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ABSTRACT
Generations of computer programmers are taught to prefetch net-
work objects in computer science classes. In practice, prefetching
can be harmful to the user’s wallet when she is on a limited or pay-
per-byte cellular data plan. Many popular, professionally-written
smartphone apps today prefetch large amounts of network data that
the typical user may never use. We present Procrastinator, which
automatically decides when to fetch each network object that an
app requests. This decision is made based on whether the user is on
Wi-Fi or cellular, how many bytes are remaining on the user’s data
plan, and whether the object is needed at the present time. Procras-
tinator does not require app developer effort, nor app source code,
nor OS changes – it modifies the app binary to trap specific system
calls and inject custom code. Our system can achieve as little as
no savings to 4X reduction in total bytes transferred by an app, de-
pending on the user and the app. These savings for the data-poor
user come with a 300ms median latency penalty on LTE.

1. INTRODUCTION
“This app is too slow” is a phrase that app developers dread

when reading user reviews for their apps. Over the last 5 years,
smartphone users have forced app developers to optimize their apps
for performance. App developers now rely heavily on threading
and asynchronous programming patterns to keep their app’s UI re-
sponsive. They rely on prefetching network content at the launch
of an app to hide the network latency of cellular communication.

Recently, low-end system-on-chips from companies including
MediaTek and Qualcomm have resulted in significantly cheaper
smartphones that are flooding phone markets in the Eastern hemi-
sphere. In the US, we can now buy smartphones outright (without
a carrier contract) for $59-$99 with a dual-core 1 GHz processor
and 8GB storage [3]. This price point, without a requirement to be
locked into a large cellular data plan, will attract many users who
cannot or do not want to spend money on large cellular data plans.
The prefetching nature of apps will hurt these users.

Apps that prefetch network content are downloading content be-
fore the user needs it - for example to populate images that are
off screen. A typical example is shown in Figure 1. This popular
weather app downloads a large amount of data as soon as the app is
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Figure 1: Screenshots of a highly rated and popular weather
app. The left screen is visible immediately after app launch.
The middle screen is visible after a swipe. The right screen is
visible after another swipe.

launched, including many images. While some of the data is nec-
essary to display current weather on the “main” page of the app,
many prefetched images are displayed deeper in the app.

Those users that scroll or click through an app to visit that off-
screen content will experience a more responsive app. However,
for those users that do not visit that off-screen content, the penalty
is wasted network consumption. This waste can harm three sets of
users – (1) users that are always conscious about data consumption
because they are on a pay-per-byte plan; (2) users that start their
monthly cellular billing cycle with a large number of bytes (e.g.
2GB), but eventually run low and want the remaining bytes to last
them through the end of their cycle; (3) users that have large data
plans at home but are temporarily roaming internationally and are
paying additional per-byte charges.

This problem cannot be solved by producing two versions of an
app – data-light and data-heavy versions – for two different sets of
users. A data-rich user can sometimes become data-poor, or vice-
versa temporarily when the user connects to Wi-Fi (we assume that
Wi-Fi connectivity is free or significantly cheaper) or starts running
out of her monthly cellular allotment or is roaming. Alternatively,
producing a single adaptive app is difficult for the app developer
who has to manage multiple network transfers that affect different
parts of the user interface. Worse, the user can be scrolling around
in the app while some network transfers are ongoing and connec-
tivity changes between cellular and Wi-Fi.

Our goal is to automatically delay prefetching of network con-
tent when appropriate, to reduce data usage. The system we present
in this paper is (aptly) named Procrastinator. “Delaying” or “pro-
crastination” of network content is done based on current network
connectivity (cellular or Wi-Fi), the status of the user’s cellular data



plan, where in the app the user is (which parts of the UI are visible),
and potential for impact on the functionality of the app beyond the
UI (such as playing music or vibrating the phone).

In designing Procrastinator, we strive for “immediate deploya-
bility” – we do not require changes to the mobile OS, nor runtime.
We also attempt to achieve “zero effort” for the app developer – we
do not want her to write additional code, nor add code annotations.
She may need to simply run our system, and can optionally choose
to test her app under Procrastinator. We also strive for “zero func-
tionality impact” – beyond appearing as though the network is oc-
casionally slower, the user should not experience any other change
in the functionality of the app.

We have implemented Procrastinator for the Windows Phone 8
platform. Our system automatically rewrites app binaries without
requiring app source code. There are two key challenges in build-
ing Procrastinator. First, Procrastinator must automatically identify
asynchronous network calls that are candidates for procrastination.
This involves careful static analysis of the app code (§3.1). Next,
Procrastinator must rewrite the app code, so that at run time (§3.2),
it can decide (a) whether to procrastinate each candidate call, and
(b) when to execute a previously procrastinated call, if at all.

We make a number of technical contributions in this paper. Our
system automatically identifies for each network transfer which
part of the app UI it affects. For those parts of the UI that are
not visible, it delays network transfers until they become visible.
Our system works on arbitrary third party apps without source code
nor app developer effort. At run time, it uses dynamic information
about network connectivity and data plan information to automati-
cally switch from prefetching behavior to procrastination. Our lab
experiments identify the potential network usage savings in 6 pop-
ular, professionally-written Windows Phone apps, as well as ad-
ditional savings that are untapped because of our conservative ap-
proach in avoiding any change to the functionality of the app. Our
small study of 9 users with those 6 apps demonstrates savings in
total network usage by each app ranging from none to 4X. A larger
scale evaluation of 140 apps using automated UI behavior demon-
strates 2.5X and higher savings in 20-40 apps, or 20% and higher
savings in 60-75 apps. These savings come at no noticeable cost
to energy consumption, and additional median latency that is under
300ms.

2. PROBLEM
To understand how app developers prefetch network content, we

analyzed the binary code of a large number of apps in the Windows
Phone app store. While diverse, the programming patterns used
tend to fall into three categories. An example of each is shown in
Figure 2. Even though we analyzed .NET byte code, for conve-
nience, we show pseudo-code. Before describing these examples,
we note two relevant aspects of the Windows Phone programming
framework. First, the framework supports only asynchronous net-
work I/O. Second, images and text are displayed on the screen by
assigning them to specific UI elements such as a text box.

In Pattern 1, the app developer assigns an image to an image
element that is not yet visible on the screen. One app that uses this
pattern is a news reader app. Each news story has an associated
image. The news stories are displayed as an “infinitely scrolling”
list. When the app is launched, only the top three or four stories and
images are visible to the user. However, the app continues to fetch
images that are “below the fold” in anticipation of user scrolling
down. Note that the HTTP fetch call executes asynchronously and
the image is populated after the call successfully returns.

Programmers often explicitly handle these asynchronous fetches,
especially if additional processing is required before displaying the

Pattern 1
void page_load() {
/* image not visible on the current screen */
imageElement.Source = http.fetchImage(url1);

}

Pattern 2
void page_load() {
http.FetchData(url2, callback);

}
void callback(result) {
var cleanText = clean(result);
/* text not visible on the current screen */
textElement.Content = cleanText;

}

Pattern 3
void mainpage_load() {
http.FetchData(url3, callback);

}
void callback(result) {
hurricaneWarnings = parseXML(result);

}
/* called when user clicks to navigate to a new page */
void navigate_hurricaneWarningsPage() {
hurricaneUIElement.Content = hurricaneWarnings;

}

Figure 2: Common prefetching patterns in apps.

fetched data. This is illustrated in Pattern 2. The fetched text is
“cleaned up”and then displayed by assigning it to a textbox ele-
ment. The textbox element may not yet be visible on the screen,
but once the user scrolls down to it, it will have the text ready for
viewing.

