Thread Quantification for Concurrent Shape Analysis

J. Berding, T. Lev-Ami?*, R. ManevicR **, G. Ramalingarh, and M. Sagi¥

! Microsoft Research Cambridgiej b@ri cr osoft. com
2 Tel Aviv University, {t | a, runster, nsagi v}@ost.tau. ac.il
3 Microsoft Research Indigr ama@ri cr osof t . com

Abstract. In this paper we address the problem of shape analysis faucant
programs. We present new algorithms, based on abstragpiietation, for auto-
matically verifying properties of programs with an unboaddumber of threads
manipulating an unbounded shared heap.

Our algorithms are based on a new abstract domain whose reiemepresent
thread-quantifiedinvariants: i.e., invariants satisfied by all threads. Wplex
existing abstractions to represent the invariants. Thustezhnique lifts existing
abstractions by wrapping universal quantification aroulednents of the base
abstract domain. Such abstractions are effective bechegeate thread modular:
e.g., they can capture correlations between the localblasaf the same thread
as well as correlations between the local variables of athaed global variables,
but forget correlations between the states of distinctitise(The exact nature of
the abstraction, of course, depends on the base abstréftgdrin this style.)

We present techniques for computing sound transformeithéonew abstraction
by using transformers of the base abstract domain. Weriitesbur technique in
this paper by instantiating it to the Boolean Heap abstactroducing a Quan-
tified Boolean Heap abstraction. We have implemented aaritiation of our
technique with Canonical Abstraction as the base abstraetid used it to suc-
cessfully verify linearizability of data-structures iretpresence of an unbounded
number of threads.

1 Introduction

This paper is concerned with verifying (basic safety anaéothnctional correctness)
properties of dynamically-allocated data structures iogpeims with an unbounded
number of threads. For example, the techniques in this papasle, for the first time,
automatic verification of linearizability of various impleentations of concurrent data
structureseven when an unbounded number of client threads manipuiatetdata
structures concurrently

Our approach is based on abstract interpretation, whichiregjus to address the
standard two principal challenges:

— to define a finite representation of infinite sets of prograatestthat can concisely
and precisely express the properties of interest, and

— to compute sound transformers, which over-approximateogram’s semantics
using this representation.

* Supported by an Adams Fellowship through the Israel Acadein®ciences and Humanities.
** This research was partially supported by the Clore FellggvBhogramme.

Quantification-Based Abstract Domaifhe basis of our approach is the use of an
abstract domain whose elements represent quantified amtarof the formvt.o(t),
where the quantification is over threads. The formyl&g correspond to an abstrac-
tion of the program state from the perspective of a threadl second aspect of our
approach is that we exploit existing abstractions to captiue componenp(t) inside
the quantifier. Informally, assume that we have an undeglgbstraction where the
abstract domain corresponds to a set of formulgs over a vocabularyoc (Usu-
ally, the vocabulary captures the dependence of the abstomain on the program
being analyzed.) We refine the abstraction and work with gtesformulaslyg: =
{Vt.p(t) | ¢(t) € Avoasqey }- Thus, our technique may be seen as a domain constructor.
The thread-quantified domain we construct is bounded toghes that the underlying
domain is: e.g., a finite-height base domain yields a findigt quantified domain.

TransformersWe show how we can compute sound transformers for our new do-
main using sound transformers for the base domain. We prasemple technique for
computing asicsound transformer. The basic transformer works well whémnead'’s
action does not (potentially) affect the invariants (otet@bserved by other threads.
We also present a more sophisticated technique for congpatiafinedtransformer,
which is useful for thread actions that affect other threads

The basic ideas underlying the construction of such a giiesht@abstract domain
have appeared in various forms in recent work, see Sec. 5.00the novel contri-
butions of our work is the use of such quantification for conent shape analysis
by using suitable shape analysis abstractions suc@aasnical Abstractiorj24] and
Boolean Heapf23] as the base domain. We have implemented our techniqteganf
the TVLA [16] systent: which is based on Canonical Abstraction, and used it to yerif
linearizability of fine-grained concurrency algorithms [1]. However, wastrate our
ideas in this paper using Boolean Heaps as the base domémsasplicity allows us
to focus on the essence of our approach.

The thread-quantified abstract domain is a natural domaisedor reasoning about
programs with an unbounded number of threads. It permitsessjng properties that
correlate a thread’s local variables with each other andl slitared global state, but
not ad-hoc properties that correlate distinct, threadsilloariables. (By “ad-hoc”, we
mean properties that cannot be captured using quantificahiote that when the under-
lying base domain is disjunctive, as is the case with CarmbAibstraction and Boolean
Heaps, the new domain permits disjunctions inside the dfiemntvhich is quite useful.

