
Automatic Categorization of Query Results

Kaushik Chakrabarti Surajit Chaudhuri Seung-won Hwang*
 Microsoft Research Microsoft Research University of Illinois
kaushik@microsoft.com surajitc@microsoft.com shwang5@uiuc.edu

ABSTRACT
Exploratory ad-hoc queries could return too many answers – a
phenomenon commonly referred to as “information overload”.
In this paper, we propose to automatically categorize the results
of SQL queries to address this problem. We dynamically generate
a labeled, hierarchical category structure – users can determine
whether a category is relevant or not by examining
simply its label; she can then explore just the relevant categories
and ignore the remaining ones, thereby reducing information
overload. We first develop analytical models to estimate
information overload faced by a user for a given exploration.
Based on those models, we formulate the categorization problem
as a cost optimization problem and develop heuristic algorithms
to compute the min-cost categorization.

1. INTRODUCTION
Database systems are being increasingly used for interactive and
exploratory data retrieval [1,2,8,14]. In such retrieval, queries
often result in too many answers. Not all the retrieved items are
relevant to the user; typically, only a tiny fraction of the result set
is relevant to her. Unfortunately, she often needs to examine all
or most of the retrieved items to find those interesting ones. This
too-many-answers phenomenon is commonly referred to as
“information overload”. For example, consider a real-estate
database that maintains information like the location, price,
number of bedrooms etc. of each house available for sale.
Suppose that a potential buyer is looking for homes in the
Seattle/Bellevue Area of Washington, USA in the $200,000 to
$300,000 price range. The above query, henceforth referred to as
the “Homes” query, returns 6,045 homes when executed on the
MSN House&Home home listing database. Information overload
makes it hard for the user to separate the interesting items from
the uninteresting ones, thereby leading to a huge wastage of
user’s time and effort. Information overload can happen when the
user is not certain of what she is looking for. In such a situation,
she would pose a broad query in the beginning to avoid
exclusion of potentially interesting results. For example, a user
shopping for a home is often not sure of the exact neighborhood
she wants or the exact price range or the exact square footage at
the beginning of the query. Such broad queries may also occur
when the user is naïve and refrains from using advanced search
features [8]. Finally, information overload is inherent when users

are interested in browsing through a set of items instead of
searching among them.

In the context internet text search, there has been two
canonical ways to avoid information overload. First, they group
the search results into separate categories. Each category is
assigned a descriptive label examining which the user can
determine whether the category is relevant or not; she can then
click on (i.e., explore) just the relevant categories and ignore the
remaining ones. Second, they present the answers to the queries
in a ranked order. Thus, categorization and ranking present two
complementary techniques to manage information overload.
After browsing the categorization hierarchy and/or examining the
ranked results, users often reformulate the query into a more
focused narrower query. Therefore, categorization and ranking
are indirectly useful even for subsequent reformulation of the
queries.

In contrast to the internet text search, categorization and
ranking of query results have received much less attention in the
database field. Only recently, ranking of query results has
received some attention (see Section 2). But, no work has
critically examined the use of categorization of query results in a
relational database. This is the focus of this paper.

Categorization of database query results presents some
unique challenges that are not addressed in the approaches taken
by likes of search engines/web directories (Yahoo!, Google)
and/or product catalog search (Amazon, Ebay). In all the above
cases, the category structures are created a priori. The items are
tagged (i.e., assigned categories) in advance as well. At search
time, the search results are integrated with the pre-defined
category structure by simply placing each search result under the
category it was assigned during the tagging process. Since such
categorization is independent of the query, the distribution of
items in the categories is susceptible to skew: some groups can
have a very large number of items and some very few. For
example, a search on ‘databases’ on Amazon.com yields around
34,000 matches out of which 32,580 are under the “books”
category. These 32,580 items are not categorized any further1
(can be sorted based on price or publication date or customer
rating) and the user is forced to go through the long list to find
the relevant items. This defeats the purpose of categorization as it
retains the problem of information overload.

In this paper, we propose techniques to automatically
categorize the results of SQL queries on a relational database in
order to reduce information overload. Unlike the “a priori”
categorization techniques described above, we generate a labeled
hierarchical category structure automatically based on the
contents of the tuples in the answer set. Since our category

*Work done while visiting Microsoft Research.
1 Typically, the category structure is created manually which
deters the creation of a detailed category structure. That is why
there are no subcategories under books.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00.

Figure 1: Example of hierarchical categorization of query
results (for the “Homes” query in Section 1)

structure is generated at query time and hence tailored to the
result set of the query at hand, it does not suffer from the
problems of a priori categorization discussed above. This paper
discusses how such categorization structures can be generated on
the fly to best reduce the information overload. We begin by
identifying the space of categorizations and develop an
understanding of the exploration models that the user may follow
in navigating the hierarchies (Section 3). Such understanding
helps us compare and contrast the relative goodness of the
alternatives for categorization. This leads to an analytical cost
model that captures the goodness of a categorization. Such a cost
model is driven by the aggregate knowledge of user behaviors
that can be gleaned from the workload experienced on the system
(Section 4). Finally, we show that we can efficiently search the
space of categorizations to find a good categorization using the
analytical cost models (Section 5). Our solution is general and
presents a domain-independent approach to addressing the
information overload problem. We perform extensive
experiments to evaluate our cost models as well as our
categorization algorithm (Section 6).

2. RELATED WORK
OLAP and Data Visualization: Our work on categorization is
related to OLAP as both involve presenting a hierarchical,
aggregated view of data to the user and allowing her to drill-
down/roll-up the categories [13]. However, in OLAP, the user
(data analyst) needs to manually specify the grouping attributes
and grouping functions (for the computed categories [13]); in our
work, those are determined automatically. Information
visualization deals with visual ways to present information [6]. It
can be thought as a step after categorization to the further reduce
information overload: given the category structure proposed in
this paper, we can use visualization techniques (using shape,
color, size and arrangements) to visually display the tree [6].
Data Mining: Our work on categorization is related to the work
on clustering [11,17] and classification [12]. However, there are
significant differences between those works and ours. Let us
consider clustering first. First, the space in which the clusters are
discovered is usually provided there whereas, in categorization,
we need to find that space (the categorizing attributes). Second,
existing clustering algorithms deal with either exclusively
categorical [11] or exclusively numeric spaces [17]; in
categorization, the space usually involves both categorical and
numeric attributes. Third, the optimization criteria are different;
while it is minimizing inter-cluster distance in clustering, it is
minimizing cost (information overload) in our case. Our work
differs from classification where the categories are already given
there along with a training database of labeled tuples and we need
predict the label of future, unlabeled tuples [12].
Discretization/Histograms: In the context of numeric attributes,
our work is related to the work on discretization [10] and
histograms [5,15]. The discretization work assumes that there is a
class assigned to each numeric value (as in classification) and
uses the entropy minimization heuristic [10]. On the other hand,
the histogram bucket selection is based on minimization of errors
in result size estimation [5,15].
Ranking: Previous work on overcoming information overload
includes ranking and text categorization. Ranked retrieval has
traditionally been used in Information Retrieval in the context of
keyword searches over text/unstructured data [3] but has been
proposed in the context of relational databases recently [2,4,14].
Ranking is a powerful technique for reducing information

overload and can be used effectively in complement with
categorization. Although categorization has been studied
extensively in the text domain [9,16], to the best of our
knowledge, this is the first proposal for automatic categorization
in the context of relational databases.

3. BASICS OF CATEGORIZATION
In this section, we define the class of admissible categorizations
and describe how a user explores a given category tree.