Pattern 3 is similar to Pattern 2, but the assignment to the UI
element is delayed even further. This pattern is used in a weather
app. At launch, the app fetches data about hurricane warnings,
which it stores in a global variable. The data is used only if the user
navigates to a specific tab (or a “page”) within the app that displays
hurricane warnings.

These programming patterns are common because app develop-
ers typically lay out and pre-populate most or all of the UI of the
app at launch. Even though the user may be viewing a specific
portion of the UI (for example, what is visible on a 1024x768 reso-
lution screen), there may be additional content virtually off screen
below or to the right or left of the physical screen coordinates, or
on different pages. When the user scrolls down a list or slides hori-
zontally, the OS’s app runtime will change the viewable coordinates
relative to the virtual coordinates of the entire UI. This provides a
smooth experience to the user. Unfortunately, this further promotes
network prefetching behavior.

It is hard for the app developer to restructure their program to
dynamically choose between prefetching and procrastinating. One
option is for the app developer to detect at launch whether the user
is low on cellular data bytes, and then either layout the entire UI
or layout only what is visible. In the latter case, each time the user
attempts to scroll up or click on something, she needs to trap that
call and then re-layout the screen and present that to the user. This
has the disadvantage of significantly increasing code complexity,
and having to update two different code paths each time the app
developer decides to make even a small change to her UI design.

Alternatively, the app developer could lay out the entire UI, but
not tie individual network objects to the individual UI elements.
At app launch time, the app would check for network cost. If the
network is cheap, it can tie all network objects to all UI elements
and prefetch. If the network is expensive, the app developer will
have to decide which objects are necessary and only tie those. Each



Procrastinator 

Instrumenter

App

App
With Procrastinator

App Runtime

Procrastinator

Runtime

Network Requests

Figure 3: Procrastinator design overview.

time the user makes any move on the UI, such as scroll up a little
bit or slide horizontally, the app code will have to re-evaluate which
network objects it should fetch, if it has not fetched already. If
the network cost changes (such as the user switches to/from Wi-Fi
or roaming), then the app code will have to re-evaluate all these
decisions again. This adds a significant amount of complexity to
the app code.

A third option would be to build a new networking API into the
OS. The app developer could specify at the beginning which net-
work objects may be needed, and at different points in the code
provide hints to the OS as to whether those objects are definitely
needed or no longer needed. We argue that this also adds burden
on the app developer – she has to learn a new API and think about
every network call and split it into two distinct points in the app
code. In the 140 apps that we later evaluate, the number of ob-
jects they fetch is 23 on average, and 180 in the highest case. The
amount of work that app developers would have to do is not trivial.

We strive for a system that can automatically procrastinate net-
work calls with no app developer effort. We also avoid using app
source code. This gives the system the flexibility of being run either
by the app marketplace prior to publishing, or by the user, or by the
app developer. The trade-offs to explore include data savings ver-
sus user responsiveness, delaying network transfers versus energy
consumption of cellular radios, and the ability of the app developer
to finely control how Procrastinator affects her app.

3. SYSTEM DESIGN & IMPLEMENTATION
We have designed and implemented Procrastinator for Windows

Phone apps. As shown in Figure 3, our system consumes an app
binary, and outputs a new app binary. It has two main compo-
nents: the Procrastinator Instrumenter and the Procrastinator Run-
time. The Instrumenter takes a Windows Phone app binary and
produces a procrastinated version. It statically analyzes the app
to look for prefetching patterns and finds candidates for procrasti-
nation. It then rewrites the associated app code and makes those
network calls go through the Procrastinator Runtime.

When producing the new app binary, the Instrumenter will link
the Procrastinator Runtime library to the app. When the procrasti-
nated app is run, network calls pass through the Procrastinator Run-
time which dynamically checks the state of the network, tracks the
UI, and delays those network calls whose results are not immedi-
ately needed by the UI. These procrastinated network calls are then
fetched on demand if the user navigates to the relevant portions of
the UI.

Setting image source to URL:
<Image Source="http://contoso.com/logo.jpg">

Setting image source to variable that has URL:
<Image Source="{ string variable name }">

Rewriting XAML to detour image setters:
<Image Procrastinator.Source="{ string variable name }">

class Procrastinator {
DependencyProperty.RegisterAttached("Source", OnSourceChanged);
void OnSourceChanged(imgElement, url) {
CheckProcrastinate(imgElement, url);

}
}

Figure 4: Setting image elements using XAML.

3.1 Procrastinator Instrumenter
The mechanism that we use to instrument apps is similar to what

is used in AppInsight [19]. AppInsight was designed to find the
critical path in user transactions, to help in performance debugging
in real-world usage of mobile apps. Procrastinator is instead de-
signed to alter application logic to optimize network usage. Our
Instrumenter exploits the fact that apps are often compiled to an
intermediate language. While Android apps are compiled to Java
byte code, Windows Phone apps are compiled to MSIL [12]. Our
Instrumenter works on apps written using the Microsoft Silverlight
framework [13], compiled to MSIL byte code. The MSIL byte code
representation of an app preserves the structure of the program, in-
cluding types and methods.

A key challenge in Procrastinator is to automatically find the re-
lationship between network calls and the UI elements that are up-
dated using the data fetched by the network calls. The Instrumenter
statically analyzes the app to find such relationships. When such a
relationship is found, the Instrumenter rewrites the network call to
explicitly identify the UI elements associated with the network call
and makes it go to through the Procrastinator Runtime. This takes
care of programming patterns 1 and 2 as described in §2. Pattern 3
uses intermediate global variables to store the fetched data before
updating the UI elements. In this case, the Instrumenter automat-
ically identifies the relationship between network calls and global
variables being set. When this relationship is found, the Instru-
menter rewrites the network call to explicitly identify the global
variables associated with the network call and makes it go to through
the Procrastinator Runtime. We now describe in detail how the In-
strumenter rewrites each of these network patterns.

3.1.1 Pattern 1
In programming pattern 1, the app developer is directly connect-

ing the result of a HTTP fetch to an image element in the UI, even
though the network call itself is still asynchronous. In practice, this
can manifest itself in a variety of ways. The app developer may
provide the URL as a hard-coded string, or may use a variable that
contains the string. In Windows Phone apps written using the Sil-
verlight framework, this can alternatively be specified in XAML
code. An app developer can construct the entire UI of an app in C#
code, or using XAML which is a declarative markup language that
looks like XML. XAML allows the app developer to separate the
UI definition from the run-time logic by using code-behind files,
joined to the markup through partial class definitions. This enables
the development environment to provide a GUI editor for the app
developer to use in designing the UI of an app. Individual UI el-
ements can refer to corresponding variables in C# code. The top
of Figure 4 shows the XAML code where the source of an image



Pattern 1:
void page_load() {
/* image not visible on the current screen */
CheckProcrastinate(url1, imageElement);

}

Pattern 2:
void page_load() {
CheckProcrastinate(url2, callback, textElement);

}
void callback(result) {
var cleanText = clean(result);
/* text not visible on the current screen */
textElement.Content = cleanText;

}

Pattern 3:
void mainpage_load() {
/* 2 is a unique id that identifies the network request */
Procrastinate(url3, callback, 2);

}
void callback(result) {
hurricaneWarnings = parseXML(result);

}
/* called when user clicks to navigate to a new page */
void navigate_hurricaneWarningsPage() {
/* 2 identifies the network request to fetch */
FetchProcrastinated(2);
/* wait does not return until network fetch completes */
wait();
hurricaneUIElement.Content = hurricaneWarnings;

}

Figure 5: Rewriting code to add procrastination.

element is set to a URL. Another common XAML pattern is to bind
the source of the UI element to a variable in the C# program – this
is the middle example in Figure 4.
Static analysis: To find pattern 1 through static analysis, the
Instrumenter looks for any HTTP fetch API calls that are set to
a UI element’s source. The value passed into the call can be ei-
ther a static URL string, or a variable that contains the URL. There
are several different image element classes in the Windows Phone
SDK, as well as several third party image handlers. The Procrasti-
nator Instrumenter handles all of the common image elements that
we have encountered. The Instrumenter also statically analyzes
XAML code in the app binary package to find both types of image
source setting, and rewrites the XAML so that they can be detoured.
Rewriting: The Instrumenter replaces the network call in pattern
1 in Figure 2 with the CheckProcrastinate call as shown in
Figure 5. The rewritten call explicitly passes the UI element with
the url. In the case of XAML, we rewrite the XAML to provide a
callback whenever the url is bound to a UI element. We achieve this
using the Dependency Property feature of the Windows Presenta-
tion Foundation, which can be used to extend the functionality of a
common language runtime (CLR) property. Essentially, it gives our
code a callback into a user defined function when a property of an
element is changed. During the callback, the parameter to the func-
tion is the UI element being set and the property value that is bound
(URL in this case). We alter the XAML code to trap the image set-
ting and call CheckProcrastinate with the two parameters,
as shown in the bottom of Figure 4.

