and time-series processing algorithms. It cur-
rently incorporates all the widely used long-range
dependence estimators. Also, SELFIS offers data
processing methodologies and transforms, such as
wavelets, Fourier transform, stationarity tests and
smoothing algorithms. In addition, SELFIS pro-
vides the possibility of synthesizing long-range de-
pendent time sequences, as it includes fractional
Gaussian noise generators. The following subsec-
tions present analytically the different classes of
functionality included in SELFIS: a) Hurst expo-
nent estimators, b) randomized buckets, c) trans-
forms, d) data processing and e) fractional Gaus-
sian noise generators.

3.1 Hurst Estimators
SELFIS includes most of the existing long-range
dependence estimators. These estimators can be
classified in two main general categories. In the
first, there is a number of time-domain methods,
such as RSplot and the Variance method. The sec-
ond category includes the frequency-based estima-
tors, such as the periodogram, the Whittle and the
Abry-Veitch estimators.

The existence of numerous estimators is justified
by the asymptotic nature of the Hurst exponent.
Intuitively, since the limiting behavior of the pro-
cess can only be estimated, statistical errors and
uncertainty impede reliable and concise calcula-
tion of the Hurst exponent. Statistical limitations
arise also when applying mathematical definitions
in practice, i.e., the estimators assume stationar-
ity which is an elusive concept. Furthermore, each
estimator looks at a different property of a given
time-series. Thus, it is common that these method-
ologies produce conflicting estimates for the same
time-series. This is true not only for “real-life”
time-series where the existence of periodicities, noise
or trends has substantial effect on the estimation [14],
but also for synthesized LRD series with specific
predetermined Hurst exponent value (see section 4.2
for the limitations of the estimators). On the other
hand, the estimation methodologies examine spe-
cific properties (e.g., variance, power spectrum) at
different time scales. At larger time-scales where
the behavior at the limit is described, the num-



Figure 1: Two screen dumps of the SELFIS tool.

ber of samples decreases significantly resulting in
statistical uncertainties. Applying all the estima-
tors to a time-series provides with a more complete
overall picture of its possible self-similar nature.

For all the aforementioned limitations of the es-
timation methodologies, SELFIS also reports the
statistical significance of each estimation. The cor-
relation coefficient or the confidence intervals where
available should always be reported together with
the Hurst value. Stressing only the Hurst exponent
value is rather meaningless if statistically the value
is not significant. More specifically, in our tool the
following estimators are included:

A.Time-domain estimators: These estimation
methodologies are based on investigating the power-
law relationship between a specific statistic of the
time-series and the aggregation block size m.

• Absolute Value method. The log-log plot of
the aggregation level versus the absolute first
moment of the aggregated series X(m) is a
straight line with slope of H − 1, if the time-
series is long-range dependent (where H is the
Hurst exponent).

• Variance method. The method plots in log-log
scale the sample variance versus the block size
of each aggregation level. If the series is long-
range dependent then the plot is a line with
slope β greater than −1. The estimation of H
is given by H = 1 + β

2 .

• R/S method. This method uses the rescaled
range statistic (R/S statistic). The R/S statis-
tic is the range of partial sums of deviations
of a time-series from its mean, rescaled by its

standard deviation. A log-log plot of the R/S
statistic versus the number of points of the ag-
gregated series should be a straight line with
the slope being an estimation of the Hurst ex-
ponent.

• Variance of Residuals. The method uses the
least-squares method to fit a line to the par-
tial sum of each block m. A log-log plot of
the aggregation level versus the average of the
variance of the residuals after the fitting for
each level should be a straight line with slope
of H/2.

B.Frequency-domain/wavelet-domain estima-
tors: These estimators operate in the frequency or
the wavelet domain.

• Periodogram method. This method plots the
logarithm of the spectral density of a time se-
ries versus the logarithm of the frequencies.
The slope provides an estimate of H. The pe-
riodogram is given by

I(ν) =
1

2πN

∣∣∣∣∣∣

N∑

j=1

X(j)eijν

∣∣∣∣∣∣

2

where ν is the frequency, N is the length of the
time-series and X is the actual time-series.

• Whittle estimator. The method is based on
the minimization of a likelihood function, which
is applied to the periodogram of the time-
series. It gives an estimation of H and pro-
duces a confidence interval. It does not pro-
duce a graphical output.
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Figure 2: Pairs separated by lag k can belong to the

same bucket or not in which case they are inbucket or

outbucket respectively.