3.1 Space of Categorizations
Let R be a set of tuples. R can either be a base relation or a
materialized view (for browsing applications) or it can be the
result of a query Q (for querying applications). We assume that R
does not contain any aggregated or derived attributes, i.e., Q does
not contain any GROUP BYs or attribute derivations (Q is a SPJ
query). A hierarchical categorization of R is a recursive
partitioning of the tuples in R based on the data attributes and
their values. Figure 1 shows an example of a hierarchical
categorization of the results of the “Homes” query presented in
Section 1. We define a valid hierarchical categorization T (also
referred to as category tree) of R inductively as follows.
Base Case: Given the root or “ALL” node (level 0) which
contains all the tuples in R, we partition the tuples in R into an
ordered list of mutually disjoint categories (level 1 nodes2) using
a single attribute. For example, the root node in Figure 1 is
partitioned into 3 mutually disjoint categories using the
“Neighborhood” attribute: “Neighborhood: Redmond, Bellevue”
followed by “Neighborhood: Issaquah, Sammamish” followed by
“Neighborhood: Seattle”.
Inductive Step: Given a node C at level (l-1), we partition the set
of tuples tset(C) contained in C into an ordered list of mutually
disjoint subcategories (level l nodes) using a single attribute
which is same for all nodes at level (l-1). We partition a node C

2 We use the term node and category interchangeably in this
paper.

ALL
(root)

(may be
implicit)

Neighborhood:
Issaquah,
Sammamish

Price:
200K -225K Bedrooms:

1 - 2

Bedrooms:
3 - 4

Bedrooms:
5 - 9

Neighborhood:
Redmond,
Bellevue

Neighborhood:
Seattle

Price:
225K -250K

Price:
250K -300K

Actual
Homes

Actual
Homes

Actual
Homes

Price:
200K -275K

Price:
275K -300K

Level 0 Level 1 Level 2 Level 3 Level 4

ALL
(root)

(may be
implicit)

Neighborhood:
Issaquah,
Sammamish

Price:
200K -225K Bedrooms:

1 - 2

Bedrooms:
3 - 4

Bedrooms:
5 - 9

Neighborhood:
Redmond,
Bellevue

Neighborhood:
Seattle

Price:
225K -250K

Price:
250K -300K

Actual
Homes

Actual
Homes

Actual
Homes

Price:
200K -275K

Price:
275K -300K

Level 0 Level 1 Level 2 Level 3 Level 4

Figure 2: Model of exploration of node C in ‘All’ Scenario

only if C contains more than a certain number of tuples. The
attribute used is referred to as the categorizing attribute of the
level l nodes and the subcategorizing attribute of the level (l-1)
nodes. For example, “Price” is the categorizing attribute of all
nodes at Level 2 (also the subcategorizing attribute of all nodes at
Level 1). Furthermore, once an attribute is used as a categorizing
attribute at any level, it is not repeated at a later level, i.e., there is
a 1:1 association between each level of T and the corresponding
categorizing attribute. We impose the above constraints to ensure
that the categorization is simple, intuitive and easily
understandable to the user.
Associated with each node C is a category label and a tuple-set as
defined below:
Category Label: The predicate label(C) describing node C. For
example, the first child of root (rendered at the top) in Figure 1
has label ‘Neighborhood ∈ {Redmond, Bellevue}’ (rendered as
‘Neighborhood: Redmond, Bellevue’ in Figure 1) while the first
child of the above category has label ‘Price: 200K–225K’.
Tuple-Set: The set of tuples tset(C) (called the tuple-set of C)
contained in C; either appearing directly under C (if C is a leaf
node) or under its subcategories (if C is a non-leaf node).
Formally, tset(C) is the set of tuples, among the ones contained in
the parent of C, which satisfy the predicate label(C). In other
words, tset(C) is the subset of tuples in R that satisfies the
conjunction of category labels of all nodes on the path from the
root to C. For example, in Figure 1, tset(C) for the category with
label ‘Neighborhood: Redmond, Bellevue’ is the set of all homes
in R that are located either in Redmond or in Bellevue while
tset(C) for its child with label ‘Price: 200K–225K’ is the set of
all homes in R that are located either in Redmond or in Bellevue
and priced between 200K and 225K.

The label of a category, therefore, solely and
unambiguously describes to the user which tuples, among those
in the tuple set of the parent of C, appear under C. Hence, she can
determine whether C contains any item that is relevant to her or
not by looking just at the label and hence decide whether to
explore or ignore C. As discussed above, label(C) has the
following structure:
If the categorizing attribute A is a categorical attribute:
label(C) is of the form ‘A ∈ B’ where B ⊂ domR(A) (domR(A)
denotes the domain of values of attribute A in R). A tuple t
satisfies the predicate label(C) if t.A ∈ B, otherwise it is false (t.A

denotes the value of tuple t on attribute A).
If the categorizing attribute A is a numeric attribute: label(C)
is of the form ‘a1 ≤ A < a2’ where a1, a2 ∈ domR(A). A tuple t
satisfies the predicate label(C) is true if a1≤t.A<a2, otherwise it is
false.

So far, we have described the structure of a hierarchical
categorization which defines the class of permissible
categorizations. To generate a particular instance of hierarchical
categorization, we need to do the following for each level l:
• Determine the categorizing attribute A for level l
• Given the choice A of categorizing attribute for level l, for

each category C in level (l-1), determine how to partition the
domain of values of A in tset(C) into disjoint groups and
how do order those groups.

We want to choose the attribute-partitioning combination at each
level such that the resulting instance Topt has the least possible
information overload on the user. For that purpose, we first need
a model that captures how a user navigates the result set R using
a given category tree T.

3.2 Exploration Model
We present two models capturing two common scenarios in data
exploration. One scenario is that the user explores the result set R
using the category tree T until she finds every tuple t ∈ R relevant
to her, i.e., she does not terminate the exploration after she has
found some (but not all) relevant tuples. For example, the user
may want to find every home relevant to her in the “Homes”
query. In order to ensure that she finds every relevant tuple, she
needs to examine every tuple and every category label except the
ones that appear under categories she deliberately decides to
ignore. Another scenario is that the user is interested in just one
(or two or a few) tuple(s) in R; so she explores R using T till she
finds that one (or few) tuple(s). For example, a user may be
satisfied if she finds just one or two homes that are relevant to
her. For the purpose of modeling, we assume that, in this
scenario, the user is interested in just one tuple, i.e., the user
explores the result set until she finds the first relevant tuple. We
consider these two scenarios because they both occur commonly
and they differ in their analytical models; we do not consider
additional scenarios as the above two represent the two ends of
the spectrum of possible scenarios; other scenarios (e.g., user
interested in two/few tuples) fall in between these two ends.

3.2.1 Exploration Model for ‘All’ Scenario
The model of exploration of the subtree rooted at an arbitrary
node C is shown in Figure 2. The user starts the exploration by
exploring the root node. Given that she has decided to explore the
node C, if C is a non-leaf node, she non-deterministically (i.e.,
not known in advance) chooses one of the two options3:
Option ‘SHOWTUPLES’: Browse through the tuples in tset(C).
Note that the user needs to examine all tuples in tset(C) to make
sure that she finds every tuple relevant to her.
Option ‘SHOWCAT’: Examine the labels of all the n
subcategories of C, exploring the ones relevant to her and
ignoring the rest. More specifically, she examines the label of
each subcategory Ci starting from the first subcategory and non-
deterministically chooses to either explore it or ignore it. If she
chooses to ignore Ci, she simply proceeds and examines the next
label (of Ci+1). If she chooses to explore Ci, she does so
recursively based on the same exploration model, i.e., by
choosing either ‘SHOWTUPLES’ or ‘SHOWCAT’ if it is an
internal node or by choosing ‘SHOWTUPLES’ if it is a leaf

3 We assume that the user interface displays sufficient
information (in addition to the category label) to the user so that
she can properly decide between SHOWTUPLES and
SHOWCAT.

Explore C
if C is non-leaf node
 CHOOSE one of the following:

(1) Examine all tuples in tset(C) // Option SHOWTUPLES
(2) for (i=1; i ≤n; i++) // Option SHOWCAT

 Examine the label of ith subcategory Ci

 CHOOSE one of the following:
 (2.1) Explore Ci
 (2.2) Ignore Ci

else // C is a leaf-node
 Examine all tuples in tset(C) //SHOWTUPLES is only option

Figure 3: Model of exploration of node C in ‘One’ Scenario

node. After she finishes the exploration of

Ci, she goes ahead and

examines the label of the next subcategory of C (of Ci+1). When
the user reaches the end of the subcategory list, she is done. Note
that we assume that the user examines the subcategories in the
order it appears under C; it can be from top to bottom (as shown
in Figure 1) or from left to right depending on how the tree is
rendered by the user interface.
If C is a leaf node, ‘SHOWTUPLES’ is the only option (option
‘SHOWCAT’ is not possible since a leaf node has no
subcategories).
Example 3.1: Here is an example of an exploration on the tree in
Figure 1 in the ‘ALL’ scenario: explore root using SHOWCAT,
examine “Neighborhood:Redmond,Bellevue” and explore it
using SHOWCAT, examine “Price:200K-225K” and ignore it,
examine “Price:225K-250K” and explore it using
SHOWTUPLES, examine all tuples under “Price:225K-250K”,
examine “Price:250K-300K” and ignore it, examine
“Neighborhood:Issaquah, Sammamish” and ignore it, examine
“Neighborhood:Seattle” and ignore it . Note that examining a
node means reading its label while examining a tuple means
reading all the fields in the tuple.