3.1.2 Pattern 2
In pattern 2, the developer passes a callback function to the net-

work call. The network call asynchronously fetches data and in-
vokes the callback with the data. The UI elements are then accessed
and updated in the callback, as shown in Figure 2. Instrumenting
this pattern is more challenging. First, statically identifying the UI

category num
no side effect 8,869
changes UI 1,053
changes input parameters 275
changes property of instance that the method is called on 2,228
has side effect 756

Table 1: The five categories that we classified each Windows
Phone SDK API, system call and popular third party library
calls into, and how many are in each category.

elements that are updated is not trivial. In the example shown, the
callback method itself updates the UI element. However, the call-
back method could call other methods (perhaps asynchronously!)
and the updated UI elements may lie deep in this call tree. Sec-
ond, the callback method or any code in its call graph may have
side effects besides updating the UI. For example, one of the meth-
ods may vibrate the phone or write to the file system that another
thread reads. If there are any side effects, then those network calls
are not candidates for Procrastinator, and we allow them to proceed
as normal.
Static analysis: This involves the following steps:

1. find the callback method associated with the call
2. generate a conservative call graph (one that includes all pos-

sible code paths) that is rooted in the callback method. This
call graph contains both synchronous and asynchronous calls.

3. analyze code in the conservative call graph to discover all UI
elements being updated

4. analyze code in the call graph to ensure it has no side effects.
If any code in the graph has any side effects, the Instrumenter
conservatively decides that the call cannot be procrastinated,
and the code is not modified.

Call graph: Generating a call graph in the presence of virtual
method calls is challenging. At compile time, the type of the in-
stance for which invocation takes place is not known. At run time,
when invoking a virtual method, the run-time type of the instance
determines the actual method to invoke. To overcome this prob-
lem in static analysis, we take a conservative approach. In the call
graph, we include all the potential calls in the class hierarchy if we
are not able to statically resolve the object type reference. Simi-
larly, when a function pointer is used, we include all the potential
calls that the function pointer could point to, since we may not de-
cisively know what the contents of that function pointer are during
static analysis. When an asynchronous call is made, we identify
the potential callback and recursively include the call graph of the
callback.
Side effects: Our analysis of all the Windows Phone market-
place apps shows that there are over 13,000 unique system calls,
SDK API calls, and third party library calls, that apps use in the
call graphs of network callbacks. These range from methods such
as Math.Sqrt to VibrateController.Start. Some methods such as
Math.Sqrt do not modify any input parameters nor modify the state
of the phone, such as the filesystem. Those calls are free of “side
effects”. Other calls may modify input parameters, which may be
global variables that other threads in the app may interact with. We
manually sorted these calls into the five categories in Table 1. We
conservatively assume that any call that changes an input parame-
ter or class instance that is globally accessible by other threads is
not side effect free. If a call graph for a network callback has any
system call or SDK call that has a side effect, the Instrumenter ig-
nores that network call for procrastination and leaves it untouched.
Each time the API list available to apps changes, which typically
happens when there is a major OS update, this categorization will
need to be updated.
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Figure 6: Procrastinator Runtime tracking UI elements.

Rewriting: For network callbacks that do not have a side effect,
the static analysis outputs a list of UI elements that are updated by
a network call. The network call is rewritten as shown in Figure 5.
We explicitly pass the UI elements with the network call informa-
tion into the Procrastinator Runtime, similar to pattern 1.

3.1.3 Pattern 3
In pattern 3, the result of the network request is stored in memory

(global variables) and used later. This may be done to prefetch
data for UI elements that have not yet been instantiated. Here, the
Instrumenter’s goal is to find the relationship between network calls
and global variables.
Static Analysis: We do two passes of static analysis for this
pattern. In the first pass we analyze network callbacks to identify
global variables used in store operations. In the second pass, we
analyze the rest of the app code to identify code where the same
global variables are accessed in load operations. The first pass anal-
ysis is similar to pattern 2. We generate a conservative call graph of
the callback and analyze the code in the entire call graph. Instead
of looking for UI elements, we look for store operations to global
variables. Note that we do not consider these store operations to
a global variable as a side effect here. We do look for other side
effects such as accessing system APIs that affects the phone state,
such as the filesystem. If there is a side effect other than updating
global variables, we do not consider it for procrastination. In the
second pass, we analyze the entire app to find load operations of
the same global variables that was identified in the first pass. We
instrument both the network call and these load points as follows.
Rewriting: We rewrite the network call to go through the Pro-
crastinator Runtime as shown in Figure 5. Along with the network
call information (url and callback), we pass in a unique identifier
for the set of global variables stored by the callback. Just before
where these global variable are loaded, we instrument the code to
inform the Procrastinator Runtime to fetch the network data be-
fore it is accessed. The network call to execute is identified by the
unique identifier.

3.2 Procrastinator Runtime
The Procrastinator Runtime behavior for patterns 1 and 2 is sum-

marized in Figure 6 and pattern 3 in Figure 7.
Patterns 1 and 2: CheckProcrastinate calls into the Pro-
crastinator Runtime with the network call info (URL and UI ele-
ments, and network callback method for pattern 2). The Runtime
checks if the user is low on data (1), described below in §3.2.1. If
not, the network call is not procrastinated and issued right away
(2). Otherwise, the runtime checks the visibility of the UI elements
being passed (3), described below in §3.2.2. If at least one UI ele-
ment is visible, the network call is not procrastinated and continues
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Id Network call info
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YesNo
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(network call info, id)

Make the network call
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6

Figure 7: Procrastinator Runtime tracking global variables.

to execute (4). If the relevant UI elements are not visible on the
current screen, then the network call is procrastinated (5).

Procrastinated network call info and associated UI elements are
added to the procrastinated table. This in-memory table maintains
requested network calls that have not been issued. Whenever the
UI changes (6), described below in §3.2.3, the runtime iterates over
this table and checks the visibility of each UI element in it. If any
UI element becomes visible, the associated network call is made
and the entry is removed from the table (7). The runtime also tracks
changes in network connectivity. If data becomes plentiful, all out-
standing network requests are immediately issued (8).
Pattern 3: CheckProcrastinate calls into the procrasti-
nator runtime with the network call and the unique identifier (1).
If the user is not low on data, the network call is made right away
(2). Otherwise, the call is procrastinated and added to the procras-
tinated table indexed by the unique id (3). The call is delayed until
one of the global variables is accessed by any thread in the app (4).
We intercept all accesses to the identified global variables and pass
the same unique identifier to inform the Procrastinator Runtime to
fetch the request before the global variable is first accessed. Since
all network calls in the Windows Phone SDK are asynchronous,
we have to instrument the thread to wait until the transaction is
complete before proceeding. When FetchProcrastinated is
called, the network call is removed from the table and executed.
Again, if data becomes plentiful, all outstanding network requests
are immediately issued (6).