• Abry-Veitch (AV). The Hurst exponent is es-
timated by using the wavelet transform of the
series [2]. A least-squares fit on the average of
the squares of the wavelet coefficients at dif-
ferent scales is an estimate of the Hurst expo-
nent. The method produces both a graphical
output and a confidence interval.

3.2 Randomized Buckets
In SELFIS, Randomized Buckets is used as an
intuitive method for the detection and validation
of long-range dependence. We examine numerous
ways of randomization, such as moving numbers
a constant number of positions in the series or
randomizing inside the buckets with replacement.
These methodologies will be further commented
upon in our future work.

The idea behind randomized buckets is to decou-
ple the short-range from long-range correlations in
a series to facilitate the study of the effects of long-
range dependence. This is achieved through par-
titioning the time series into a set of “buckets”
of length b. Thus, we define the contents of the
uth bucket to be items Xu·b, . . . , X(u+1)·b−1 from
the series, and the home of item Xi to be bucket
H(i) ≡ bi/bc. Also, we say that two items (Xi, Xj)
form an inbucket pair if H(i) = H(j); otherwise,
they form an outbucket pair with an offset of
|H(i) − H(j)| buckets. Note that this classifica-
tion depends on the (fixed) locations of the bucket
boundaries, and not just the separation between
two items in the time series. For example, fig. 2,
shows that two items separated by lag k could form
either an inbucket or outbucket pair.

Once the series has been partitioned in this way, we
can then apply one of the following randomization
algorithms to reorder its items:

External Randomization (EX): The order of
buckets is randomized, whereas the content of each

bucket remains intact. This can be achieved by la-
belling each bucket with a bucket-id between 0 and
bTime-SeriesLength/bc, and randomization of the
bucket-ids. External randomization preserves all
correlations among the inbucket pairs, while equal-
izing all correlations among the outbucket pairs
with different offsets. Thus, if the series is suffi-
ciently long, the ACF should not exhibit significant
correlations beyond the bucket size.

Internal Randomization (IN): The order of the
buckets remains unchanged while the contents of
each bucket are randomized. As a result, correla-
tions among the inbucket pairs are equalized, while
correlations among the outbucket pairs are pre-
served, but rounded to a common value for each
offset. Thus, if the original signal has long-memory,
then the ACF of the internally-randomized series
will still show power-law behavior.

Two-Level Randomization (2L): Each bucket
is further subdivided into a series of “atoms” of size
a. Thereafter, we apply external randomization to
the block of bb/ac atoms within each bucket. As a
result, both short-range correlations (within each
atom) and long-range correlations (across multiple
buckets) are preserved, while medium-range cor-
relations (across multiple atoms within the same
bucket) are equalized.

3.3 Transforms
Transformations are usually applied to reveal in-
formation that is not available in the raw time-
series. Fourier and wavelet transforms can be use-
ful to reveal periodicities in the series and in gen-
eral study the frequency components of the time-
series. SELFIS includes the following transforms:

• Fourier Transform. Fourier transform is used
to transform a series from the time domain
to the frequency domain. Intuitively, the sig-
nal is transformed into a sum of sinusoids of
different frequencies.

• Wavelets (Haar and D4). Wavelet transform
is capable of providing the time and frequency
information of a time-series simultaneously.
Fourier transform cannot present information
about the time. Wavelets cover for this inef-
ficiency by combining frequency and time do-
mains.

• Power Spectrum. The power spectrum presents
the amount of energy that corresponds to each
frequency of the Fourier transform.



3.4 Data Processing
Data processing is an essential element in time-
series analysis. Processing reveals the underlying
behavior of the series and allows for further analy-
sis. SELFIS currently includes the following data
processing methodologies:

• Smoothing Algorithms. Smoothing can be ap-
plied by median, average or exponential smoo-
thing algorithms. Our tool includes the 4253H
smoothing algorithm described in [30]. The
algorithm has been shown to provide sufficient
results for different kinds of data. According
to 4253H smoothing the signal is smoothed by
successively applying median smoothing with
window 4,2,5 and 3 followed by a hanning op-
eration. A hanning operation multiplies the
values of a window 3 by 0.25, 0.5 and 0.25
respectively, and sums the results.