3.2.2 Exploration Model for ‘One’ Scenario
The model of exploration of an arbitrary node C of the tree T is
shown in Figure 3. Once again, the user starts the exploration by
exploring the root node. Given that the user has decided to
explore a node C, she non-deterministically chooses one of the
two options:
Option ‘SHOWTUPLES’: Browse through the tuples in tset(C)
starting from the first tuple in tset(C) till she finds the first
relevant tuple. In this paper, we do not assume any particular
ordering/ranking when the tuples in tset(C) are presented to the
user.
Option ‘SHOWCAT’: Examine the labels of the subcategories
of C starting from the first subcategory till the first one she finds
interesting. As in the ‘ALL’ scenario, she examines the label of
each subcategory Ci starting from the first one and non-
deterministically chooses to either explore it or ignore it. If she
chooses to ignore Ci, she simply proceeds and examines the next
label. If she chooses to explore Ci, she does so recursively based
on the same exploration model. We assume that when she drills
down into Ci, she finds at least one relevant tuple in tset(Ci); so,
unlike in the ‘ALL’ scenario, the user does not need to examine
the labels of the remaining subcategories of C.

If C is a leaf node, ‘SHOWTUPLES’ is the only option (browse
through the tuples in tset(C) starting from the first one till she
finds the first relevant tuple).
Example 3.2: Here is an example of an exploration using the tree
in Figure 1 in the ‘ONE’ scenario: explore root using
SHOWCAT, examine “Neighborhood:Redmond,Bellevue” and
explore it using SHOWCAT, examine “Price:200K-225K” and
ignore it, examine “Price:225K-250K” and explore it using
SHOWTUPLES, examine tuples under “Price:225K-250K”
starting with the first one till she finds the first relevant tuple.

4. COST ESTIMATION
Since we want to generate the tree imposes the least possible
information overload on the user, we need to estimate the
information overload that a user will face during an exploration
using a given category T. We describe how to estimate that in this
section.

4.1 Cost Models
4.1.1 Cost Model for ‘ALL’ Scenario
Let us first consider the ‘ALL’ scenario. Given a user exploration
X using category tree T, we define information overload cost, or
simply cost (denoted by CostAll(X,T)), as the total number of
items (which includes both category labels and data tuples)
examined by the user during X. The above definition is based on
the assumption that the time spent in finding the relevant tuples is
proportional to the number of items the user needs to examine:
more the number of items she needs to examine, more the time
wasted in finding the relevant tuples, higher the information
overload.
Example 4.1: We compute the cost CostAll(X,T) of the
exploration in Example 3.1. Assuming 0 cost for examining the
root node (for simplicity) and assuming that there are 20 tuples
under “Price:225K-250K”, the cost is 3 (for examining the labels
of the 3 first-level categories) + 3 (for examining the labels of the
3 subcategories of “Neighborhood:Redmond,Bellevue”) + 20
(examining the tuples under “Price:225K-250K”) = 26.
If we knew the mind of the user, i.e., we deterministically knew
what choices in Figure 2 a particular user will make (which
categories she will explore and which ones she will ignore, when
she will use SHOWTUPLES and when SHOWCAT, etc.), we
could generate the tree that would minimize the number of items
this particular user needs to examine. Since we do not have that
user-specific knowledge4, we use the aggregate knowledge of
previous user behavior in order to estimate the information
overload cost CostAll(T) that a user will face, on average, during
an exploration using a given category tree T. Based on the
definition of information overload, CostAll(T) is the number of
items (which includes category labels and data tuples) that a user
will need to examine, on average, during the exploration of R
using T till she finds all tuples relevant to her. Subsequently, we

4 We can get some of this knowledge by observing past behavior
of this particular user (known as ‘personalization’). We do not
pursue that direction in this paper. As a result, our technique does
not produce the optimal tree for any user in particular but for the
(hypothetical) average user (the tree produced is the same for any
user for a given query). Since we are optimizing for the average
case, we expect it to be reasonably good, on average, for
individual users assuming that the individual users conform to the
previous behavior captured by the workload.

Explore C
if C is non-leaf node
 CHOOSE one of the following:

(1) Examine tuples in tset(C) from beginning till 1st relevant
tuple found // Option SHOWTUPLES

(2) for (i=1; i ≤n; i++) // Option SHOWCAT
 Examine the label of ith subcategory Ci

 CHOOSE one of the following:
 (2.1) Explore Ci
 (2.2) Ignore Ci

 if (choice = Explore) break; // examine till 1st relevant
else // C is a leaf-node
 Examine all tuples in tset(C) from beginning till 1st relevant
tuple found // Option SHOWTUPLES is the only option

can find the category tree that minimizes this average cost of
exploration. Since the user choices in Figure 2 are non-
deterministic and not equally likely, we need to know the
following two probabilities associated with each category of T in
order to compute CostAll(T):
Exploration Probability: The probability P(C) that the user
exploring T explores category C, using either SHOWTUPLES or
SHOWCAT, upon examining its label. The probability that the
user ignores C upon examining its label is therefore (1-P(C)).
SHOWTUPLES Probability: The probability Pw(C)5 that the
user goes for option ‘SHOWTUPLES’ for category C given that
she explores C. The SHOWCAT probability of C, i.e., the
probability that the user goes for option ‘SHOWCAT’ given that
she explores C is therefore (1- Pw(C)). If C is a leaf category,
Pw(C) = 1 because given that the user explores C,
‘SHOWTUPLES’ is the only option.
How we compute these probabilities using past user behavior is
discussed in Section 4.2. We next discuss how to compute
CostAll(T) assuming we know the above probabilities.

 Let us consider a non-leaf node C of T. Let C1, C2, …, Cn
be the n subcategories of C. Let us consider the cost CostAll(TC)
of exploring the subtree TC rooted at C given that the user has
chosen to explore C. Since the cost is always computed in the
context of a given tree T, for simplicity of notation, we
henceforth denote CostAll(TC) by CostAll(C); CostAll(T) is simply
CostAll(root). If the user goes for option ‘SHOWTUPLES’ for C,
she examines all the tuples in tset(C), so the cost is |tset(C)|. If
she goes for option ‘SHOWCAT’, the total cost is the cost of
examining the labels of all the subcategories plus the cost of
exploring the subcategories she chooses to explore upon
examining the labels. The first component is K*n where K is the
cost of examining a category label relative to the cost of
examining a data tuple; the second cost is CostAll(Ci) if she
chooses to explore Ci, 0 if she chooses to ignore it. Putting it all
together,
CostAll(C) =

Pw(C)*|tset(C)| + (1-Pw(C)) * (K*n +
n

i 1=
Σ P(Ci)*CostAll(Ci)) (1)

If C is a leaf node, CostAll(C) = |tset(C)|. Note that the above
definition still holds as Pw(C) = 1 for a leaf node.

4.1.2 Cost Model for ‘ONE’ Scenario

In this scenario, the information overload cost CostOne(T)
that a user will face, on average, during an exploration using a
given category tree T is the number of items that a user will need
to examine, on average, till she finds the first tuple relevant to
her. Let us consider the cost CostOne(C) of exploring the subtree
rooted at C given that the user has chosen to explore C;
CostOne(T) is simply CostOne(root). If the user goes for option
‘SHOWTUPLES’ for C and frac(C) denotes the fraction of tuples
in tset(C) that she needs to examine, on average, before she finds
the first relevant tuple, the cost, on average, is frac(C)*|tset(C)|. If
she goes for option ‘SHOWCAT’, the total cost is (K*i +
CostOne(Ci)) if Ci is the first subcategory of C explored by the user
(since the user examines only i labels and explores only Ci).
Putting it all together,

5 The subscript ‘w’ denotes that the user examines the whole set
of tuples in SC.

CostOne(C) =Pw(C)*frac(C)*|tset(C)| + (1-Pw(C)) *
n

i 1=
Σ (Prob.

that Ci is the first category explored* (K*i + CostOne(Ci)))
The probability that Ci is the first category explored (i.e.,
probability that the user explores Ci but none of C1 to C(i-1)), is

)1(

1

−

=
∏
i

j

(1-P(Cj)) *P(Ci), so

CostOne(C) = Pw(C)*frac(C)*|tset(C)|

+ (1-Pw(C)) *
n

i 1=
Σ ()1(

1

−

=
∏
i

j

(1-P(Cj)) * P(Ci)* (K*i + CostOne(Ci)))(2)

If C is a leaf node, CostOne(TC) = frac(C)*|tset(C)|; so the above
definition still holds as Pw(C) = 1 for a leaf node.