2 Overview
In this section, we present an informal overview of our mdtho

A Motivating Example.Fig. 1 shows a toy concurrent program used to illustrate the
ideas in this paper. Sec. 4 reports on applying these ideamte realistic programs.
The program satisfies a couple of very simple invariantsrgsqed as assertions) that
we would like to automatically infer. The first invariant isat when a thread is at

* We actually implemented our technique in HeDec [18], whieheralizes Canonical Abstrac-
tion by allowing coarser and more scalable abstractions.

oject g = null; // global variable
threadProc() {

bject x = null, y = null;
[11 x = new Object();
21y =x;
[3] assert(x ==y);
g =X
[4 assert(g != null);

}

Fig. 1. A simple multithreaded program. The program consists of mmounded number of
threads executinghr eadPr oc.

statemenf 3] , the values of it'sx andy variables are equal. This is an example of
a thread-localinvariant (which cannot be affected by the execution of ptheeads).
The second invariant is that when a thread is at statefrét the global variable

is non-null. This is an example ofreon-local threadnvariant, and can be affected by
the execution of other threads. In general, a non-locabkthiavariant could involve
global as well as thread-local variables. As an examplesidenan assertion that when
athread is at statemejnd] , the value ofy and it'sx are equal. This is an assertion that
fails to hold for the given program (because of interactidgtinwther threads).

Background: The Boolean Heap AbstractioAs explained in Sec. 1, our approach
is to lift an existing abstraction to produce a more precls&graction that is suitable

for programs with an unbounded number of threads. We wilsitlate our idea using

Boolean Heaps [23] as the underlying base abstraction snphper. Boolean Heaps
are abstractions targeted at shape analysis, and desetthef states consisting of an
unbounded number of heap objects using formulas of the form

Ve {¥v : object oj(v)}

wherev ranges over heap objects apt{v) is a quantifier-free formula, in which
possibly occurs free, over a set of unary predicates, kepNR.

The Quantified Boolean Heap AbstractioAs explained earlier, the basis of our ap-
proach is to use quantified invariants of the fortmy(¢),where the set of formulas(t)
allowed inside the invariant are determined by a base darbiging Boolean Heaps as
our base domain leads to the following definitionQ@dantified Boolean HeapQuan-
tified Boolean Heaps approximate sets of states by formdildmedorm

Vi:thread \/

wheret ranges over threadsranges over non-thread objectst, v) is a quantifier-free

seriVv:object o;(t,v)}

Table 1. Predicates used for (Quantified) Boolean Heap Abstraction

Predicate Intended meaning

X(t,v) local variablex of threadt points to object
y(t,v) local variabley of threadt points to objecw
g(v) global variableg points to objecty

null(v) v is aspecial null object

at[l](¢) threadt is at program label

Table 2. Part of the computed quantified invariant for the runningnepiz

V. .V at]
¢

v { X
v Xt
{=x(
Vo { X(

4](¢) A

YA y({E) A gA-null}
YA y(t) A =g A —null}
)A=y(E) A gA —null}
YA y({E) A gA-null}

x

{~x(t) A —y(t) A ~g A nully(v)
{-x(£) A ~(t) A =g A null}(v) v

v
v
(Y
v

t
X(t

J
x

~ o~~~

)V
N
) VA=X(t) A =y(t) A =g A null}(v)

formula, in whicht andv possibly occur free, over a set of unary and binary predicate
kept in DNF® For the running example, we will use the predicates showram T. We
assume that aull value is represented by a special heap object.

Notice that a quantified boolean heap is a universally gfiadtilisjunction of stan-
dard Boolean heaps, but where some previously unary ptedibave been indexed by
the universal variable. This increases the expressive poftbe abstract elements.

For brevity we use the following, not disjunctive normalrrfo

vi:thread \/;c pus @t () A (Ve {Vv:0bject ¢;(t,v)})

wherelabels is the set of program labels and the predicates of the faifth(¢) are
implicitly mutually exclusive® We use the following notational conventions: Logical
variables{sc, t,t1,t2, ... } range over thread objects and other logical variables range
over non-thread objects. We u$e A ¢}(v) as shorthand fop(v) A ¢(v) and curry
binary predicates, i.e{p(t) A ¢}(v) is a shorthand fop(¢, v) A q(v).

Tab. 2 shows the part of the Quantified Boolean Heap desgrihainvariant of our
running example for the threads at program localidh , as computed by our analysis.

Abstract Transformers.Computing abstract transformers is very challenging, espe
cially in the presence of concurrency, as the execution ef thnead may affect the
state observable by other threads. In Sec. 3 we presentiedféechniques for com-
puting sound transformers for our lifted abstractiondiairig transformers of the base
abstraction. The main idea is to “instantiate” two symbtieads, one for the sched-
uled thread, and one representing another arbitrary thagado utilize the transformer
of the underlying base domain to compute the change in theaabstate as observed
by each of these threads.