• Stationarity tests. Stationarity means intu-
itively that there is no trend in the series.
There are a number of tests that check a series
for stationarity. One of the common tests for
stationarity is the run test [4]. The test can
detect a monotonic trend in the series by eval-
uating the number of runs. A run is defined as
a sequence of identical observations, i.e., con-
secutive equal values in a series. The number
of runs must be a random variable with mean
N
2 + 1 and variance N(N−2)

4(N−1) , where N is the
length of the series. The number of runs is
evaluated from a series s(i), where:

s(i) = 0 , if y(i) < median(y), and
s(i) = 1 , if y(i) ≥ median(y),

where y(i) is the time series. Thus, a run
is defined as a sequence of consecutive values
that are all above or below the median of the
original time-series. Nonstationarity is indi-
cated by a number of runs considerably dif-
ferent than N

2 + 1. Stationarity is important
when long-range dependence is studied, since
estimators fail in non-stationary data2.

3.5 Fractional Gaussian Noise Generators
Fractional Gaussian noise (fGn) generators can syn-
thesize series with long-range dependence. Our
tool includes two generators. The first method is
based on fast Fourier transform to generate a fGn
2If stationarity is detected, the time series must be differ-
enced successively until stationarity is achieved.

series [21]. The second generator produces fGn se-
ries by using the Durbin-Levinson coefficients.

4. CASE STUDY
This section highlights the capabilities of SELFIS.
Two case studies are presented. First, a demon-
stration of how randomized buckets can be used to
stress-test long-range dependence and cancel the
effect of short-term correlations. To demonstrate
the methodology, we use fractional Gaussian noise
series generated by one of the generators included
in SELFIS. Second, we demonstrate that long-range
dependence estimators have limited capabilities.

These case studies also demonstrate and justify the
need for different estimation methodologies. Each
estimator has different strengths and weaknesses
and thus can be best used at different cases. In
addition, understanding the limitations of each es-
timator allows for sound usage of the SELFIS tool
and interpretation of its results.

4.1 Randomized Buckets
Randomized buckets (see previous section) is an
intuitive, straightforward methodology that vali-
dates the existence of long-memory. To show how
long-range dependence can be detected using ran-
domized buckets, we synthesized a sample series
of fractional Gaussian noise. The series (fig. 3,
left plot) has length 65536, Hurst exponent 0.8
and was synthesized using the generator created
by Paxson [21]. The middle plot in fig. 3 shows
the sample autocorrelation function (ACF) of the
series which decays hyperbolically to zero and im-
plies long-range dependence. To ensure that long-
range dependence really exists we employ random-
ized buckets. The right plot in fig. 3 shows the
ACF of the fGn series if randomized externally
with bucket size 1. This type of randomization
removes all correlations by creating a completely
random series As expected, the ACF shows that
no correlation exists at all time lags. Fig. 4 shows
the ACF function after the signal is randomized
with three different ways:

• External Randomization (using b = 50)
causes the ACF to drop smoothly from the
initial value for the unrandomized sequence
to zero as the lag increases, reaching zero at
exactly the bucket size! The left plot in fig. 4
shows that all correlations are equalized be-
yond the bucket size (50).
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Figure 3: LEFT: fGn series of length 65536 and Hurst 0.8. MIDDLE: Autocorrelation function (ACF) of the series

up to lag 300. The ACF shows power-law like behavior. RIGHT: ACF after external randomization with bucket size

1 (full randomization).
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Figure 4: LEFT: External randomization with bucket size 50. After lag 50 all correlations are insignificant. MID-

DLE: Internal randomization with bucket size 50. The ACF shows the same power-law behavior like the original series

(Fig. 3). RIGHT: Two-level randomization with bucket sizes 300 and 30. Medium-range correlations are distorted.

• Internal Randomization (using b = 50) sig-
nificantly lowers and flattens the ACF at small
values of the lag compared to the original (un-
randomized) series. However, for large values
of the lag, internal randomization has no effect
on the ACF. The ACF (fig. 4, middle plot) for
large lags (beyond the bucket size) is similar to
the ACF of the original series (bucket size 50).
Observe that long-range dependence seems to
dominate the original series, since the effect of
equalizing the inbucket correlations on ACF is
minimal.

• Two-Level Randomization (using a = 30,
b = 300) exhibits similar behavior to exter-
nal randomization for small values of the lag
(i.e., less than a), along with similar behavior
to internal randomization for large values of
the lag. These two limiting values also match
the ACF for the original (unrandomized) se-
ries, but for intermediate values the two-level

randomization significantly reduces the corre-
lations. The right plot in fig. 4 demonstrates
the distortion of medium-range correlations in
the ACF after two-level randomization.