4.2 Using Workload to Estimate Probabilities
As stated in Section 4.1, we need to know the probabilities Pw(C)
and P(C) to be able to compute the average exploration cost
CostAll(T) (or CostOne(T)) of a given tree T (all other variables in
the equations (1) and (2) are either constants or known for a
given T). To estimate these probabilities automatically (without
any input from domain expert), we use the aggregate knowledge
of previous user behavior. Specifically, we look at the log of
queries that users of this particular application have asked in the
past (referred to as ‘workload’). Our technique only requires the
log of SQL query strings as input; this is easy to obtain since the
profiling tools that exist on commercial DBMSs log the queries
that executes on the system anyway. Since we use the aggregate
knowledge, our categorization is the same for all users for the
same result set; it only varies with the result set.
Computing SHOWTUPLES Probability: Given that the user
explores a non-leaf node C, she has two mutually exclusive
choices: do SHOWTUPLES or do SHOWCAT. Let us first
consider the SHOWCAT probability of C, i.e., the probability
that the user does SHOWCAT given that she explores C. We
presume that the user does SHOWCAT for C (given that she
explores C) if the subcategorizing attribute SA(C) of C is such
that user is interested in only a few of the subcategories (i.e., in
only a few values of SA(C)); in this situation, using SHOWCAT
enables her to ignore a large fraction of the subcategories and
hence significantly cut down the number of tuples she needs to
examine. On the other hand, if she is interested in all or most of
the subcategories of C, i.e., in all or most values of SA(C), she
will go for SHOWTUPLES. For example, in Figure 1, suppose
the user has decided to explore the
“Neigborhood:Redmond,Bellevue” category. If the user is
sensitive about ‘Price’ and cares only about 200K-225K homes,
she is most likely to request SHOWCAT and thereby avoid
examining the 225K-250K and 250K-300K homes (by ignoring
those categories). On the other hand, if she does not care about
the ‘Price’ of the home, the user is most likely to request
SHOWTUPLES for that category because she would need to
explore all the subcategories if she does SHOWCAT. We
estimate the SHOWCAT probability of C using the workload as
follows. Suppose that the workload query Wi represents the
information need of a user Ui. If Ui has specified a selection
condition6 on SA(C) in Wi, it typically means that she is

6 We assume that the workload queries are SPJ queries on a
database with star schema, i.e., they are equivalent to select
queries on the wide table obtained by joining the fact table with
the dimension tables. The attributes and values used in the

interested in a few values of SA(C). On the other hand, absence of
selection condition on SA(C) means that she is interested in all
values of SA(C). If NAttr(A) denotes the number of queries in the
workload that contain selection condition on attribute A and N is
the total number of queries in the workload, NAttr(SA(C))/N is the
fraction of users that are interested in a few values of SA(C).
Assuming that the workload represents the activity of a large
number of diverse users and hence forms a good statistical basis
for inferencing user behavior, the probability that a random user
is interested in a few values of SA(C), i.e., the SHOWCAT
probability of C is NAttr(SA(C))/N. The SHOWTUPLES
probability Pw(C) of C (probability that the user goes for option
‘SHOWTUPLES’ for C given that she explores C) is therefore 1
– NAttr(SA(C))/N.
Computing Exploration Probability: We now discuss how we
estimate the probability P(C) that the user explores category C,
either using SHOWTUPLES or SHOWCAT, upon examining its
label. By definition, P(C) = P(User explores C | User examines
label of C). Since user explores C implies that user has examined
label of C, P(C) = P(User explores C) / P(User examines label of
C). Since user examines label iff she explores the parent (say C’)
of C and chooses SHOWCAT for C’,

P(C)=
)C'for SHOWCAT chooses and C' exploresP(User

C) exploresP(User

)C' exploresUser |C'for SHOWCAT choosesP(User *)C' exploresP(User

C) exploresP(User =

P(User chooses SHOWCAT for C’|User explores C’) is the
SHOWCAT probability of C’ = NAttr(SA(C’))/N.
A user explores C if she, upon examining the label of C, thinks
that there may be one or more tuples in tset(C) that is of interest
to her, i.e., the full path predicate of C (the conjunction of
category labels of all nodes on the path from the root to C) is of
interest to her. Assuming that the user’s interest in a label
predicate on one attribute is independent of her interest in a label
predicate on another attribute, P(User explores C) / P(User
explores C’) is simply the probability that the user is interested in
the label predicate label(C).

So, P(C)=
(SA(C))/NAttrN

 label(C)) predicatein interestedP(User

Again suppose that the workload query Wi in the workload
represents the information need of a user Ui. If Wi has a selection
condition on the categorizing attribute CA(C) of C and that
selection condition on CA(C) overlaps with the predicate
label(C), it means that Ui is interested in the predicate label(C). If
NOverlap(C) denotes the number of queries in the workload whose
selection condition on CA(C) overlaps with label(C), P(User
interested in predicate label(C)) = NOverlap(C)/N. So, P(C) =
NOverlap(C)/NAttr(SA(C’)). Since the subcategorizing attribute
SA(C’) of C’ is, by definition, the categorizing attribute CA(C) of
C, P(C) = NOverlap(C)/ NAttr(CA(C)). We finish this discussion by
stating what we mean by overlap: if CA(C) (say A) is a
categorical attribute, the selection condition “A IN {v1,…, vk)”
on CA(C) in Wi overlaps with the predicate label(C) = ‘A∈ B’ if
the two sets {v1,…, vk} and B are not mutually disjoint; if CA(C)
(again say A) is a numeric attribute, the selection condition “vmin
≤ A ≤ vmax” on CA(C) in Wi overlaps with the predicate label(C)

selection conditions in the queries therefore reflect the user’s
interest in those attributes and values while searching for items in
the fact table.

= ‘a1 ≤ A < a2’ iff the two ranges [vmin,vmax] and [a1,a2]
overlap.

5. CATEGORIZATION ALGORITHM
Since we know how to compute the information overload cost
CostAll(T) of a given tree T, we can enumerate all the permissible
category trees on R, compute their costs and pick the tree Topt
with the minimum cost. This enumerative algorithm will produce
the cost-optimal tree but could be prohibitively expensive as the
number of permissible categorizations may be extremely large. In
this section, we present our preliminary ideas to reduce the search
space of enumeration. We will first present our techniques in the
context of 1-level categorization (i.e., a root node pointing to a
set of mutually disjoint categories which are not subcategorized
any further). In Section 5.2, we generalize that to multi-level
categorization.

5.1 One-level Categorization
We now present heuristics to (1) eliminate a subset of relatively
unattractive attributes without considering any of their
partitionings (Section 5.1.1) and (2) for every attribute selected
above, obtain a good partitioning efficiently instead of
enumerating all the possible partitionings (Sections 5.1.2 and
5.1.3). Finally, we choose the attribute and its partitioning that
has the least cost.

5.1.1 Reducing the Choices of Categorizing Attribute
Since the presence of a selection condition on an attribute in a
workload query reflects the user’s interest in that attribute (see
Section 4.2), attributes that occur infrequently in the workload
can be discarded right away while searching for the min-cost tree.
Let A be the categorizing attribute chosen for the 1-level
categorization. If the occurrence count NAttr(A) of A in the
workload is low, the SHOWTUPLES probability Pw(root) of the
root node will be high. Since the SHOWTUPLES cost of a tree is
typically much higher than its SHOWCAT cost and the choice of
partitioning affects only the SHOWCAT cost, a high
SHOWTUPLES probability implies that the cost of the resulting
tree would have a large first component (Pw(root)*|tset(root)|)
which would contribute to a higher total cost. Therefore, it is
reasonable to consider eliminating such low occurring attributes
without considering any of their partitionings.

Specifically, we eliminate the uninteresting attributes using
the following simple heuristic: if an attribute A occurs in less
than a fraction x of the queries in the workload, i.e., NAttr(A)/N <
x, we eliminate A. The threshold x will need to be specified by
the system designer/domain expert. For example, for the home
searching application, if we use x=0.4, only 6 attributes, namely
neighborhood, price, bedroomcount, bathcount, property-type
and square footage, are retained from among 53 attributes in the
MSN House&Home dataset. For attribute elimination, we
preprocess the workload and maintain, for each potential
categorizing attribute A, the number NAttr(A) of queries in the
workload that contain selection condition on A. At query time,
for each retained attribute, we obtain a good partitioning by
invoking the partitioning function discussed in Sections 5.1.2 and
5.1.3 below and choose the attribute-partitioning combination
that has the minimum CostAll(T).