Discussion. For comparison, consider the Quantified Boolean Heapsaathistn just
described and the abstractions used by the original Bodtesps and 3VMC [27],
which naturally models unbounded objects and threads inifaram fashion using
Canonical Abstraction. Fathe set of predicates described in this sectioor new
analysis is capable of inferring the invariants mentionethe program: namely, that
for any thread at program locatios3, we haver(t) = y(t), and thag is not null at the
end (for any thread’s execution). On the other hand, withdding different predicates,
neither the Boolean Heaps analysis nor 3VMC can infer the@bwariants. Indeed,

5 This is similar to Indexed Predicate Abstraction [15], eotd@at the number of index variables
is limited to2, and that we allow a disjunction between the quantifiers.

5 The location predicates are written outside the internalarsal quantifier because they are
independent of.

these abstractions cannot even express these invariatscher set of predicates is
used, especially instrumentation predicates, theseaalisins can be made more ex-
pressive and be used to prove the above invariants. An aafyaof the new abstraction
is that it can reduce the need for nonstandard or programifgppredicates, or the
number of predicates, in a very natural way.

3 The Thread Quantification Domain Constructor

In this section, we describe how thread quantification candssl as a domain con-
struction operator to generate a more precise abstractiddroen an existing abstract
domain. We illustrate this by applying it to the Boolean Hehgpnain to obtain the
Quantified Boolean Heap domain.

3.1 The Concrete Semantics

We start by defining operational concrete semantics usefuliéscribing concurrent
programs without procedures. For simplicity of preseotatwe concentrate on ref-
erence variables and fields. L&hreads and Locations (containing a distinguished
null value) be countable sets representing threads and hedpis;aespectively. Let
LVars, GVars, andFields be finite sets of local variables, global variables, and heap
fields, respectively. Finally, ldtabels be a finite set of program labels. L&t be the
set of possible states. A statec X' maps the following: for each global variatde
o(g) € Locations; for each local variable, o(x) : Threads — Locations; for each
fieldf, o(f) : Locations — Locations; and forpc, o(pc) : Threads — Labels.

Being interested in invariance properties, we start witbrccete powerset domain
P(X), for which we assume a concrete semantics of progspos,) : Threads —
P(X) — P(X) that maps individual threads to their semantics. This iedube se-
mantics of the overall concurrent prograpost : P(X) — P(X) by

CpOSt(S) = UscEThreads SPOStsc(S) .

3.2 The Base Abstraction

We present the lifted abstract interpreter as well as the dbstract interpreter as oper-
ating on formulas in a normal form. This is done for simpliaif presentation. For ex-
ample, Boolean Heaps are already presented using these f@etails on how Canon-
ical Abstraction can be presented in such terms can be foufa9].

In Sec. 3.6 we will specify the assumptions on the abstranotaiio input to the
thread quantification construction, but it is useful to preasn several steps.

Base Domain.Consider a base abstract domain with elements drawn fromt d se
of formulas, wherdP(X), aa,7va4, A) is a Galois Connection, with meety and join
L4, and sound sequential transforme«ﬁst’é.) : Threads — A — A. Asin the concrete
semantics, this induces the abstract concurrent semaptisg : A — A, which over-
approximatespost, by

CPOStu (a) = |—|A scEThreads spostﬁsc (a) :

Open Formulas. Abstract elements often correspond to formulas withous frari-
ables. E.g., the formuldv.g(v) < null(v) represents states whegés null. The first
step toward thread-quantified formulas is to permit forrawléth free variables (e.g.,
Yu.X(t,v) < null(v)) as abstract domain elements.

For a sel/ of variables, letdA[V] denote the set of formulas in normal form with free
variables contained iW. Let Assign, = V' — Threads be the set of assignments of
(thread) variables it to threads. A state € X’ and an assignmefitce Assign, satisfy
o(V) € A[V], denoted, 0 = ¢(V), when assigning the parameters accordirjaad
interpreting the predicates accordingtyields true. Definely, to be X' x Assign, .

Example The open formul&/v.x(t,v) < null(v) represents the set of all pairs
(0, 0) such that the local variableof threadd(¢) is nullin o, i.e.,o(x)(0(t)) = null.

By defining vy : A[V] — P(Ev) by yawi(e(V)) = {{0,6) | 0.6 = o(V)},
the satisfaction relation determines a Galois Conne¢®(Ly), aafv), yav), A[V]).

Transformers for Open FormulasSince the state&y, for open formulas are related to
program stated’ simply by the first projection, the concrete semantics califtee to
sposty, () : Threads — P(Xy) — P(Xy) by defining

sposty ¢ (S) = U(mo}es(SpOStt({U}) x{0}) .

