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Abstract. Many large-scale online services use structured storage to persist 

metadata and sometimes data. The structured storage is typically provided by 

standard database servers such as Microsoft’s SQL Server. It is important to 

understand the workloads seen by these servers, both for provisioning server 

hardware as well as to exploit opportunities for energy savings and server 

consolidation. In this paper we analyze disk I/O traces from production servers in 

four internet services as well as servers running TPC benchmarks. We show using a 

range of load metrics that the services differ substantially from each other and from 

standard TPC benchmarks. Online services also show significant diurnal patterns in 

load that can be exploited for energy savings or consolidation. We argue that TPC 

benchmarks do not capture these important characteristics and argue for developing 

benchmarks that can be parameterized with workload features extracted from live 

production workload traces. 

Keywords: online services, TPC, benchmarks, storage traces, storage performance, 

data centers, capacity planning. 

1 Introduction  

Companies such as Microsoft host a variety of large-scale online services in mega-scale 

data centers. These services have unique workload attributes that need to be taken into 

account for optimal service scalability. Provisioning compute and storage resources to 

provide a seamless user experience is challenging, since customer traffic loads vary 

widely across time and geographies, and the servers hosting these applications have to be 

right-sized to provide performance both within the box and across the services cluster. 

These online services typically have a tiered architecture, with stateless higher tiers 

above structured and unstructured storage tiers. For the structured storage, Microsoft’s 

data centers use SQL Server since it provides a well-understood data model and a mature 
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server engine. All the tiers present different provisioning and partitioning challenges: in 

this paper we focus on analyzing the structured storage tier. In this tier the most important 

resource for provisioning is usually I/O, and hence the I/O load at the structured storage 

tier is the focus of this paper. 

We address the question: what are the I/O characteristics at the structured storage tier 

in production environments? We analyze I/O traces from live production servers in 

different online services, and compare them to each other and to standard TPC 

benchmarks. We compare a range of I/O metrics such as I/O rate, read/write ratio, and 

access locality. In addition we also examine the time variation in the online services 

workloads on a diurnal time scale. User-facing services often have strong diurnal patterns 

since users are not evenly distributed across time zones [1]. It is important to understand 

these patterns to improve performance, efficiency and responsiveness. Other opportunities 

include server consolidation, e.g., consolidating servers within a service or across services 

that have uncorrelated or even anti-correlated patterns. 

Based on our analyses, we observe that: 

1. When characterized using standard I/O metrics (e.g. IOPS/GB ratio, read/write 

ratios), online services workloads differ by orders of magnitude from TPC 

benchmarks even during phases of sustained peak activity. 

2. Online services workloads also differ from each other on many metrics, again by 

orders of magnitude. 

3. Some online services show distinct diurnal patterns in load level. 

These observations imply that standard TPC benchmarks are not well-suited to 

characterizing performance in these environments since they do not match the I/O 

characteristics of individual workloads; they do not capture the range and diversity of 

these workloads; and they do not model diurnal patterns of variation in load. Production 

server traces, on the other hand, accurately capture these workload-specific features. In 

previous research[2, 3, 4], we have also seen that a trace-based approach allows 

evaluation of system designs and performance metrics that benchmarks alone do not 

allow. Based on these experiences we advocate widespread use of tracing to drive server 

performance evaluation. We also argue for the development of parameterized benchmarks 

that combine the advantages of benchmarks with the realism of live traces. 

The rest of the paper is organized as follows. Section 2 presents an analysis of four 

online services workloads, and a comparison of these workloads with TPC benchmarks. 

Section 3 briefly summarizes our previous research using I/O traces in the form of three 

case studies, each of which highlights a different advantage of traces vis-à-vis 

benchmarks. Section 4 provides practical guidelines to follow in tracing live production 

servers, based on our experiences.  Section 5 discusses the challenges and limitations of 

traces, and directions for future research including hybrid approaches that could combine 

the advantages of traces and benchmarks. Section 6 completes the paper with some 

conclusions and recommendations. 



2   Online services workload analysis 

In this section we analyze and visualize storage workloads from four online services 

within Microsoft, comparing the production storage workloads against the storage 

workloads from three TPC benchmarks. We first provide some background and 

motivation for the core problem: that of right-sizing storage in online services. We then 

describe the online services that we analyze in the paper and the low-overhead tracing 

technology used to trace production servers. We then present the results of our analysis. 

2.1 Right-sizing storage in online services 

Online services scale by partitioning and replicating data over a large number of 

commodity servers. It is important to optimize both the server design and the number of 

servers, since capital acquisition and power costs can quickly add up across a large server 

base. Increasingly, the aim is also to consolidate many different services onto a single 

infrastructure to improve utilization. Sets of consolidated services must scale across large 

deployments measured in hundreds of thousands of servers.  Server design and right-

sizing strategies for such environments present a whole new set of challenges in 

optimizing performance per dollar and per watt. To implement a data-driven methodology 

for server design, we have to ensure that applications are duly characterized and that the 

implications for various platform subsystems are well understood. 