5.1.2 Partitioning for Categorical Attributes
We present an algorithm to obtain the optimal partitioning for a
given categorizing attribute A that is categorical. Consider the

Figure 4: Example of AttributeUsageCounts table and
OccurrenceCounts table

case where the user query Q contains a selection condition of the
form “A IN {v1, …, vk}” on A. We only consider single-value
partitionings of R in this paper, i.e., we partition R into k
categories – one category Ci corresponding to each value vi in the
IN clause (e.g., “Neighborhood:Redmond”,
“Neighborhood:Bellevue”, etc.). The advantage of single-value
partitionings is that the category labels are simple and easy to
examine; multi-valued categories, on the other hand, would have
more complex category labels. Among the single-value
partitionings, we want to choose the one with the minimum cost.
Since the set of categories is identical in all possible single-value
partitionings, the only factor that impacts the cost of a single-
valued partitioning is the order in which the categories are
presented to the user. The order affects the cost because our
exploration models (see Section 3.2) assume that the user always
starts examining the labels of the subcategories from the top and
goes downwards (or from left going rightwards depending on the
rendering). The cost CostAll(T) to find all tuples relevant to her is
not affected by the order, so we only consider the cost CostOne(T)
to find one relevant tuple. It can be shown from Equation (2) that
among all possible orderings, CostOne(T) is minimum when the
categories are presented to the user in increasing order of 1/P(Ci)
+ CostOne(Ci); the proof can be found in Appendix A. Intuitively,
if the probability P(Ci) of drilling into the category is high, it is
better to present it to the user earlier since that would reduce the
number of labels of uninteresting categories the user needs to
examine. Also, it is better to place the categories with lower
exploration cost earlier as that would reduce the overall cost as
well. Although the above optimality criterion can be evaluated to
obtain the optimal 1-level category tree, it is hard to use the
criteria for multilevel category trees due to the complexity of
computing CostOne(Ci). However, in contrast, P(Ci) can be
evaluated for the multilevel category tree without any complexity.
Therefore, we have adopted the heuristic to present the categories
in the decreasing order of P(Ci), i.e., we only use the first term in
the above formula. Although the above is tantamount to assuming
equality of CostOne(Ci)’s, our experimental results have been
encouraging. Recall from Section 4.2 that P(Ci) =
NOverlap(Ci)/NAttr(A). Since each category Ci corresponds to a
single value vi, NOverlap(Ci) is the number of queries in the
workload whose selection condition on A contains vi in the IN
clause (called the occurrence count occ(vi) of vi). To obtain the

partitioning, we simply sort the values in the IN clause in the
decreasing order of occ(vi).

To retrieve the occurrence count occ(vi) of a given value vi
efficiently, we preprocess the workload and maintain, for each
categorical attribute A separately, the occurrence count of each
distinct value of A in a database table (see Figure 4(b)). For each
occurrence count table, we can build an index on the value to
make the retrieval efficient. If necessary, standard compression
techniques (e.g., prefix compression, histogramming techniques)
can be used to compress the occurrence count table as well.

5.1.3 Partitioning for Numeric Attributes
We present a heuristic to obtain a good partitioning for a given
categorizing attribute A that is numeric. Let vmin and vmax be the
minimum and maximum values that the tuples in R can take in
attribute A. If the user query Q contains a selection condition on
A, vmin and vmax can be obtained directly from Q. Let us first
consider the simple case where we want to partition the above
range (vmin, vmax] into two mutually disjoint buckets, i.e.,
identify the best point to split. Let us consider a point v (vmin < v
< vmax). If a significant number of query ranges (corresponding
to the selection condition on A) in the workload begin or end at
v, it is a good point to split as the workload suggests that most
users would be interested in just one bucket, i.e., either in the
bucket (vmin, v] or in the bucket (v, vmax] but not both (see
Figure 5(a)). In this situation, she will be able to ignore one of
the buckets and hence avoid examining all the items under it,
thereby reducing information overload. On the other hand, if few
or none of the ranges begin or end at v (i.e., all or most of them
spans across v), most users would be interested in both buckets
(see Figure 5(a)). In this case, the user will end up examining all
the items in R and hence incur a high exploration cost; v is
therefore not a good point to split. If we are to partition the range
into m buckets, where m is specified by the system designer,
applying the above intuition, we should select the (m-1) points
where most query ranges begin and/or end as the splitpoints.
However, our cost model suggests that the start and end counts of
the splitpoints are not the only factors determining the cost; the
other factor is the number of tuples that fall in each bucket. The
above splitpoint selection heuristic, therefore, may not always
produce the best partitioning in terms of cost, especially if there
is a strong correlation between start/end counts of the splitpoints
and the number of tuples in each bucket. Such correlations
occured rarely in the real-life datasets we used in our experiments
and the above heuristic produced low-cost partitionings for those
datasets.

 Let us consider the point v again (vmin < v < vmax). Let
startv and endv denote the number of query ranges in the
workload starting and ending at v respectively. We use
SUM(startv, endv) as the “goodness score” of the point v. The
above heuristic is an approximation of the optimal goodness
score suggested by the cost model; in the special case where we
are selecting a single splitpoint and the resulting two buckets
have equal number of tuples, the above heuristic matches the
optimal goodness score (i.e., produces the cost-optimal
partitioning). Since the above goodness score depends only on v,
we can precompute the goodness score for each potential
splitpoint and store it in a table7; Figure 5(b) shows the
precomputed goodness scores for all potential splitpoints in the

7 We assume that the potential splitpoints are separated by a

fixed interval (e.g., 1000 in Figure 5(b)).

2347YearBuilt

4251SquareFootage

6498Bedrooms

5210Price

#queries in
workload
containing
selection condition
on A (NAttr(A))

Attribute A

7327Neighborhood

2347YearBuilt

4251SquareFootage

6498Bedrooms

5210Price

#queries in
workload
containing
selection condition
on A (NAttr(A))

Attribute A

7327Neighborhood

848Kirkland,WA

1050Redmond,WA

547Issaquah,WA

1213Bellevue,WA

queries in workload
whose selection
condition on A
contains vi in IN
clause (NOverlap(Ci)

Value vi

492Seattle,WA

848Kirkland,WA

1050Redmond,WA

547Issaquah,WA

1213Bellevue,WA

queries in workload
whose selection
condition on A
contains vi in IN
clause (NOverlap(Ci)

Value vi

492Seattle,WA

(a) AttributeUsageCounts table
(one table for the whole database)

(b) OccurrenceCounts table for
Neighborhood attribute (one table for
each potential categorizing attribute)

Figure 5: (a) Intuition behind splitpoint selection heuristic
(b) Part of Splitpoints table for Price attribute (only
splitpoints in the range (0, 10000] are shown). The
separation interval is 1000.

-

0

20

0

0

90

0

0

40

0

endv

30

0

80

0

0

40

0

0

10

0

startv

07000

1008000

09000

04000

03000

502000

10000

6000

5000

1000

Splitpoint
v

-

0

130

SUM
(startv
,endv)

0

-

0

20

0

0

90

0

0

40

0

endv

30

0

80

0

0

40

0

0

10

0

startv

07000

1008000

09000

04000

03000

502000

10000

6000

5000

1000

Splitpoint
v

-

0

130

SUM
(startv
,endv)

0

vmin vmaxv

Query ranges in
workload ending
at v (these users
are interested
only in bucket 1)

Query ranges in
workload starting
at v (these users
are interested
only in bucket 2)

Query ranges in
workload spanning
across v (these users
are interested in both
buckets 1 and 2)

Bucket
1

Bucket
2

(a) (b)

range (0,10000]). At query time, to produce m buckets, we pick
the top (m-1) splitpoints in the range (vmin, vmax] based on
goodness scores, leaving out the ones that are unnecessary. Of
course, a splitpoint is unnecessary for a range if it contains too
few tuples. We will discuss this aspect in greater details in
Section 5.2. We examine the splitpoints in the range (vmin,
vmax] in decreasing order of goodness score; if we get an
unnecessary one, we simply skip it (otherwise we select it) and go
to the next one till we select m splitpoints. Finally, note that the
goodness metric may be used as a basis for automatically
determining m instead of being specified externally.
Example 5.1: In the example in Figure 5(b), if m=3, we will
select 5000 and 8000 if both are necessary (since the have the
highest goodness values, 130 and 100 respectively). If the
splitpoint 8000 is unnecessary, we skip it and pick the next best
splitpoint, i.e., 2000; so we will select 5000 and 2000. We always
present the categories in ascending order of the values of the split
points (i.e., 0-2000 followed by 2000-5000 followed by 5000-
10000 in the latter case).