To emphasize the effect of the various types of ran-
domization on the correlations of the time-series,
we plot in log-log scale the autocorrelation func-
tion after various types of randomization (fig. 5).
The ACF of the initial (unrandomized) fGn series
is a straight line as expected from the definition of
long-range dependence (see section 2). The ACF
after internal randomization differs from the orig-
inal ACF for lags smaller than the lag represent-
ing the bucket size. On the contrary, ACF after
external randomization is similar to the original
for small lags only, while the ACF after two-level
randomization differs for intermediate lags. Fur-
thermore, in fig. 6 we plot the difference between
ACF after the various types of randomization and
the initial ACF. The difference is close to zero for
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Figure 5: The ACF for various types of randomization. The vertical dashed line shows the bucket size used.

lags larger than the bucket size for internal and
two-level randomization indicating long-range de-
pendence. On the contrary, the difference in the
case of external randomization decays with the lag
up to the bucket size; beyond that, it starts to grow
towards zero. At small lags the ACF after external
randomization drops faster to zero than the initial
ACF. Thus, the difference between them grows as
the lag approaches the bucket size. At the bucket
size the difference becomes maximum. After the
bucket size the difference becomes smaller as the
initial ACF also approaches zero.

4.2 Reliability of LRD Estimators
This section is an evaluation of the Hurst exponent
estimators. We examine the accuracy and robust-
ness of the estimators using two types of test-cases:
a) Synthesized LRD series with known Hurst expo-
nent value to study the accuracy of the estimators.
b) Randomized LRD series using randomized buck-
ets to study the effect of short-range correlations
on the estimators.

A. Accuracy on Synthesized LRD Series:
We show that the estimators seldom agree on the
value of the Hurst exponent, and often they dis-
agree by significant difference. Each of the esti-
mators was tested against two different types of
synthesized long-memory series: a) Autoregressive
Fractional Integrated Moving Average processes
(ARFIMA) and b) fractional Gaussian noise (fGn)
series. For more details, also see [14].

We generate 100 datasets with different seed for

each Hurst value from 0.5 to 0.9 with step of 0.1.
Fig.7 summarizes our findings for the Paxson gen-
erator and the ARFIMA model. For both plots in
fig.7, the X axis presents the Hurst exponent value
of the fGn series and the Y axis shows the average
estimated value of the corresponding methodology.
The “Target” line presents what the optimal esti-
mation of the fGn data for each case would be. The
95% confidence intervals are typically within 0.01
of the reported value.

Our findings exhibit the inability of the majority of
the estimators to accurately estimate the value of
the Hurst exponent. For fGn data, with the excep-
tion of the Whittle and Periodogram estimators,
all other estimations fail to estimate correctly. We
observed similar results in the case of series gener-
ated with the ARFIMA model. In the latter case,
the Periodogram, Abry-Veitch and R/S estimators
produce values closer to the target.

B. Estimators and Randomized Buckets:
How sensitive are the estimators to short-range
correlations? To address this question we employed
the randomized buckets methodology. Intuitively,
the estimations should not be affected after inter-
nal randomization. Note that internal random-
ization breaks the short-term correlations, while
preserving the long-term. On the contrary, ex-
ternal randomization should significantly influence
estimations, since long-memory is distorted. Esti-
mates of the Hurst exponent of externally random-
ized series should be close to 0.5 since long-range
dependence has been canceled.
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We synthesized numerous fGn series for various
Hurst values between 0.5 and 1. These synthe-
sized series were randomized for different bucket
sizes. Fig.8 presents our findings. For both plots,
the Y axis shows the estimated Hurst value while
the X axis presents the bucket size. The ACF of the
initial (unrandomized) time-series is represented in
the plots with bucket sizes infinity and one for ex-
ternal and internal randomization respectively. In
more detail, this figure shows the average estima-
tions of 100 fGn series with Hurst 0.8 after being
externally and internally randomized with bucket
size ranging from 10 to 90.

Intuitively, we would expect that especially for small
bucket sizes all estimations would be close to 0.5

after external randomization (left plot of fig. 8).
This is true for all the estimators except the AV,
Whittle and Periodogram estimators who behave
counter-intuitively. In particular, AV and Whittle
estimators do not seem to be affected by exter-
nal randomization irrespective of the bucket size.
The three “frequency-based” estimators, especially
Whittle and AV produce the same estimates as be-
fore randomizing (bucket size of infinity in the fig-
ure), even though long-range dependence has been
eliminated from the series.