3.2.1 Checking network connectivity and cost
Procrastinator makes use of a feature called Data Sense that we

previously helped build and deploy inside the Windows Phone 8
OS. As shown in Figure 8, it allows the user to enter their cel-
lular data plan information: type (such as monthly or pay-per-
byte), limit (such as 200 MB), and reset date (such as 3rd of ev-
ery month). The OS carefully tracks every byte sent and received
over the network and attributes it to the responsible app or OS fea-
ture. The user can see the per-app breakdown in the UI, and request
that the OS automatically restrict data consumption when nearing
the data cap. The OS tracks overall consumption against the data
limit and advertises changes in available data to OS services and
apps [2]. The app can query (or be alerted) when the network cost
type changes (“unrestricted” when on Wi-Fi or unlimited cellular
data, “fixed” when on periodic plans, or “variable” when on pay-
per-byte plans) and when available data changes (“Approaching-
DataLimit”, “OverDataLimit”, or “Roaming”).

Each time a procrastinated app requests a network transfer, the
Procrastinator Runtime checks the current network cost type and
properties to determine whether procrastination is warranted. If the
network cost type is “unrestricted”, or “fixed” and not any of “Ap-



Figure 8: Screenshots of Data Sense on Windows Phone 8.

proachingDataLimit”, “OverDataLimit”, and “Roaming”, then the
transfer will be allowed. Otherwise, only transfers that affect cur-
rently visible UI will go through. Any time network cost changes,
the Procrastinator Runtime gets an event up-call from the OS, and
will reevaluate all procrastinated network calls. On OSes without
Data Sense, we imagine a UI button can be exposed to the user to
manually turn procrastination behavior on or off for all apps.

3.2.2 Checking visibility of UI elements
To check if a UI element is visible to the user, the Procrastina-

tor Runtime extracts the current UI tree and traverses it to find the
location of this UI element in the tree. We use the size of the UI
element, position in the UI tree, the size of the UI page, the reso-
lution of the screen, and current view coordinates to check if it is
visible to the user. In most cases, the size or bounding box of the
UI element is defined in the app code (such as an image of 500x300
pixels). In these cases, straightforward math can determine if any
portion of the UI element is visible to the user. In relatively rare
cases, the size of the UI element is not defined by the app code and
is instead determined by the downloaded network object. In these
cases, if the center of the UI element is not visible, we assume that
the UI element is not visible.

3.2.3 Checking if the UI has changed
All procrastinated requests are reevaluated every time the UI

changes. To detect UI changes, the Procrastinator Runtime in-
cludes event handlers for UI manipulation events and UI update
events. Manipulation events are fired whenever the user interacts
with the phone (such as click or swipe). Update events are fired
whenever a UI element is updated programmatically. When one
of the events fires, the runtime iterates over each procrastinated
request and checks if any of the UI elements associated with the
request is visible. When the procrastinated table is empty, the Run-
time will de-register from these event notifications, and re-register
if any are later added.

3.3 Implementation
The Procrastinator Runtime is written in 839 lines of C# code,

which compiles down to a 46 KB library of MSIL code. This
library is included in all procrastinated apps. The Procrastinator
Instrumenter, which consumes an app binary and produces a pro-
crastinated app binary, is written in 861 lines of C# code, not in-
cluding the Microsoft Research Common Compiler Infrastructure
libraries [6] that it relies on to parse MSIL code and replace calls.

In practice, many apps and programming constructs rely on vir-
tual method invocations and function pointers at the MSIL level.
As a result, when dealing with programming patterns 2 and 3, our
Instrumenter tends to construct large call graphs for the network

app functionality action
App1 cooking recipes read top daily recipe
App2 movie times see details of top movie
App3 movie times see details of top movie
App4 news aggregator read top news story
App5 news paper read top news story
App6 weather reports see current weather and forecast

Table 2: The six Windows Phone apps we evaluate and the ac-
tion we perform in each run of the app in lab experiments. Each
app is one of the top apps in its category, and is authored by the
professional online company that owns both the app and the
primary web service that it relies on (e.g. Twitter by Twitter,
Inc.).

callbacks. The call graph is large because we conservatively in-
clude any possible method that might match the virtual method call
or function pointer. The problem with a large call graph is that
the chances of encountering a system call or SDK call that has a
side effect go up significantly. As a result, in practice, the Procras-
tinator Instrumenter will procrastinate almost all image transfers
because they tend to follow programming pattern 1. Network calls
that download non-image content tend to follow programming pat-
terns 2 and 3, and those rarely get procrastinated due to the risk
of unintentionally altering app behavior. We expect that images
account for the bulk of network bytes and will provide significant
savings in our evaluation.

4. EVALUATION METHODOLOGY
To evaluate Procrastinator, we use a three-pronged strategy. We

begin by evaluating 6 popular apps in the lab. By manually inspect-
ing every network transfer and the MSIL code for these 6 apps, we
can understand the behavior of these apps and of their procrasti-
nated versions. Next, we deploy these 6 apps to 9 users in a small
user trial to understand savings that Procrastinator offers in more
realistic usage. Finally, we evaluate Procrastinator using a much
larger set of 140 apps in Windows Phone emulators using UI au-
tomation.

4.1 Lab experiments
To test the effectiveness of Procrastinator, we pick 6 apps from

the top 50 in the Windows Phone marketplace, listed anonymously
in Table 2. We installed these 6 original apps, as well as their pro-
crastinated versions on a Nokia Lumia 920 smartphone. The pro-
crastinated apps have different app IDs and hence are completely
isolated from their original version – they do not share any state,
storage, or web caches. The phone had only Wi-Fi connectivity.
We configured the phone so that all HTTP and HTTPS traffic was
intercepted by a server with the Fiddler [1] proxy.

We ran both versions of each app, performed the action listed in
Table 2, and captured traces of network activity. We ensured that
there was no background activity from other apps and OS features.
Normally, Procrastinator would not procrastinate network calls if
the user is connected to Wi-Fi – we turned off this feature here.

We manually inspected the Fiddler traces and compared the con-
tent that was fetched to what was displayed on the screen. Apart
from verifying what appeared on the screen, we also carefully looked
through the app’s binary code to determine whether the object was
needed to render the page that the user saw. We then classified
each web object that was fetched by the original app into one of
three buckets. A web object is considered “necessary” if the con-
tents were used to show something to the user on the main screen
of the app or any of the subsequent screens when performing the
action listed in Table 2. In cases where we cannot deduce whether



t1: app asks for

network object
t2: procrastinator detects

network object needed

user additional delay = t3-t2

t3: network object

finished downloading

t1: app asks for

network object
t3: network object

finished downloading

t2: procrastinator detects

network object needed

00:00 - 00:00

user additional delay = t2-t1

Figure 9: Two examples (top and bottom) of how we calculate
the additional delay experienced by a user in a procrastinated
app.

the content of web objects is used in the screen, typically when we
cannot decipher the web object and the relevant MSIL code, we
conservatively assume them to be “necessary”. If a web object is
not necessary, then it is either “skipped” or “prefetched”. If Pro-
crastinator correctly deduces that a network object is not necessary
and does not download it, we count this as “skipped”. If Procras-
tinator allows an object to be downloaded that is not necessary,
we count this as “prefetched”. This happens when Procrastinator
cannot determine that not fetching a network object will not cause
an unintended side effect in the behavior of the app (such as play-
ing music or vibrating the phone or writing to the filesystem), and
hence conservatively allows the network object to be prefetched.