As mentioned before, we preprocess the workload and
maintain, for each numeric attribute separately, the goodness
scores of each potential splitpoint in a database table (one such
splitpoints table per numeric attribute as shown in Figure 5(b));
this eliminates the need to access the workload at query time. We
index the table based on v to speed up the retrieval of goodness
scores of the splitpoints in the desired range.

We conclude this section with a note on how the
partitioning technique presented above differs from existing
histogram techniques. Traditional histogram techniques try to
reduce estimation error by grouping together values that has
similar source parameter values (e.g., frequencies, areas, spreads)
[15]. In contrast, our partitioning tries to reduce cost by grouping
together values that are likely to be co-accessed during an
exploration, based on workload statistics like access counts.

5.2 Multilevel Categorization
For multilevel categorization, for each level l, we need to (1)
determine the categorizing attribute A and (2) for each category C
in level (l-1), partition the domain of values of A in tset(C) such
that the information overload is minimized. We partition a node
C iff C contains more than M tuples where M is a given
parameter. Otherwise, we consider its partitioning unnecessary.
There are several advantages to introducing the parameter M:
first, it guarantees that no leaf category has more than M tuples
(only if there is sufficient number of attributes available for
categorization). This is important because, in an interactive
environment, we often need to fit all the tuples in a category in
the display screen; we can ensure that by choosing M
accordingly. We choose M=20 in our user study. Second, it
gives the user an opportunity to control the granularity of
categorization. A simple level-by-level categorization algorithm
is shown in Figure 6.
The algorithm creates the categories level by level (starting with
level 0), i.e., all categories at level (l-1) are created and added to
tree T before any category at level l. A new level is necessary iff
there exists at least one category with more than M tuples in the
current level; otherwise, the categorization is complete and the
algorithm terminates. If the next level is necessary, let S denote
the set of categories at level (l-1) with more than M tuples. Any
attribute that has been retained after the attribute elimination step
described in Section 5.1.1 and not used as a categorizing attribute
in an earlier level is a candidate for the categorizing attribute at
this level. For each such candidate attribute A, we partition each
category C in S using the partitioning algorithm described in
Sections 5.1.2 and 5.1.3 (depending on whether A is categorical
or numeric). Much of the work of partitioning is done just once
for the entire level (e.g., sorting the values based on occ(vi) in the
categorical case or determining the best splitpoints in the numeric
case); only the determination of which subcategories are
necessary are done on a per-category basis. We compute the cost
of the attribute-partitioning combination for each candidate
attribute A and select the attribute α with the minimum cost. For
each category C in S, we add the partitions of C based on α to T.
This completes the creating of nodes at level l after which we
move on to the next level.
The above algorithm relies on the assumption that the values the
user is interested in for one attribute are independent of those she
is interested in for another attribute; the quality of the
categorization can be improved by weakening this independence
assumption and leveraging the correlations captured in the
workload. The efficiency of the algorithm can also be improved
by avoiding repeated work; we are pursuing such improvements
in our ongoing work.

6. EXPERIMENTAL EVALUATION
In this section, we present the results of an extensive empirical
study we have conducted to (1) evaluate the accuracy of our cost
models in modeling information overload and (2) evaluate our
cost-based categorization algorithm and compare it with
categorization techniques that do not consider such cost models.
Our experiments consist of a real-life user study as well as a
novel, large-scale, simulated, cross-validated user-study. The
major findings of our study can be summarized as follows:

Figure 6: Multilevel Categorization Algorithm

• Accurate Cost Model: There is a strong positive correlation
between the estimated average exploration cost and actual
exploration cost for various users. This indicates that our
workload-based cost models can accurately model
information overload in real life.

• Better Categorization Algorithm: Our cost-based
categorization algorithm produces significantly better
category trees compared to techniques that do not consider
such analytical models.

 Thus, our experimental results validate the thesis of this paper
that intelligent automatic categorization can reduce the problem
of information overload significantly. In the following two
subsections, we describe the large-scale, simulated user study and
the real-life user study respectively. Both studies were conducted
in the context of the home searching application using a real-life
home listing database obtained from MSN House&Home. M
(max tuples per category) was set to 20 for both studies. All
experiments reported in this section were conducted on a
Compaq Evo W8000 machine with 1.7GHz CPU and 768MB
RAM, running Windows XP.

6.1 Experimental Methodology
Dataset: For both studies, our dataset comprises of a single table
called ListProperty which contains information about real homes
that are available for sale in the whole of United States. The table
ListProperty contains 1.7 million rows (each row is a home) and,
in addition to other attributes, has the following non-null
attributes: location (neighborhood, city, state, zipcode), price,
bedroomcount, bathcount, year-built, property-type (whether it is
a single family home or condo etc.) and square-footage.
 Workload & Preprocessing: Our workload comprises of
176,262 SQL query strings representing searches conducted by
real home buyers on the MSN House&Home web site (tracked
over several months). These query strings are selection queries on

the ListProperty table with selection conditions on one or more of
the attributes listed above. During the preprocessing phase, we
scan the workload and build the following tables: the
AttributeUsageCounts table (as shown in Figure 4(a)), one
OccurrenceCounts table (as shown in Figure 4(b)) for each
potential categorizing attribute that is categorical (viz,
neighborhood, property-type) and one SplitPoints table (as
shown in Figure 5(b)) for each potential categorizing attribute
that is numeric (viz, price, bedroomcount, square-footage, year-
built). For the numeric attributes, viz. price, square-footage and
year-built, the separation interval between the splitpoints was
chosen to be 5000, 100 and 5 respectively.
Comparison: In both studies, we compare our cost-based
categorization algorithm to two techniques, namely, ‘No Cost’
and ‘Attr-cost’. The ‘No cost’ technique uses the same level-by-
level categorization algorithm shown in Figure 6 but selects the
categorizing attribute at each level arbitrarily (without
replacement) from a predefined set of potential categorizing
attributes (the set comprises of neighborhood, property-type,
bedroomcount, price, year-built and square-footage). The
partitioning based on a categorical attribute simply produces
single valued categories in arbitrary order while that based on a
numeric attribute partitions the range into equal width buckets of
width 5 times the width of the separation interval (i.e., for price,
the range (vmin,vmax] is split at every multiple of 25000; for
square footage, at every multiple of 500, etc.). Subsequently, all
the empty categories are removed. The ‘Attr-cost’ technique
selects the attribute with the lowest cost as the categorizing
attribute at each level but considers only those partitionings
considered by the ‘No cost’ technique, i.e., arbitrarily ordered,
single-valued categories for a categorical attribute and equiwidth
buckets for a numeric attribute.

6.2 Large-scale, simulated user-study
Due to the difficulty of conducting a large-scale real-life user
study, we develop a novel way to simulate a large scale user study.
We pick a subset of 100 queries from the workload and imagine
them as user explorations, i.e., each workload query W in the
subset represents a user who drills down into those categories of
the category tree T that satisfy the selection conditions in W and
ignores the rest. We refer to a workload query W as a synthetic
exploration. Since the category tree T must subsume the synthetic
exploration W on T, we obtain the user query Qw (for which T is
generated) corresponding to W by broadening W. In this study, we
broaden W by expanding the set of neighborhoods in W to all
neighborhoods in the region (e.g., examples of regions are
Seattle/Bellevue, NYC – Manhattan, Bronx etc.) and removing all
other selection conditions in W; we have tried other broadening
strategies and have obtained similar results. For the chosen subset
of 100 synthetic explorations, we remove those queries from the
workload and build the count tables based on the remaining
workload. Subsequently, for each user query Qw (obtained by
broadening W) and for each technique (viz., Cost-based, Attr-cost
and No cost), we generate the category tree T based on those count
tables, compute the estimated (average) cost CostAll(T) of
exploration and compute the actual cost CostAll(W,T) of
exploration (i.e., actual number of items examined by user during
the synthetic exploration W using T assuming that she drills down
into all categories of T overlapping with W and ignores the rest).
For cross validation purposes, we repeat the above procedure for 8
mutually disjoint subsets of 100 synthetic explorations each, each
time building the count tables on the remaining workload and