Similar counter-intuitive behavior for AV and Whit-
tle holds in the case of internal randomization. Ex-
cept AV and Whittle, all estimators estimate the
same Hurst value before and after internal random-
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ization as intuitively expected (fig. 8 right plot).
On the contrary, estimations of the Hurst value
from AV and Whittle estimators drop significantly
as the bucket size increases. However, estimations
should be unaffected since internal randomization
only destroys short-range correlations.

Considering the effect of randomized buckets on
long-memory, we can claim that these two estima-
tors —AV and Whittle— seem to depend more on
the short-term behavior of the time-series to derive
an estimate for the Hurst exponent.

Note, that the estimators that perform the best in
synthesized long-range dependence series were the
ones most affected by short-term correlations.

Summing up our study of the accuracy and robust-
ness of the Hurst exponent estimators, we reach the
following main conclusions:

• When the data are generated by fractional
Gaussian noise (fGn), Whittle, Periodogram
seem to give the most accurate estimation for
the Hurst exponent.

• When the data are synthesized using the
ARFIMA model, AV, Periodogram and R/S
have the best performance.

• Even though the Whittle estimator is consid-
ered the most robust, it is the most sensitive
of the estimators.

• AV and Whittle estimators seem to depend
mainly on short-range correlation to derive
the Hurst exponent estimate.

In general, there is no definite estimator that could
be consistently used in every case. Each estimator
evaluates different statistics of the time-series to
estimate the Hurst exponent. Thus, different pro-
cesses may have different effect on each estimator.

5. CONCLUSIONS
The main contribution of this work is the devel-
opment of the SELFIS software tool. We believe
that SELFIS presents a long-overdue first step to-
wards a widely-used reference platform to facilitate
self-similarity analysis. Through the introduction
of this tool, we hope to encourage greater use of
these techniques. Despite the wide interest in self-
similarity and long-range dependence within the
community, a common tool not yet emerged. As a
result, this impeded the use and comparability of
results.

In more detail, SELFIS provides the following di-
rect benefits.

• Accessibility: Anyone will be able to use long-
range dependence analysis, even non-experts.
In this sense, SELFIS will help spreading the
use of LRD concept for research and educa-
tional purposes.

• User friendliness: The interface of the tool is



straightforward making its use effortless, while
visualization offers a fast sanity check of re-
sutls.

• Robustness: It offers multiple estimators for
reliable results and presents their statistical
significance.

• Repeatability: Results can be replicated and
verified.

• Open source collaborative development: The
community can cooperate on enriching the ca-
pabilities of the tool therefore leveraging from
each others work. Different groups are wel-
come to contribute their expertise. We ac-
tively solicit contributions.

• Free: The use of SELIFS comes with no mon-
etary cost. SELFIS is publicly available and
no extra commercial software is needed.

An additional contribution is an implementation of
a powerful tool for stress-testing long-range depen-
dence. Randomized buckets can isolate the effect
of short, long and medium correlations on a time-
series. Although this idea appeared in earlier work
it has been neglected. We would like to revive and
develop this idea to its full potential.

Our study on the estimation of long-range depen-
dence and our experience with the estimators allow
us to highlight a few tips for practitioners. First, a
reporting of the Hurst exponent is meaningful, only
if it is accompanied by the method that was used,
as well as the confidence intervals or correlation co-
efficient. In addition, researchers should not rely
only on one estimator in deciding the existence of
long-range dependence. Several of the estimators
can be overly optimistic in identifying long-range
dependence. Furthermore, for efficient characteri-
zation, it may be necessary to process and decom-
pose the time-series. Finally, a visual inspection
of the time-series can be very useful, providing a
qualitative analysis and revealing many of its fea-
tures, like periodicity.

SELFIS will be further extended with additional
functionality in the future. Calculation of fractal
dimensions and forecasting models are some of our
priorities. In addition, we are very interested in
collaborative development. Interested parties are
highly encouraged to contribute code.

Finally, the algorithms within SELFIS are not re-
stricted to the domain of time-series networking

data. Thus, we hope that our work may be ap-
plied to the analysis of long-range dependence data
sets in other disciplines, such as computer science,
economics, sociology, psychology, etc.
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