The concurrent semantiepost,, : P(Xy) — P(Xy) is induced bysposty,) in the
same way aspost is induced byspost,.):

CpOStV(S) = UsceThreads spOStV7SC(S) :

The thread quantification domain construction requiressfiamers for open for-
mu|aSCpOSt%/ : A[V] — A[V] that over-approximateposty,. While the definition of
cpostﬁ/ from cpost? varies from one domain to another, note tiAt(cpost,, (S)) =
cpost(IT; (S)) (whereIl; is the first projection of a pair, lifted pointwise to sets of
pairs), and so an abstract transformer is sound with respepbst,, if and only if it
is sound with respect topost. Also note that sincepost,, always leaves the thread
assignment unchanged, sound over-approximations must ldénce the free thread
variables can be treated as constant symbols, and binatticates such as(¢, v) can
be curried and then interpreted as unary predidatés)(v), which many base domains
A directly support. In particular, assuming the base domaian handle constant sym-
bols, a domaim[V] can be produced systematically.

We will specifically be interested in the case of formuladweitsingle free variable
t:i.e., the case wheré = {t}. The method can be generalized to multiple free variables
and thus multiple universal quantifiers. This is outsidestt@pe of the paper. Note that
the union over all threadsc in the concrete transformepost,, captures the effect of
a single transition performed by an arbitrary thread. A sound abstract transformer
cpost%t must handle two cases: where thread variabi#ethe same as the scheduled
threadsc, and where is different fromsc.

Example We now illustrate the application of a sound transformetlie transition
corresponding to the single statemgrix on the open formule(t) = Yu.x(t,v) &
null(v). This formula represents statesand assignments : t] where the local variable
x of threadt is null in 0. If threadt executes the statementx, the resulting state can
be described by the formulg, (1) = Yv.y(t,v) < X(t,v) < null(v). If some thread

other thart is scheduled, then the local variablez@re not affected, and the resulting
state can be described y(t) itself. We account for these two cases by taking the
disjunctionys (t) V ¢(t), which simplifies top(t), yielding the result of the transformer.

3.3 The Lifted Abstraction (with Basic Transformers)

We define the lifted domaif = {Vt. ¢(t) | p(t) € A[{t}]}, i.e., with the base domain
instantiated with/ = {t}. The lifted domain inherits meet and (an over-approxinratio
of) join operations fromA[{t}]: €.9.,(V. 1)UL (Vt. @2) = Vt. (p1U (1)) 2). Defining
L : L — P(Z) by

YL (Vt.¢(t)) = {0 | 0,0 |= (t) for everyd € Assign,, |

produces a Galois Connection frd?{X’) to L. We obtain a sound transforrmnostﬁL :

L — L from the sound abstract transformt@bstfi{ 1 for formulas with a free variable
t discussed earlier as follows:

cpostuL(Vt.cp(t)) = Vt.cpost%t}(w(t)) .

Example Consider the statementx from the example program in Fig. 1 and the
abstract staté'1:

S1=Vt.51a(t) V S1,(t)
S1.(t) = at[1](t) A
Vo. { X(E)A y)A gA null}(v) vV {=x(t) A =y(t) A —g A —null}(v)
S1,(t) = at2](t) A
Yo. {=x(t) A yt) A gA null}(v) vV { X(t) A=y(t) A =g A —-null}(v) V
{—=x(t) A =y(t) A =g A —null}(v)

Applying the Boolean Heap transformer forx to S1,(t) leavesS1,(t) unchanged
no matter whetherwas the scheduled thread or not. Applying the Boolean Heaysir
former fory=x to S1,(t) yields the heap§1;, (t) for the case whergis the scheduled
thread, and leaveS1,(t) unchanged for the complementary case. The final result is
obtained by universally quantifying overresulting inS1’:

S1' =Vi.514(t) V S1,(t) V Sy, (£)
51, (¢) = at[3](¢) A
Vo, {=x(t) A=y(t) A gA null}(v) vV { x(t) A y(t) A—=gA-null}(v) v
{=x(t) A —y(t) A =g A —null}(v)

Let ¢x==y = Vt.at[3|(t) = Yv.z(t,v) < y(t,v) be the assertion at line3] . Now,
S1" = ¢x==y (the only disjunct wherat[3] holds isS1}, (), in whichx andy point to
the same node). The statemgntx changes only information local to one thread and
therefore this kind of reasoning is sufficiently precise.

Let ¢gi =nui1 = Vt.at[4](t) = Vv.—(g(v) A null(v)) be the assertion at line4] .
Now, however, consider the statemegnix and the abstract staf:

S2 = Vt.524(t)

S52.(t) = at[3](t) A
Yo. {=x(t) A=y(t) A gA null}(v) vV { x(t) A y(t) A—=gA-null}(v) vV
{—=x(t) A =y(t) A =g A —null}(v)

Whent is not the scheduled thread, applying the Boolean Heapftnaner to the
Boolean Heap52,(t) yields many Boolean Heaps. This is because of the lack of in-
formation about the status of other threads, which we getrbpuing the universal
quantification ovet. The scheduled thread may be different frarThus,S2,(t) has
no information about it. In particulag2,(¢) represents a state wheteandy are null
for the scheduled thread. As a result, the assigngrextalso creates the Boolean Heap
Spaa = at[4](t) AVu{x(t) Ay(t) A g Anull}(v). Obviously,Speq = @gr =nui1 and thus
the transformer is not precise enough for the purpose of maiyais.