Algorithm CategorizeResults(R)
begin
Create a root (“ALL”) node (level = 0) and add to T
l = 1; // set current level to 1
while there exists at least one category at level l-1 with |tset(C)|>M
 S ← {C | C is a category at level (l-1) and |tset(C)|>M}
 for each attribute A retained and not used so far
 if A is a categorical attribute
 SCL←list of single value categories in desc order of occ(vi)
 for each category C in S
 Tree(C,A)←Tree with C as root and each non-empty cat
 C’∈ SCL in same order as children of C
 else // A is a numeric attribute
 SPL←list of potential splitpoints sorted by goodness score
 for each category C in S
 Select (m-1) top necessary splitpoints from SPL
 Tree(C,A)←Tree with C as root with corr. buckets in
 ascending order of values as children of C
 COSTA ← ∑C∈ S P(C)*CostAll(Tree(C,A))
 Select α = argminA COSTA as categorizing attribute for level l
 for each category C in S
 Add partitioning Tree(C,α)obtained using attribute α to T
 l = l + 1; //finished creating nodes at this level, go to next level
end

generating the categorizations based on those tables. Figure 7 plots
the estimated cost against the actual cost for the 800 explorations.
The plot along with the trend line (best linear fit with intercept 0 is
y = 1.1002x) shows that the actual cost incurred by (simulated)
users has strong positive correlation with the estimated average
cost. To further confirm the strength of the positive correlation
between the estimated and actual costs, we compute the Pearson
Correlation Coefficient for each subset separately as well as
together in Table 1.8 The overall correlation (0.9) indicates almost
perfect linear relationship while the subset correlations show either
weak (between 0.2 and 0.6) or strong (between 0.6 and 1.0)
positive correlation. This shows that our cost models accurately
model information overload faced by users in real-life. Figure 8
compares the proposed technique with the Attr-cost and No cost
techniques based on AVGW∈ subset CostAll(W,T)/|Result(Qw)|, i.e.,
the fractional cost averaged over the queries in a subset. We
consider the fractional cost CostAll(W,T)/|Result(Qw)| instead of the
actual cost CostAll(W,T) to be able to average it across different
queries (with different result set sizes) meaningfully. For each
subset, the cost-based technique is significantly better (factor of 3-
8) compared to the other techniques. Not only did the other
techniques produce larger trees, the explorations drilled into more
categories due to poor choice of categorizing attributes as well as
poor choice of partitions resulting in higher cost. Even though
these synthetic explorations touched more tuples than real-life
explorations (since the synthetic explorations are actually queries
in real-life), users needed to examine less than 10% of the result
set when they used cost-based categorization compared to
scanning the whole result set (which is the cost if no categorization
is used). We expect this percentage to be much lower is real life as
confirmed by our real-life user study described in Section 5.2.
Surprisingly, Attr-cost is often worse than No cost because the
former often produced bigger category trees indicating that cost-
based attribute selection is beneficial only when used in
conjunction with a cost-based intra-level partitioning.

8 The Pearson Coefficient measures the strength of a linear
relationship between two variables. The definition as well as a
discussion on how to interpret the values can be found at
http://www.cmh.edu/stats/definitions/correlation.htm.

6.3 Real-life user-study
We conducted a real-life user study with 11 subjects (employees
and interns at our organization). We designed 4 search tasks
based on familiarity of the subjects with the regions, namely find
interesting homes in:
1. Any neighborhood in Seattle/Bellevue, Price < 1 Million
2. Any neighborhood in Bay Area – Penin/SanJose, Price
between 300K and 500K
3. 15 selected neighborhoods in NYC – Manhattan, Bronx, Price
< 1 Million
4. Any neighborhood in Seattle/Bellevue, Price between 200K
and 400K, BedroomCount between 3 and 4.
Our tasks are representative of the typical home searches on the
MSN House&Home web site. We evaluated the 3 techniques for
each task (which were named 1, 2 and 3 in order to withhold their
identities from the subjects); so 12 task-technique combinations
in total. We assigned the task-technique combinations to the
subjects such that (1) no subject performs any task more than
once (2) the techniques are varied across the tasks performed by a
subject (so that she can comment on the effectiveness of the
techniques) and (3) each task-technique combination is
performed by at least 2 (typically more) subjects. For the user
study, we built a web-based interface that allows searching the
database using a specified categorization technique and renders

0.67average

0.99U11

0.68U10

-0.08U9

0.30U8

1.00U7

0.60U6

0.75U5

0.66U4

0.72U3

0.97U2

0.73U1

CorrelationUser

0.67average

0.99U11

0.68U10

-0.08U9

0.30U8

1.00U7

0.60U6

0.75U5

0.66U4

0.72U3

0.97U2

0.73U1

CorrelationUser

4

3

2

1

Task
#

71478.01937

5744.62247

259710.5481

1794917.1279

No
Categorization

Cost-based

4

3

2

1

Task
#

71478.01937

5744.62247

259710.5481

1794917.1279

No
Categorization

Cost-based

Table 2: Correlation
between actual and
estimated cost

Table 2: Correlation
between actual and
estimated cost

Table 3: Comparison
of Cost-based
categorization to "No
Categorization"

y = 1.1002x

0

200

400

600

800
1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000

Actual Cost

E
st

im
a

te
d

 C
o

st

0.90All

0.768

0.197

0.166

0.165

0.484

0.323

0.982

0.391

CorrelationSubset

0.90All

0.768

0.197

0.166

0.165

0.484

0.323

0.982

0.391

CorrelationSubset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
ub

se
t

1

S
ub

se
t

2

S
ub

se
t

3

S
ub

se
t

4

S
ub

se
t

5

S
ub

se
t

6

S
ub

se
t

7

S
ub

se
t

8

F
ra

ct
io

n
of

 it
em

s
ex

am
in

ed

Cost-based Attr-cost No cost

Figure 7: Correlation between actual
cost and estimated cost
Figure 7: Correlation between actual
cost and estimated cost

Table 1: Pearson’s Correlation
between estimated cost and
actual cost

Table 1: Pearson’s Correlation
between estimated cost and
actual cost

Figure 8: Cost of various techniques

the category tree using a treeview control, all via the web-
browser. The treeview allows the user to click on a category to
view all items in the category (option SHOWTUPLES) or drill-
down/roll-up into categories using expand/collapse operations
(option SHOWCAT). We asked the subjects to explore the results
using the treeview (exploring, using either SHOWTUPLES or
SHOWCAT, only those categories they are interested in and
ignoring the rest) till they find every relevant tuple. We also
asked the subjects to click on the relevant tuples. To compute the
measurements reported in this section, we record the following
information for each exploration: the subject, the task number,
the categorization technique used, the tree generated, the
click/expand/collapse operations on the treeview nodes and the
clicks on the data tuples along with the timing information. We
gave a short demonstration of the system to each subject before
the experiment to familiarize them to the system.
Table 2 shows the Pearson’s correlation between the estimated
average cost CostAll(T) and the actual cost (actual number of
items examined by the user during the exploration till she found
all relevant tuples). On average, there is a strong positive
correlation (0.67) between the two costs; in 9 out of the 11 cases,
the correlation was strongly positive (between 0.6 and 1.0). This
confirms that our cost models accurately model information
overload in real life. Figure 9 compares the cost (number of items
examined till all relevant tuples found) of the various techniques
for each task, averaged across all user explorations for that task-
technique combination. For each task, the cost-based technique
consistently outperforms the other techniques. We have no results
for Task 1-Technique 2 because the tree was very large for this
task-technique combination and subjects had problems viewing it
on the web browser. The above cost, however, is not the fairest
metric for comparison. Unlike in the simulated user study,
subjects actually found different number of relevant tuples for the
same task when they used different techniques. For a particular
categorization technique, if users explored more categories

because the categorizations produced by the technique were
useful and were helping them to find more relevant tuples, the
above metric would unfairly penalize that technique. Figure 10
shows that subjects typically found many more relevant tuples (3-
5 times) using the cost-based categorization compared to the no
cost technique. This indicates that a good categorization
technique not only reduces the effort to find the relevant tuples
but also helps users to find more relevant tuples. Figure 11 shows
a better comparison of the various techniques based on the

normalized cost (
found uplesrelevant t #

found uplesrelevant t all tillexamined items #),

averaged across all user explorations for that task-technique
combination. The cost-based technique consistently outperforms
the no cost technique by one to two orders of magnitude. Using
the cost-based technique, subjects typically needed to examine
about 5-10 items to find each relevant tuple; that is 3 orders of
magnitude less compared to size of the result set (which is the
cost if no categorization is used) as shown in Table 3. Figure 12
shows the average cost of the various techniques in the scenario
when the user is interested in just one relevant tuple. As in the
‘all’ case, subjects examined significantly fewer items to find the
first relevant tuple using the cost-based technique compared to
the other ones. At the end of the study, we asked the subjects
which categorization technique worked the best for them among
all the tasks they tried. The result of that survey is reported in
Table 4. 8 out of 9 users that responded considered technique 1
(which was the cost-based technique) to be the best. Figure 13
shows the execution times of our hierarchical categorization
algorithm for various values of M (averaged over 100 queries
taken from the workload, average result set size about 2000).
Although our algorithm can be further optimized for speed, the
current algorithm has about 1 sec response time (including the
time to access the count tables in the database which is a