4.2 User trial
Our lab experiments show that Procrastinator can substantially

reduce data consumption. However, the savings experienced by
real users in the wild will depend on multiple factors including net-
work conditions, specific user interactions, and app caching. These
savings can come at the cost of additional delay experienced by the
user when a procrastinated network object has to be fetched, such
as in App6 in Figure 1, if the user swipes to see the radar image.
This additional delay depends on a variety of factors, including the
speed of that network, the size of the network object, and how re-
sponsive the web server is.

To evaluate these aspects, we deployed the procrastinated ver-
sions of these 6 apps to 9 colleagues for 2 months 1. We asked the
users to use any of these 6 apps that they like as normally as they
would if they discovered them in the app marketplace. Over this
2 month period, we collected a total of 553 sessions across these
users and apps where their phone had network connectivity.

All 9 users have unlimited data on their LTE cellular plans. Since
the phones are never in danger of exceeding their data limits, for
the purposes of our study, we turned off the Data Sense network
check so that Procrastinator would always attempt to procrastinate.
We also write a log for every user session. This log records when
the user launches the app, what network transfers the app requests,
which ones Procrastinator allows through, which ones it procrasti-
nates, when (if at all) a previously procrastinated request becomes
necessary to display to the user, and the sizes and end times of all
network transfers. To determine the size of any requests that are
procrastinated and never fetched by Procrastinator, we download
those objects on the side simply to check their size for our eval-
uation graphs. These logs are periodically uploaded in the back-
ground to the Microsoft Azure cloud.

1This user study was performed in accordance with Microsoft Re-
search privacy guidelines, record #1903.

parameter value
LTE promotion power 1210.7 mW
LTE promotion duration 260.1 ms
LTE continuous downlink transfer power 1950.1 mW
LTE tail power 1060.0 mW
LTE tail duration 11576.0 ms

Table 3: Parameters of LTE energy model from Tables 3 and 4
of the 4GTest paper in ACM MobiSys 2012. We assume down-
loads happen in LTE continuous reception mode and we use the
power values for median throughput of 12.74 Mbps.

Using these logs, we calculate how much network activity oc-
curred in each user session of each app. We calculate how many
bytes were fetched that the app requested that Procrastinator did
not interfere with, and label these as “fetched” bytes. We calcu-
late how many bytes Procrastinator did not fetch, and the app did
not display to the user – these are “skipped” bytes, and represent
our savings. Finally, there are bytes that Procrastinator did not ini-
tially fetch, but later detects that they are needed and subsequently
fetches, thereby incurring additional delay – these are “delayed”
bytes.

For “delayed” bytes, we want to evaluate how much longer the
user had to wait as a result of our decision to not initially fetch
the network object when the app requested it. Figure 9 shows two
example situations that can occur. At time t1, the app requests a
network object that Procrastinator decides not to fetch because the
relevant UI is not visible to the user. At a later time t2, Procras-
tinator detects that the relevant UI is shown to the user and starts
fetching it. This transfer completes at time t3 and the UI is up-
dated. In the top example, the download time for the object t3 − t2
is smaller than t2− t1 which is the time between the initial request
by the app and when Procrastinator starts the fetch. In this case,
the additional delay that the user experiences is the download time
of t3 − t2. In the bottom example, the download time of t3 − t2
is longer than t2 − t1. In this case, the additional delay that the
user experiences is t2 − t1, which is the extra delay introduced by
Procrastinator.

Finally, we want to evaluate how Procrastinator impacts the phone
battery consumption of apps. When Procrastinator does not fetch
unnecessary bytes from the network, it should reduce energy con-
sumption by cellular radios since that depends on how much the
radio is transferring and how long it is awake for. However, when
Procrastinator delays the transfer of network objects, it can poten-
tially increase energy consumption – the radio may have gone to
sleep due to network inactivity and may need to spend energy wak-
ing up, and now the radio may be up for longer than when network
objects were batched under prefetching behavior. Since it is diffi-
cult to accurately pinpoint the energy consumption of an LTE radio
at fine time granularity and what energy state it is in while an app is
running in the hands of a user, we use the empirical energy model
constructed by prior work [10]. Table 3 lists the energy model pa-
rameters that we use. For each user session of an app, we construct
two time series. One time series identifies when the app would
normally fetch objects from the network, and the other time series
identifies when the app would fetch objects with Procrastinator. By
factoring in transfer times, and LTE radio promotion time and tail
duration, we calculate the total energy expenditure of the LTE radio
in each user app session, assuming the radio is off when the app is
launched. We include the LTE tail power consumption both during
the session, if the radio would go to sleep, and at the end of the
session.



monkey functionality
M1 for up to 15 minutes, random swipes and clicks
M2 for up to 1 minute, random swipes and clicks
M3 launch app, wait for all transactions to finish, quit

Table 4: The 3 automated user profiles (or “monkeys”) that we
use to evaluate 140 apps in the Windows Phone emulator.

4.3 Automated monkeys
Finally, to understand the data savings and latency penalty of

Procrastinator on a broader set of apps, we use UI automation (or
“monkeys”). From all the apps in the Windows Phone marketplace
(across the entire 5-star rating spectrum) that make at least one net-
work call, we pick a random set of 140 apps. We then apply UI
automation to these apps to emulate user behavior. We run these
apps in the Windows Phone emulator running on a server. We dis-
able the Data Sense check by Procrastinator, so that it always as-
sumes the phone is on cellular and the user is running out of data
plan bytes. We continue to log actions by Procrastinator, and any
network objects that are skipped are fetched on the side so that we
can calculate their sizes for our graphs.

Table 4 lists the three monkeys that we use. M1 will launch an
app and aggressively browse it in a random pattern. It will click
on icons and dialog boxes and other UI elements and it will scroll
horizontally left and right, but it does not scroll up or down. It
will do this for up to 15 minutes, unless the app quits or crashes
prematurely. We consider this to represent users that will explore
most of an app’s UI, but not necessarily the entire UI. M2 is similar
to M1, except that it does not run for more than 1 minute. M3 is
the least aggressive – it will launch an app, wait for any pending
computations to finish, and then exit the app. M3 will explore the
least amount of the app’s UI, and represents user behavior where
the main page of the app displays the information relevant to the
user, such as in weather apps. In comparing monkey runs to our
user trials, M2 closely matches user behavior with respect to data
consumption, and saved and delayed bytes. Details of how our UI
automation system works are in [18].

We run each monkey on each app 15 times, though we may get
fewer useful logs if the app crashes occasionally on launch. Unlike
in our user study where we focused solely on top, professionally-
written apps, here we include apps from across the spectrum of
user ratings, some of which are buggy. Using logs from these runs,
we calculate how many bytes were fetched, skipped, and delayed.
The Windows Phone emulator that we run the monkeys on is con-
nected to Ethernet. Hence latency numbers for delayed objects do
not make sense, unlike in our user study where users were some-
times on LTE. Instead, we calculate what the latency would be to
download delayed objects if the network connection was LTE. We
use the median values for LTE throughput and latency from Figure
5 of prior work [10], specifically 12.74 Mbps downlink on LTE and
69.5 ms RTT. We calculate latency while factoring in whether the
radio was still connected and awake as a result of prior transfers or
asleep, TCP connection setup delay, HTTP request and responses,
TCP window ramp up, and whether an existing HTTP connection
was open as a result of a prior fetch from the same server. Unlike
in the user study, additional latency does not make as much sense
in this context, so we present the full latency to download delayed
objects.