The reason is thaj=x changes a global variable. This change is visible by other
threads and thus the thread-local reasoning used abovendbemdel the effect of the
other threads using the information captured by the QuadtBioolean Heap.

3.4 The Semantics of Non-Deterministic Scheduling

In order to obtain a more precise sound transformer for dtedliabstract domain, we
exploit the internal structure of the concrete semantidshe base abstract transformer
imposed by the semantics of non-deterministic scheduling.

Recall that the concurrent semantics of a progkamst is defined in terms of
spost,, which gives the sequential semantics of the individuadlss. This function
indicates the transitions a given threadan take. The semantics of non-deterministic
scheduling of threads is captured b&/ the union over all ttgéathe definition oépost.

While the basic transformepost; was defined in terms m‘postﬁ,, for the refined
transformer we will not use the naive definition of the coment semantics in terms of
the sequential semantics but will instead define the refirmedtormer directly in terms
of the sequential abstract transformer.

In particular, we assume an abstract transforspest%,m AV U{sc}] - A[V U
{sc}] for sc ¢ V that over-approximatesposty, .. : P(Xvuise)) — P(Zvufscy)
given by

SPOStV,sc(S) = U(a,Q)ES(spOStO(sc)({J}) X {9}) .

The difference between this semantics apast,, .y above is thasposty, . l0oks up
scin the assignment in the input state to determine which thteaxecute. In essence,
we are assuming that the scheduled thread is specified agranpexameter for the
transformer of open formulas in the base domain. Liftingtthaesformers of the base
domain to support the scheduled thread as an extra parameserally straightforward.
Inducing the concrete semantics freposty, . by

cposty, (S) = UsceThreads {(aﬁ 0'v) | {c10") € spostV7sc{<a,[0|sc:sc]) | (0,0) € S}}

(whered’|y, is @’ restricted to domaiitr’) yields the same definition @post,, as above.
We also assume that the base abstract domain has an openafien(sc, (-)) :
A[V U {sc}] — A[V] for projecting away a thread parameter This is equivalent
to over-approximating existential elimination. For exdejfin Boolean Heaps, we can
simply throw away all literals (positive and negative) thahtainsc.
Using these operations, the transformer for the overaltement programpostﬁ/ :
A[V] — A[V]is defined, forsc ¢ V, by

cpost'%/(go(V)) = project(sc, spost%,7sc(gp(V))) .

8

Note how this definition allows an arbitrary thread to execihcesc does not occur
in o(V'), hencep(V') does not constrain the thread assignesitand hence the set of
states that satisfy(1") will include assignments that map to any element oT hreads.

3.5 A More Precise Transformer for the Lifted Domain

We will now present a more precise sound transformer forittezlldomain. The basic
transformer presented in Sec. 3.3 transformed a quantdied.iavt.o(t) by applying
the base domain’s (open formula) transformepto). This leads to a loss of precision
because the base domain transformer knows onlyt thatisfiesp(t). It does not know
and cannot use the fact that both the scheduled thseahd another arbitrary thread
t satisfy the invariantWe now show how we can incorporate this extra piece of in-
formation,while still reusing the base domain’s transformproducing a more precise
transformer for the lifted domain.

We define the refined transformagost’® : L — L by

cpost’uL(Vt.gp(t)) = Vt.project(sc, spostu{t}ﬁsc(gp(t) Maft,sc}] P(5€))) -

Specifically, we apply the base domain’s transformes 44 s.}) ¢ (sc), exploiting
the base domain’s meet operation to “inform” the base dosaiansformer that both
»(t) andp(sc) are true in the input state.

Example We demonstrate the refined transformer by compmbtgt’”L(SZ(,,(t)).
The first step of the transformer is to compute the meéit2)f(t) and.S2,(sc) (where
for brevity, we have not converted the formula to DNF):

o(se, t) = S24(t) M S24(sc) = at[3](t
Vo, {=x(t) A=y(t) A gA null}(v) v {x(@t) Ay(E) A-gA-null}(v) v

) A at[3](sc) A
(
t) A-gA -null}(v
(
(

()
{=x(®) A =y()

AYv. {=xX(sc) A y(sc) A gA null}(v) V {x(sc) Ay(sc) A—g A -null}(v) vV
{—x(sc) A =y(sc) A =g A —null}(v)

Next, we apply the Boolean Heaps transformm'st”{ 1,5 to p(sc, t). As explained
earlier, this is a sound transformer of a single transitaken by threadc. As before,
we obtain the result as a disjunction of two heagjgsc, t) for the case in whicke = ¢
andyy (sc, t) for the case in whicle # ¢.