0

50

100

150

200

250

300

Task 1 Task 2 Task 3 Task 4

C
os

t

Cost-based Attr-cost No cost

Figure 12: Average cost (#items
examined by user till she finds first
relevant tuple) of various techniques

Table 4: Results of post-study
survey

2Did not
respond

0No cost

1Attr-cost

8Cost-based

#subjects that
called it best

Categorization
Technique

2Did not
respond

0No cost

1Attr-cost

8Cost-based

#subjects that
called it best

Categorization
Technique

Figure 13: Average execution time of
cost-based categorization algorithm

0

500

1000

1500

2000

2500

3000

3500

4000

Task 1 Task 2 Task 3 Task 4

C
os

t

Cost-based Attr-cost No cost

0

50

100

150

200

250

300

350

400

450

Task 1 Task 2 Task 3 Task 4

N
or

m
al

iz
ed

 C
os

t

Cost-based Attr-cost No cost

Figure 9: Average cost (#items
examined by user till she finds all
relevant tuples) of various techniques

Figure 10: Average number of
relevant tuples found by users for the
various techniques

Figure 11: Average normalized cost
(#items examined by user per relevant
tuple found) of various techniques

0

20

40

60

80

100

Task 1 Task 2 Task 3 Task 4N
um

be
r

of
 r

el
ev

an
t t

up
le

s
fo

un
d

Cost-based Attr-cost No cost

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M=10 M=20 M=50 M=100

E
xe

cu
tio

n
T

im
e

(S
ec

)

significant portion of the response time) for reasonably large
sized queries.

7. CONCLUSION
In interactive and exploratory retrieval, queries often return too
many answers – a phenomenon referred to as “information
overload”. In this paper, we proposed automatic categorization of
query results to address the above problem. Our solution is to
dynamically generate a labeled, hierarchical category structure –
the user can determine whether a category is relevant or not by
examining simply its label and explore only the relevant
categories, thereby reducing information overload. We developed
analytical models to estimate information overload faced by
users. Based on those models, we developed algorithms to
generate the tree that minimizes information overload. We
conducted extensive experiments to evaluate our cost models as
well as our categorization algorithms. Our experiments show that
our cost models accurately model information overload in real-
life as there is a strong positive correlation (90% Pearson
Correlation) between estimated and actual costs. Furthermore,
our cost-based categorization algorithm produces significant
better category trees compared to techniques that do not consider
such cost-models (one to two orders of magnitude better in terms
of information overload). Our user study shows that using our
category trees, users needed to examine only about 5-10 items per
relevant tuple found which is 3 orders of magnitude less
compared to the size of the result set (which is the cost if no
categorization is used).

8. ACKNOWLEDGEMENTS
We thank Venky Ganti and Raghav Kaushik for their valuable
comments on the paper.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri and G. Das. DBExplorer: A System
for Keyword Search over Relational Databases. In Proceedings
of ICDE Conference, 2002.
[2] S. Agrawal, S. Chaudhuri, G. Das and A. Gionis.
Automated Ranking of Database Query Results. In Proceedings
of First Biennial Conference on Innovative Data Systems
Research (CIDR), 2003.
[3] R. Baeza_yates and B. Ribiero-Neto, Modern Information
Retrieval, ACM Press, 1999.
[4] N. Bruno, L. Gravano and S. Chaudhuri, Top-k Selection
Queries over Relational Databases: Mapping Strategies and
Performance Evaluation. In ACM TODS, Vo, 27, No. 2, June
2002.
[5] N. Bruno, S. Chaudhuri and L. Gravano. STHoles: A
Multidimensional Workload-Aware Histogram. Proc. of
SIGMOD, 2001.
[6] S. Card, J. MacKinlay and B. Shneiderman. Readings in
Information Visualization: Using Vision to Think, Morgan
Kaufmann; 1st edition (1999).
[7] J. Chu-Carroll, J. Prager, Y. Ravin and C. Cesar, A Hybrid
Approach to Natural Language Web Search, In Proc. of
Conference on Empirical Methods in Natural Language
Processing, July 20
[8] S. Dar, G. Entin, S. Geva and E. Palmon, DTL’s DataSpot:
Database Exploration Using Plain Language, In Proceedings of
VLDB Conference, 1998.

[9] S. Dumais, J. Platt, D. Heckerman and M. Sahami, Inductive
learning algorithms and representations for text categorization, In
Proc. Of CIKM Conference, 1998.
[10] U. Fayyad and K. Irani. Multi-Interval Discretization of
Continuous-Valued Attributes for Classification Learning. Proc.
of IJCAI, 1993.
[11] V. Ganti, J. Gehrke and R. Ramakrishnan. CACTUS -
Clustering Categorical Data Using Summaries. KDD, 1999.
[12] J. Gehrke, V. Ganti, R. Ramakrishnan, W. Loh. BOAT-
Optimistic Decision Tree Construction. Proc. of SIGMOD, 1999.
[13] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.
Reichart, M. Venkatrao, F. Pellow and H. Pirahesh. Data Cube:
A Relational Aggregation Operator Generalizing Group-By,
Cross-Tab, and Sub-Totals. Journal of Data Mining and
Knowledge Discovery", Vol 1, No. 1, 1997.
 [14] V. Hristidis and Y. Papakonstantinou, DISCOVER:
Keyword Search in Relational Databases, In Proc. of VLDB
Conference, 2002
[15] V. Poosala, Y. Ioannidis, P. Haas, E. Shekita. Improved
Histograms for Selectivity Estimation of Range Predicates. Proc.
of SIGMOD, 1996.
 [16] F. Sebastiani, Machine learning in automated text
categorization, ACM Computing Surveys, Vol. 34, No. 1, 2002.
 [17] T. Zhang, R. Ramakrishnan and M. Livny. BIRCH: an
efficient data clustering method for very large databases. Proc.
of ACM SIGMOD Conference, 1996.

APPENDIX A
Let us consider 2 different orderings of the same set of n
subcategories of a non-leaf category C:
Ordering 1: C1, C2, …., Ci-1, CA, CB, Ci+1, …, Cn
Ordering 2: C1, C2, …., Ci-1, CB, CA, Ci+1, …, Cn

The two orderings are identical except that the ith and (i+1)th
categories are swapped: while CA is the ith subcategory and CB

the (i+1)th subcategory in ordering 1, CB is the ith subcategory
and CA be the (i+1)th subcategory in ordering 2. Based on
equation 2, CostOne for ordering 1 is: P(C1)*Cost(C1) + (1-

P(C1)*P(C2)*Cost(C2) + … +
)1(

1

−

=
∏
i

j

(1-P(Ci))*P(CA)*Cost(CA) +

)1(

1

−

=
∏
i

j

(1-P(Ci))*(1-P(CA))* P(CB)*Cost(CB) + …

We consider just the SHOWCAT cost since SHOWTUPLES cost
is not affected by the choice of partitioning.
CostOne for ordering 2 is: P(C1)*Cost(C1) + (1-

P(C1)*P(C2)*Cost(C2) + … +
)1(

1

−

=
∏
i

j

(1-P(Ci))*P(CB)*Cost(CB) +

)1(

1

−

=
∏
i

j

(1-P(Ci)) *(1-P(CB))* P(CA)*Cost(CA) + …

Ordering 1 is better than ordering 2 if the CostOne for ordering 1is
less than that for ordering 2. Since all terms except the ith and
(i+1)th terms are identical, the first ordering is better if

)1(

1

−

=
∏
i

j

(1-P(Ci))*P(CA)*Cost(CA) +
)1(

1

−

=
∏
i

j

(1-P(Ci))*(1-P(CA))*

P(CB)*Cost(CB) <
)1(

1

−

=
∏
i

j

(1-P(Ci))*P(CB)*Cost(CB) +
)1(

1

−

=
∏
i

j

(1-P(Ci))

(1-P(CB)) P(CA)*Cost(CA)
⇒ P(CA)*Cost(CA) + (1-P(CA))*P(CB)*Cost(CB)
 < P(CB)*Cost(CB) + (1-P(CB))* P(CA)*Cost(CA)
⇒ 1/P(CA) + Cost(CA) < 1/P(CB) + Cost(CB)
By induction, it follows that the ordering in increasing values of
1/P(Ci) + Cost(Ci) produces the optimal ordering.