In addition to the LTE model, we also consider a “cloudlet”
model. Cloudlets [20] provide an interesting opportunity here. If
there is a cloudlet running in the celltower, it can fetch objects
that Procrastinator skips on the phone. In case the user does go to
that part of the UI, the network object is now sitting at the nearby
cloudlet, instead of on a distant webserver. In this way, the la-
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Figure 10: Bytes consumed when running each of the 6 original
apps, and their procrastinated versions.

tency of fetching delayed objects is significantly reduced, while
still preserving spectrum usage over the air for objects that are not
needed at all. In this model, we assume that the phone has a low
latency connection to the cloudlet that is still limited on throughput
– 12.74 Mbps downlink and 3 ms RTT, while the cloudlet suffers
the remainder of the end-to-end RTT latency of 66.5 ms, but is not
limited by air spectrum and has 50 Mbps throughput to the Inter-
net. When Procrastinator decides to skip a network object, it sends
that URL to the cloudlet, which fetches it. If Procrastinator de-
tects that the object is needed, it fetches it from the cloudlet. We
calculate the download latency for the cloudlet, and the download
latency between the phone and the cloudlet. In the best case, the
initial download to the cloudlet will have finished before the phone
needs it, in which case the penalty is the latter download latency. In
the worst case, the phone has to wait for the cloudlet to download
it and then download it from the cloudlet. While cloudlets do not
exist today and hence this depends on a number of assumptions, we
nonetheless want to consider how Procrastinator would fare in this
future model.

5. EVALUATION RESULTS
We now present results from our evaluation. We begin with our

in-lab experiments on 6 popular apps, followed by our small user
deployment of the same set of apps with 9 users. Finally, we exam-
ine a broader set of 140 apps that we evaluate using UI automation.

5.1 Lab experiments
Our lab results are summarized in Figure 10. For all 6 apps, the

unnecessary content dominates the downloaded bytes when per-
forming the actions listed in Table 2.

In Table 5, we list the network objects that the original App6 re-
quests on app launch. It requests 31 web objects, for a total of 906
KB. Refer back to Figure 1. The left picture is the first screen pre-
sented to the user. The current weather and the forecast is shown,
along with some icons and occasionally ads on the top of the screen.
If the user swipes to the right, she is shown the middle picture,
which has a large radar map. If user swipes again to the right, a
list of four weather videos is presented with images for each of
the videos. If the user is only interested in the current weather
and forecast, and hence remains on the first screen and does not
visit the other screens, then the radar map and the video images
are all wasted downloads. Procrastinator correctly identifies those
as wasted because the screen coordinates for those images are off
screen, and hence does not download those 5 objects listed at the
bottom right of Table 5. This corresponds to 301 KB out of 906
KB that are skipped by Procrastinator, leading to roughly 33% of
savings for the user.

The app also requests some large XML files that describe photos
that people have taken of weather phenomenon across the US and



object type bytes
ad xml 6,226
weather js 6,096
alerts xml 54
weather detail js 6,562
forecast xml 3,466
weather js 880
weather js 640
weather detail js 5,622
sun rise/set js 43
storm info xml 572
weather detail js 458
ad text 6,700
ad js 223
ad oml 6,546
ad gif 8,493
ad gif 1,097
ad gif 43

object type bytes
video list xml 302,940
photo list js 107,463
photo status js 84
regional weather xml 26,778
photo list js 11,616
national forecast xml 4,614
national forecast xml 12,065
tropical forecast xml 2,837
weather news xml 96,810
radar map† png 280,933
video screenshot† jpeg 9,965
video screenshot† jpeg 11,192
video screenshot† jpeg 2,817
video screenshot† jpeg 3,681

Table 5: Breakdown of 31 objects fetched by a single run of
the unmodified App6. We manually classify the left 17 items as
“necessary” objects, and the right 14 items as “prefetched” ob-
jects. The objects marked with † are those that Procrastinator
did not fetch. The bytes exclude TCP/IP and HTTP headers.

detailed weather news for other parts of the US. These are shown
to the user if the user swipes three times over to the right and clicks
on a menu item. These objects add up to 552 KB and involve pro-
gramming patterns 2 and 3 from Figure 2 where static analysis of
the app’s callback methods could not guarantee that there is no side
effect from not downloading these network objects. As a result of
our conservative design to avoid any potential for change in app be-
havior (other than network delays), Procrastinator allows the app to
download these objects. These are marked as “prefetched” in Fig-
ure 10. Ultimately, this app needs only 52 KB of network objects
to show the contents of the first screen to the user.

Other apps are similar. App1 downloads 40 objects. Some are
text descriptions of recipes and some are photos of recipes. 10 of
these objects are necessary, 6 large objects are skipped by Procras-
tinator, and another 24 small objects bypass Procrastinator and are
still prefetched by the app. App3 downloads several web objects,
most of which are small XML blobs describing each movie, review
details, news and user comments. App4 downloads news articles
and news images, of which Procrastinator skips 303 KB, while the
app continues to prefetch 195 KB that it does not need, and 136
KB that it does need, leading to 48% of savings. App5 downloads
fewer objects, but does prefetch some large ones, all of which Pro-
crastinator skips.

5.2 User trial
The savings we demonstrate in the lab are highly dependent on

what the user does in the app. To understand this in a more realistic
setting, we now present results from our deployment of the same
apps with 9 users. Figure 11 shows the number of app launches
across all users for each app. Our users seem to check the weather
more frequently than they cook with a new recipe. We collected
data for 553 user sessions in total.

Figure 12 shows the number of bytes spent per user session. Note
that the total bytes requested by an app varies across runs, such as
when the radar map image for Seattle is of a different size than
the radar map image for San Francisco, or when content is cached
by the app. We see that in the case of App6, Procrastinator typi-
cally reduces the number of bytes by over 4X. In the other extreme,
for App2, Procrastinator almost never saves any bytes, perhaps be-
cause users scroll through all available movies before leaving the
app. In this situation, Procrastinator hurts because any objects that
it decides to not prefetch, it will later need to fetch when the user
visits that part of the UI, resulting in “delayed” bytes. We also

0

50

100

150

200

App1 App2 App3 App4 App5 App6

to
ta

l 
#

 o
f 

ru
n

s

all networks Wi-Fi LTE

Figure 11: Total number of user sessions per app.
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Figure 13: Median number of web objects fetched per session,
with 25th and 75th percentiles, across all user sessions.
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Figure 14: Median additional delay incurred per delayed web
object, with 25th and 75th percentiles, across those objects in-
correctly procrastinated in user trial, when user was on a cel-
lular connection.

note that for some apps, such as App3 (which shows the user more
photos of each movie), there is huge variance in bytes saved.

We contrast this with Figure 13, where for App6, a small number
of objects are skipped, but those objects are large and contribute a
lot to the savings we achieve. App3 has a lot of small images (stills
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from movies), and procrastinating many of those small objects add
up.

In some cases, the user would incur no delay in using a procras-
tinated app because she does not scroll to a part of the app where a
previously skipped image is shown. For other cases where the user
is shown a skipped image, we calculate the additional delay that
she incurs as a result of Procrastinator. This is the smaller value of
either the download time for that image, or the difference between
when the app originally requests the image and when Procrastina-
tor detects the image is visible. Figure 14 shows this additional
delay. We find this is typically under 1 second, and under 300ms in
the median across all app sessions. Recall that this is a penalty that
a user will experience only when she is on a cellular connection,
and running low on her data plan bytes, and visits app content that
is not on the first screen of the app. For users in this situation, we
believe this is a compelling trade-off.

While we cannot directly measure the energy consumed by the
LTE radio on the smartphones that our users used, we apply an
empirical model from prior work [10] using the actual timings of
network transfers from the user logs. In Figure 15 we show the
energy consumed by the app with normal behavior and under Pro-
crastinator. The energy consumption is largely similar. The energy
benefit of not transferring unnecessary bytes is balanced by the en-
ergy cost of waiting to transfer bytes that later become necessary.
We notice that App5 exhibits high variance, partly because users
spent variable amounts of time reading articles before clicking on
the next article, sometimes as long as 12 seconds which can trigger
the LTE radio to sleep.