@' (sc,t) = gy (sc,t) V pp(sc, t)
v (sc, t) = at[4]() A at[4](se) A
Yu. {=x(t) A-y(t) A-gA null}(v)V{x(t) Aylt) A gA-null}(v)V
{=x(t) A=y(t) A-gA-null}(v)
E E ; V {X(sc) Ay(sc) A gA —-null}(v) Vv

—¥(

AYv. {=X(sc) A y(sc) A=gA null}(v
{=X(sc) A =y(sc) A =g A —null} (v

pl{scs) = aUBlc) i sc)

Vo, {=x(t) A-y(t) A—-gA null}(v)V{x(#) Ayt) A-nul}(v)V

{=x(t) A=y() A-null}(o)

AVv. {=X(sc) A =y(sc) A=gA null}(v) V {X(sc) Ay(sc) A gA—null}(v) V
{=x(sc) A =y(sc) A =g A —null} (v)

We project awayc, by removing all literals containing it, which yields:
@"(t) = @ (t) Vo (¢)
Pa(t) = at[](t) A
Vo, {=x(t) A=y(t) A—gA null}(v) V{ x(@) A y(E) A gA-null}(v) vV
{=x(t) A =y(t) A =g A =null}(v)
ey (t) = at[3](t) A
Vo. {=x(t) A=y(t) A—gA null}(v) V{ x(t) A y(E) A-null}(v) v
{ gA-null}(v) vV {=x(t) A =y(t) A —null}(v)

The interesting observation here is tgandnul | are not aliased in both conjuncts of
¢y, (sc, t). Thus, after the projection we retain this information.
Finally, the result is universally quantified, i.65" = Vt.¢0” (t). As expectedSs’ =

¢g! =nul | -

3.6 Summary of Construction

In summary, the thread quantification domain construceéguires implementations of:
an abstract domaid[V] of open formulas that is in a Galois Connection wRiX'y/)
induced by the satisfaction relation; meet and join openstonA[V]; sequential trans-
formerSSpost’{,_sC of openformulas, parameterized by the scheduled threadhwkier-
approximatesp’ostvySc as in Sec. 3.4; and an over-approximation of existentiaiiak-
tion project(sc, (-)) as in Sec. 3.4. From this the construction produces an imgriem
tation of an abstract domaih of quantified formulas, which is in a Galois Connection
with P(X), with basic transformerq)ostﬁL and refined transformemost’ﬁL for con-
current programs that over-approximate the concrete séeaapost.

4 Case Study: Proving Linearizability

As a case study for the approach, we have verified lineafigabf three well-known
concurrent data structure implementations that use fingygd concurrency.

4.1 Implementation

We have implemented the approach on top of TVLA [16]. (Adiyale implemented
our technique in HeDec [18], which generalizes Canonicadtrsrtion by allowing
coarser and more scalable abstractions.) The thread p@meere implemented as
unary predicates. Support for treating a binary formulahefformz(t,v) as a unary
predicate was done by adding an appropriate instrumentptiedicate (i.e., predicate
defined using a formula from other predicate and autométioptated by the system).
The meet and join operations required from the base domairalaeady imple-
mented in TVLA. Thread projection is done by forgetting afdrmation about the
unary predicate representing the thread and all instruasientpredicates based on it.
In TVLA, it is easier to implement separate transformersfach statement and let
the engine deal with constructing the full post operatoraAssult, we are able to use
the basic transformer for some statements and the more sixperfined transformer
only for statements that require the extra precision. Wethisebasic transformer for
statements that modify only the local state of the schedihliexhd and leave the global

10

state intact. In these cases the abstract state of any tiiatdad not the scheduled thread
is unchanged by the operation, thus the precision of the @sisformer is enough.

4.2 Proving Linearizability

Linearizability[12] is one of the main correctness criteria for impleméates of con-
current data structures. Informally, a concurrent datectdire is linearizable if the con-
current execution of a set of operations on it is equivalesbime sequential execution
of the same operations, in which the global order betweeravenlapping operations
is preserved. The equivalence is based on comparing thenarge and results of oper-
ations (responses). The permitted behavior of the concuolgect is defined in terms
of a specification of the desired behavior of the object incqusatial setting.

Verifying linearizability is challenging because it reggs correlating any concur-
rent execution with a corresponding permitted sequentidation. Verifying lineariz-
ability for concurrent dynamically allocated linked dateustures is particularly chal-
lenging, because it requires correlating executions tfzgt manipulate memory states
of unbounded size.

Intuitively, we verify linearizability by representing ithe concrete state both the
state of the concurrent program and the state of the refersaguential program. Each
element entered into the data structure is correlated aadipation points with the
matching object from the sequential execution. The dedadglescribed in [1].

We have taken the instantiation of Canonical Abstracticgsented in [1] as the
base abstraction for the analysis. That analysis was peefdfor a bounded number
of threads, by using specialized predicates treating ezxdl Vvariable of each thread
as a distinct predicate. We removed these extra predidastead treating the thread
local variables as binary predicates. The analysis hadgated for local and global
variables, heap fields and program labels. Finally, we ugsetas extra predicates that
capture the correlation between the concurrent and seglexecutions (see [1]).