5.3 Automated monkeys
To understand the performance of Procrastinator in a wider set of

apps, we use UI automation to run 140 apps multiple times in the
Windows Phone emulator. In Figure 16, we show the number of
bytes that were fetched, skipped and delayed when using the most
aggressive monkey, M1. In contrast, Figure 17 shows that for the
least aggressive M3. Clearly apps consume fewer bytes under M3
(note the different scales on the vertical axes). Even though M3
launches the app and quits soon after without interacting the app’s
UI, it is possible for there to be delayed network objects. Procras-
tinator may decide to not download an object, then the app code
automatically changes the UI screen despite not having any input
from the user, at which point Procrastinator detects the need for
previously requested network objects which it will then download.

Figure 18 shows CDFs of the fraction of bytes saved by the three
monkeys across the 140 apps. We see that with M3, Procrastina-
tor saves over 60% of bytes in 40 apps. With the most aggressive
monkey, it saves over 60% of bytes in 20 apps, and over 40% in 40
apps. There is a tail of over 50 apps where the savings are practi-
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Figure 16: Median MB skipped, delayed and fetched across 140
apps, when using monkey M1.
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Figure 17: Median MB skipped, delayed and fetched across 140
apps, when using monkey M3.
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Figure 18: CDF of % of median bytes saved when using Pro-
crastinator on 140 apps. Each line is an independent CDF of a
different monkey. Vertical axis is (bytes saved) / (bytes saved +
bytes fetched + bytes delayed).

cally nothing, but these apps consume relatively less network data.
The apps that represent points to the left of 90 on the horizontal axis
consume 1.1 MB on average, while the ones to the right consume
475 KB on average.

Figure 19 shows the median latency in downloading delayed ob-
jects under an LTE model, and Figure 20 shows that assuming a
cloudlet at the LTE celltower. Under M3, almost half of apps ex-
perience no delay because there is less opportunity for there to be
delayed objects in M3. There are some objects that take more than
500 ms to download – these are all large transfers. In some cases,
they are 1 MB files, which is almost a second at 12.74 Mbps, which
is sometimes exacerbated if the radio went to sleep due to inactiv-
ity or there was no open TCP connection that server. In the case of
LTE, we observe that all non-zero latencies start at about 100 ms.
This is because the LTE end-to-end RTT is 69.5 ms and if an HTTP
connection is already open to a server, it can take a little more than
a round-trip to get an entire small object. In contrast, Figure 20
does not show this artifact. In this hypothetical model of a cloudlet
at the celltower, the radio latency to the cloudlet is much lower,
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Figure 19: CDF of median download time for delayed objects in
140 apps under Procrastinator when using monkeys. Download
times are calculated using LTE parameters from prior work.
Each line is an independent CDF representing a different mon-
key. Vertical axis is chopped at 500ms for readability.
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Figure 20: CDF of median download time for delayed objects in
140 apps under Procrastinator when using monkeys. Download
times are calculated assuming a Cloudlet at the LTE celltower.
Each line is an independent CDF representing a different mon-
key. Vertical axis is chopped at 500ms for readability.

while the cloudlet continues to experience the bulk of the latency
to the Internet. In this way, the cloudlet can hide network delays.

5.4 Overheads
Due to the addition of the Procrastinator Runtime and the code

injection in the app’s binary, the size of the app package increases.
This can impact users in two ways. The bytes spent downloading
the app from the marketplace will increase. The bytes consumed by
local storage on the phone in storing the app binary will increase.
In Figure 21, we present the increase in size of the app package.
The compressed line shows the increase in size of the compressed
package, which is what the phone will download from the market-
place. The uncompressed line indicates how much storage will be
consumed on the phone. The median app size before Procrastinator
is 1.6 MB uncompressed and 813 KB compressed. The largest is
29 MB uncompressed and 25 MB compressed. All of the apps with
more than 5% increase in uncompressed size were under 1MB in
size uncompressed prior to Procrastinator. All of the apps above
10% are under 544 KB in size. While it is unfortunate that using
Procrastinator will increase the size of the app that is downloaded
by the user and hence consume additional cellular bytes, this minor
increase is easily amortized if the user runs the app frequently and
thereby saves cellular bytes then.

Another overhead that Procrastinator introduces is the memory
consumption in maintaining the two tables that track procrastinated
calls as shown in Figures 6 and 7. The number of rows in the tables
in any app is bounded by the number of prefetch network calls that
the app makes. Each row consists of the URL being procrastinated
and any associated callback method reference or UI element refer-
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Figure 21: Increase in size of app package as a result of Pro-
crastinator, for 140 apps. Highest point is almost 20%. Apps
are sorted on the horizontal by uncompressed increase percent-
age.

UI tree depth average delay
3 0.1 ms

13 0.2 ms

Table 6: Delay in checking whether a UI element is visible on
the phone’s screen. Delay reported is the average of 1000 runs
on a Nokia Lumia 920 smartphone. UI depth is the number of
levels in the UI tree that the UI element is at.

ence. Similar to Figure 13, we do not see an excessive number of
downloads in any run of an app – it is typically well below a hun-
dred. Hence, the memory consumption of these tables is minor in
practice.

The Procrastinator Runtime introduces very little delay during
program execution. The most common code execution is to check
the visibility of UI elements (§ 3.2.2), which may happen each time
an app requests a network object, and once per procrastinated net-
work object each time the UI changes. This code traverses the UI
tree and does simple math to determine the visibility of each parent
node of the UI element in the tree. In Table 6, we evaluate the over-
head of this check for two common UI tree depths. In each case, we
calculate the time spent in running this code path 1,000 times and
then divide that by 1,000. We find that running this code requires
0.1 – 0.2 ms. If an app has 100 UI elements that are procrastinated
(far more than we have observed in practice), this overhead will be
10 – 20 ms each time the UI changes.

6. DEPLOYMENT IMPLICATIONS
Here we summarize our thinking on a number of practical issues

that one would consider in a public deployment of Procrastinator.
Balancing speed and cost: Our target user for Procrastinator
is one who frequently switches between being data cost conscious
(when on pay-per-byte data plans or roaming internationally) and
data cost oblivious (when on Wi-Fi or at the start of a monthly
billing cycle). Procrastinator offers a compelling trade-off of oc-
casional delays in network transfers for data cost savings for these
users. There is a middle ground that our system could support.
Based on prior usage history, existing machine learning algorithms
could learn that a particular user often goes to certain portions of
an app’s UI. With that knowledge, Procrastinator could choose to
fetch additional content, thereby reducing the user experience de-
lay, at the risk of occasionally being wrong and consuming more
bytes than needed. In either case, users who prefer to manually
turn off Procrastinator can do so using the existing button in Fig-
ure 8.
Request prioritization: While our goal is to reduce data con-
sumption, Procrastinator’s techniques can be used to improve net-



work performance. Apps tend to intermingle urgent network re-
quests with non-urgent prefetches. Procrastinator automatically
identifies which network requests are prefetches. It could hold off
on those until the network becomes idle. In this way, prefetch trans-
fers will not compete with more urgent requests for precious avail-
able bandwidth.
Impact on server: Procrastinator affects only HTTP(S) GETs.
Other traffic, including UDP, ICMP, HTTP POST, and (non-HTTP)
TCP remain unaffected by Procrastinator. Semantically, HTTP GET
is a mechanism for retrieving content from a server. The same can-
not be said of arbitrary TCP or UDP traffic, and certainly not for
HTTP POST which is used to commit an action at a server (such as
purchase a movie ticket). Hence we do not procrastinate any such
traffic. One could design a client-server system where an HTTP
GET actually signals an action or commit on the server side. So
far, we have not encountered such unusual behavior in the apps we
have studied. If that were to happen, and if Procrastinator were to
procrastinate such a call, that would affect the broader semantics
of the application. It is possible that by not fetching some HTTP
objects, Procrastinator may impact analytics done on server-side
HTTP logs.
Who runs Procrastinator? We designed Procrastinator to not
require mobile OS changes, not require app developer effort, and
not require app source code. These design decisions give us signif-
icant flexibility in deploying Procrastinator. We can consider three
models:
• Developer tool: The app developer can run Procrastinator on