4.3 Experimental Results

Tab. 3 summarizes the experimental results of running oealizability analysis on
the algorithms. These benchmarks were ruh4GHz E6600 Core 2 Duo processor
with 2 GB of memory running Linux. We used two abstractions to aralhese ex-
amples. The first is vanilla canonical abstraction as diesdrin Sec. 4.2. The second
abstraction is an extension of canonical abstraction weitodhposition of the heap as
described in [18]. With this abstraction, the state spasigisificantly reduced, yield-
ing fewer states and better times. The adaptation of theftsamer for the decomposing
abstraction was no harder than that for vanilla canonicstirabtion.

Treiber’s stack algorithm [25] is lock-free, and uses a CarapAnd Swap (CAS)
operation for synchronization. The two-lock queue aldgwnit{19] has Head and Talil
pointers, each protected with its own lock. It allows beniga-races when the queue
is empty, i.e., the Head and Tail pointers are aliased. Thelhacking queue algorithm
[6] is lock-free and uses CAS for synchronization. It is mommplicated than the
other two algorithms and has a much larger state space withtmtraction. Canonical
Abstraction without decomposition, on this example, resliin state space explosion.

11

5 Related Work

The abstract interpretation presented in this paper itdfeom, and combines, two lines
of prior work: (1) Prior work on abstract domains of quantffermulas, especially in

the context of verification of parametrized concurrenteyst, and (2) Prior work on

shape analysis.

Process-Centric Abstractioithe general approach we use of reasoning about con-
current programs in terms of abstraction of the program state relative to a thread
is classic in work on program logic: assertions within thdeof a thread refer to the
state from that thread’s perspective, and the thread’swrosat environment is over-
approximated by, for instance, invariants [13, 21] or tietad [14] on the shared state.
This idea has also been used early on for automatic compuaaitierification [4].
More recently, this approach has led to the notion of thmeadiular verification for
model checking systems with finitely-many threads [8], aasl&lso been applied more
closely to our present domain of heap-manipulating prograith coarse-grained con-
currency [9], and less automatically to fine-grained coreney [2]. This general prin-
ciple has also previously been used in the context of vetifinaf sequential programs
in the form of abstractions of program state relative to amaare non-deterministically
chosen objects (e.g., in the heap or an array) [7, 28, 23, 26].

Abstract Interpretation with Open Formulas and Quantifieddriants.In this pa-
per, we realize such a reference-object-centric persmeeithin the framework of ab-
stract interpretation, using abstract domains consigtfrfgrmulas with free variables
as a stepping stone toward abstract domains consisting asftifjed formulas. This
approach has been previously formalized in the work on ladeRredicate Abstrac-
tion [15] and also appears in the work on Environment Absimad>5, 3]. Indices, or
free variables, in the indexed predicate abstraction warkrange over anything, de-
pending on the application. Our use of a single variable feference process is similar
to the approach in Environment Abstraction. A similar qiféed invariants approach
has also been used in the analysis of heap properties [23pramrties of collec-
tions [10] in sequential programs.

Transformers for Quantified Formulaghe chief difficulty, particularly for domain
constructionsis defining the transformers: semantics of program statésnen ele-
ments of the abstract domain. In their work on Indexed Pegdidbstraction, Lahiri et
al., outline the idea of usinguantifier instantiatiorto compute abstract transformers of
quantified formulas. They use a tool to generate candidataritiations (based on the
subexpressions that appear in the predicate and nexestatessions) for this purpose.

Table 3. Experimental results of proving linearizability for an unimded number of threads

Canonical Abstractidmvith decompositioh
Algorithms States secs. |States secs.
Stack [25] 4,097 53| 764 7
Two-lock queue [19] 4,897 47| 3,415 17|
Non-blocking queue [6MemOut MemOut10,333 252

12

We use a very specific and fixed quantifier instantiationegiatnamely, we instantiate
it for the reference process and for the executing process.

Concurrent Shape Analysi®ne aspect of our work that distinguishes it from the
prior work referenced above is that we apply these ideasa@tbblem of concurrent
shape analysis. In particular, to address the heap, we w$metions that can more
readily make distinctions that are not directly expressiblterms of the program (for
instance, the distinction between heap cells to which taer@nd there are not multiple
incoming pointers). Also, the abstraction we use expressgslations between a single
thread’s local state and the global shared state, but ddedineatly express relations
between the state of multiple threads. Relations betwedtipteithreads are captured
only by the transformers, unlike in Environment Abstractiozvhich can additionally
use predicates that have been chosen to explicitly relagads. In the way that our
abstractions (partially) correlate locals to globals,ritlocals to locals, they exhibit a
thread-modular character, except that threads need naitioely uncorrelated.

The most closely related prior work on concurrent shapeyaigals that of Ya-
hav [27], which uses Canonical Abstraction for this purpd$e Quantified Canonical
Abstraction domain we use is more precise than Canonicalr&diton, and it allows
us to automatically verify, for the first time, linearizatjlof concurrent data structures
in the presence of an unbounded number of threads.

Other Related WorlCounter Abstraction [17] (which has been applied to program
in e.g. [11]) provides a reduction from systems with unbadig-many processes to
finite state, though does not offer much help with the abstransformers for that
finite-state system. Invisible Invariants [22] is anotherhnique that employs thread
variables, and works by considering systems with a smallberraf processes and then
attempting to generalize the results to unboundedly-mamggsses. Work on Split In-
variants [20] extends Invisible Invariants using a conioectvith compositional tech-
nigues (such as [21]), yielding an analysis with a procesgric abstraction that com-
putes universally quantified invariants using transfosiat resemble ours. In partic-
ular, if the assertion logic has a small model property wihbidk, then an invariant for
unboundedly-many threads can be computed ukiimgtantiations of the invariant. In
contrast, we define transformers that are sound (but incaeyfbr unboundedly-many
threads without a small model property, and using many féugtantiations.

6 Conclusion

In this paper, we have developed a new shape analysis fogfaieed concurrent pro-
grams with an unbounded number of threads and demonstheititiis precise enough
to prove linearizability of useful data structure implertaions. This is done by a uni-
versal lifting domain construction applied to existing paanalysis domains.

References

1. D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Congzn under abstraction for
verifying linearizability. InCAV, 2007.

2. C. Calcagno, M. J. Parkinson, and V. Vafeiadis. Moduldetgachecking for fine-grained
concurrency. IrSAS 2007.

13

0

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.
27.

28.

29.

. E. Clarke, M. Talupur, and H. Veith. Proving Ptolemy righhe environment abstraction

framework for model checking concurrent systemsTACAS 2008.

. E. M. Clarke. Synthesis of resource invariants for corentrprograms. TOPLAS 2(3),

1980.

. E. M. Clarke, M. Talupur, and H. Veith. Environment abstien for parameterized verifica-

tion. In VMCAI, 2006.

. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formaifieation of a practical lock-

free queue algorithm. IRORTE 2004.

. C. Flanagan and S. Qadeer. Predicate abstraction fevasefverification. IrPOPL, 2002.
. C. Flanagan and S. Qadeer. Thread-modular model chedkiigPIN 2003.
. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-riewcghape analysis. IRLDI,

2007.

S. Gulwani, B. McCloskey, and A. Tiwari. Lifting absttaeterpreters to quantified logical
domains. InPOPL, 2008.

T. A. Henzinger, R. Jhala, and R. Majumdar. Race chediynepntext inference. IRLDI,
2004.

M. P. Herlihy and J. M. Wing. Linearizability: a correess condition for concurrent objects.
TOPLAS 12(3), 1990.

C.A.R. Hoare. Towards a theory of parallel programmingOperating System Technigues
1972.

C. B. Jones. Specification and design of (parallel) pnogt InIFIP Congress 1983.

S. K. Lahiri and R. E. Bryant. Predicate abstraction withexed predicatesTOCL, 9(1),
2007.

T. Lev-Ami and M. Sagiv. TVLA: A framework for implementy static analyses. IBAS
2000. Available from http://www.cs.tau.acltvla/.

B. D. Lubachevsky. An approach to automating the vetiioeof compact parallel coordi-
nation programs |Acta Inf, 21, 1984.

R. Manevich, T. Lev-Ami, M. Sagiv, G. Ramalingam, and érdne. Heap decomposition
for concurrent shape analysis. $AS 2008. To appear.

M. M. Michael and M. L. Scott. Simple, fast, and practicaih-blocking and blocking
concurrent queue algorithms. RODC, 1996.

K. S. Namjoshi. Symmetry and completeness in the asabfgparameterized systems. In
VMCAI, 2007.

S. S. Owicki and D. Gries. Verifying properties of paghfirograms: An axiomatic approach.
CACM, 19(5), 1976.

A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductivafi@tion with invisible invari-
ants. INTACAS 2001.

A. Podelski and T. Wies. Boolean heapsSKS 2005.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape aisalya 3-valued logicTOPLAS
24(3), 2002.

R. K. Treiber. Systems programming: Coping with paliaite. Technical Report RJ 5118,
IBM Almaden Research Center, 1986.

B. Wachter and B. Westphal. The spotlight principleVMCAI, 2007.

E. Yahav. Verifying safety properties of concurrentalavograms using 3-valued logic.
ACM SIGPLAN Notices36(3), 2001.

E. Yahav and G. Ramalingam. Verifying safety propertising separation and heteroge-
neous abstractions. PLDI, 2004.

G. Yorsh, T. Reps, and M. Sagiv. Symbolically computingstrprecise abstract operations
for shape analysis. INACAS 2004.

14