their app binary, test the new app binary, and submit that to
the app marketplace.
• Marketplace tool: The app marketplace could run Procrasti-

nator on incoming app binaries as part of the app publication
process. The marketplace may chose to do this selectively for
users, or countries where data costs are a significant concern
for the population.
• User tool: The data-conscious user could run Procrastinator

on app binaries that she has purchased from the marketplace.
We do not advocate any one model over another. Each group has
their own incentives. Some users want to save data costs. An OS
vendor may want their phones to be appealing to data conscious
users. An app developer may want to support data conscious users
without hurting performance demanding users.
Procrastinator versus “Prefetcher”: In our experience, most
apps prefetch network content, such as images and icons and XML
files. Thankfully, apps typically do not prefetch large video files,
and will wait for the user to click on a video. Procrastinator works
because apps prefetch. Hence our system adaptively procrastinates
those prefetches. If apps were to fetch network content solely on
demand, we would be faced with the opposite problem of automat-
ically prefetching that on-demand content for non-data-conscious
users. That reverse problem is harder than the one we tackle. In
that problem, the solution will need to hunt the app for URLs to
fetch ahead of the app requesting it. These URLs may not be read-
ily available, especially when the app constructs the URLs on the
fly (e.g. a weather URL with a zip code embedded in it).
Limited programmer effort: By design, we avoid requiring the
app developer to change her code. This ease comes at the penalty
of limiting our savings. As shown in Figure 10, our conservative
design is leaving additional savings on the table. This is because in
some programming patterns, it is difficult for static program anal-
ysis to ascertain that there is no side effect in a network callback
method. This can happen, for example, in dynamic dispatch where
the implementation of a polymorphic operation is chosen at run-
time not at compile-time. While Procrastinator’s static analysis

is not robust enough and hence is conservative, dynamic analysis
could be used in these cases. However, dynamic analysis would
add tremendous complexity to our system, and can impose a sig-
nificant runtime performance penalty on the user of the app. Alter-
natively, the app developer could give us 1 bit of information for
every network call – does the callback have a side effect? That one
boolean can help unlock additional data savings. It requires some
developer effort in carefully walking through the code affected by
every network transfer.

7. PRIOR WORK
Prefetching is a well-studied problem in many areas of computer

systems. Here, we focus on prior work in network prefetching in
mobile apps.

The most relevant prior work is Informed Mobile Prefetching [9].
IMP is a system where app developers use an API to specify a
method that is capable of fetching a network object, a call to con-
sume the network object, or a call to cancel that prefetch. By pro-
viding a hint that a network object may be needed, and then later
specifying either the immediate need for it or a cancellation, the
underlying system can optimize for data, power and performance
goals. Procrastinator and IMP represent two different points in the
design space. IMP is a system designed to optimize prefetching. On
the other hand, Procrastinator never prefetches on its own – it only
delays fetching of network objects. IMP takes energy consumption
into account when making prefetching decisions, while Procrasti-
nator does not. IMP requires deliberate rewriting of app by the
developer, and thus, the evaluation of IMP was limited to just two
apps. On the other hand, Procrastinator works via binary rewriting,
without any input from the developer. As a result, we are able to
evaluate Procrastinator on many more apps. IMP includes complex
mechanisms for self-learning and self-tuning, while the design of
Procrastinator is much simpler. However, learning from past his-
tory of procrastination may be beneficial for our system as well.
We believe that IMP and Procrastinator offer two design choices
that are on extreme ends of the developer effort spectrum. As a re-
sult, the system design and techniques that we use are completely
different.

This paper is an extended version of a short workshop paper [17].
In this paper, we address a number of deficiencies in that workshop
paper. We have made our system significantly more robust by han-
dling more prefetch situations and filling gaps in our system design.
This is evidenced by the additional detail in § 3, and our ability
to run Procrastinator on many more apps. We have added several
elements to our evaluation, including energy consumption, UI au-
tomated runs of 140 apps, impact on app code size, and runtime
delay.

Outside of network consumption, prior work has modified mo-
bile apps to improve performance and reduce battery consumption.
RetroSkeleton [7] is a toolbox to rewrite Android apps without us-
ing app source code. While they do not use it to improve network
efficiency, they do use it to change some network calls, such as
changing all HTTP calls to HTTPS.

Researchers have also looked at automatic static and dynamic
analysis of call graphs and data flows in mobile apps for other pur-
poses. TaintDroid [8] dynamically monitors the data flow of apps
to find privacy leaks. ADEL [21] finds energy leaks in mobile apps
by dynamically monitoring the data flow in the app. ADEL iden-
tifies network calls that are not useful and reports them as energy
leaks. In comparison, Procrastinator not only identifies these calls
but also automatically delays them to reduce data consumption.

Improving web caching in apps [15] and redundancy elimina-
tion of cellular traffic [14] are two additional techniques for re-



ducing data consumption. Our approach is complementary in na-
ture, in that Procrastinator can further reduce data consumption by
eliminating some network transfers. Much of Procrastinator’s sav-
ings are from not fetching unnecessary images, which are typically
already compressed in PNG or JPEG formats and would not see
much benefit from additional compression. The open-source Page-
Speed module [4] for webservers can speed up web browsing and
reduce data consumption by optimizing the layout of web pages. It
combines and “minifies” resource files, and resizes and re-encodes
images. PageSpeed works on web pages, but not on individual web
transfers that apps do. Furthermore, Procrastinator applies tech-
niques that PageSpeed does not.

Prior work has also looked at the related problem of cellular sig-
naling overhead and optimizing network traffic burstiness to reduce
such overhead and energy consumption. Huang [11] has studied
data transfers when the phone’s screen is turned off, and proposes
being more aggressive in optimizing traffic then. ARO [16] is a
system for optimizing the radio behavior of apps to mitigate the ill
effects of bursty network usage.

8. SUMMARY
As more cellular operators transition from unlimited data plans

to tiered plans, more users will find themselves needing to curb
their cellular data consumption. However, many smartphone apps
are designed to prefetch network content. We argue that asking an
app developer to modify her app is not a winning proposition be-
cause it asks for altruism from the app developer to think hard about
each network transfer and rewrite code around it. Conversely, au-
tomatically deciding whether to do a requested network transfer
is hard because it depends on understanding the intent of the app
developer. In Procrastinator, we attempt to automatically under-
stand this intent by tying each network transfer to the portion of
the UI that is affected. We run into trouble when a network call-
back method calls a series of other methods, where programming
patterns such as reflection can create type instances at run time. In
those situations, we cannot statically determine that there will be
no ill effect of not running that code. Even with dynamic analysis
we may not know without actually running that code. In those sit-
uations, we take the conservative approach of allowing the app to
proceed, thereby leaving out some data savings for the user.

Nonetheless, on professionally-written apps, Procrastinator has
achieved as much as 4X reduction in bytes transferred by the apps
for some users. In lab experiments with UI automation, Procrasti-
nator shows 2.5X and higher savings in 20-40 apps. If the user de-
cides to visit off-screen content that we do not prefetch, the penalty
is additional latency, which was under 300ms in the median on LTE
in our user study. This is only experienced when the user is on cel-
lular and running low on data bytes – otherwise, normal app be-
havior occurs. Our measured latency is tolerable, and can be seen
in our online video [5] where the smartphone was connected over
LTE.
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