While CPU processing power continues to increase at a tremendous rate, disk 

bandwidth and latency have not kept pace. To bridge this gap, typical enterprise server 

solutions are designed with large storage arrays that account for a major portion of server 

capital acquisition costs and consume significant power, even when idle. Emerging 

technologies such as Solid State Devices (SSDs) can bridge the performance gap, but are 

still too expensive (per byte) for broad deployments at datacenter scale[4]. Hence, the first 

optimizations for server right-sizing need to focus on the storage subsystem, to ensure 

optimal overall performance for a given design. Additionally, customer datasets in online 

services environments are usually partitionable.  Therefore, it is possible to design each 

service tier using commodity single- or dual-CPU socket platforms and then load-balance 

the traffic across multiple servers in the service cluster. In such scenarios, the approach is 

to disaggregate the customer dataset into small subsets, and to determine the right amount 

of capacity and I/O for hosting each subset. Ideally, identical self-contained server 

building blocks are used (e.g., a cluster of 2U servers with up to perhaps 24 drives each). 

This methodology enables a simpler storage subsystem design for optimal $/GB and 

$/IOPS. This also highlights a key difference in the service deployment strategy in an 

online services environment versus a typical enterprise where the dataset may be hosted 

on a single large server using scale-up platform technologies.  



2.2 Workloads traced  

We chose four different web services for this analysis. Traces were captured from one 

representative database server from the structured storage tier of each service: 

1. IM-DB (Windows Live Messenger Database Server): Address Book Database 

machines store user profiles and instant messenger buddy lists.  They are essential to 

several online services related to social networking and interactions. 

2. MSN-DB (MSN Content Aggregation Database Server): This database hosts a 

content publishing system for the online portal front page and is updated by mainly 

editorial tools and feed management systems via web services. Most of the stored 

data is actually unstructured in nature, consisting of either raw content or links to 

content on other partner sites.  

3. EMAIL-DB (Windows Live Email Database Server): This database hosts mail 

message metadata which maps online users to file stores. Incoming messages goes 

through a lookup process to determine which file server is hosting the receiving 

user’s email message store. The message is then deposited in the appropriate message 

store, and other metadata corresponding to the user account is updated. 

4. BLOB-DB (Windows Live Blob Metadata Server): These metadata lookup servers 

hold user account mappings for various blob storage services such as online photos, 

videos, social networking updates, etc. Each incoming request is looked up in this 

database to determine which back-end file server is hosting the appropriate content, 

and the user request is routed to that server for either storage or lookup of the content.  

In addition we also ran and traced the TPC-C, TPC-E, and TPC-H benchmarks. In this 

paper neither the online services nor the benchmarks correspond to ―e-commerce‖ 

browsing/shopping applications; although e-commerce is certainly important it is only one 

of many possible applications. We are currently looking for block I/O traces from e-

commerce deployments and the corresponding benchmarks (TPC-W and TPC-App).  

 

Workload Trace start (PDT) Trace length RAID arrays Disks 

IM-DB 03 Oct 2008, 12:47 25 min 5 x RAID-10 34 

MSN-DB 10 Mar 2009, 17:21 24 hrs 10 x RAID-10 46 

EMAIL-DB 04 Apr 2008, 00:00 2 hrs 4 x RAID-10 34 

BLOB-DB 26 Nov 2008, 14:00 24 hrs 10 x RAID-10 46 

TPC-C 19 Oct 2007, 15:52 6 min 14 x RAID-0 392 

TPC-E 18 Oct 2007, 17:46 17 min 12 x RAID-0 336 

TPC-H 20 May 2009, 17: 31 1.5 hrs 4 x RAID-0 36 

Table 1. Workloads traced 

Table 1 summarizes the traces and the storage hardware on the traced servers.  All the 

servers are configured with multiple RAID arrays, with multiple partitions on each array. 

The data and log files are then balanced across these partitions. The traces include both  

data and log file I/Os: generally the data file I/Os dominate the load. Log  I/Os were 

11%—12%  of the total for BLOB-DB and MSN-DB, and less than 2% for the others. 



2.3 Block-level I/O tracing 

Windows operating systems have included a built-in tracing capability called Event 

Tracing for Windows (ETW) since Windows 2000. Each subsequent Windows release has 

increased the breadth and depth of system instrumentation, including instrumentation in 

the Windows kernel. ETW provides a high performance, low overhead, and highly 

scalable tracing framework. It uses efficient buffering and non-blocking logging 

mechanisms with per-CPU buffers written to stable storage by a separate thread.  ETW 

tracing is extensible and can also be extended to applications by application developers. 

Since Windows 2003, ETW tracing can be dynamically enabled or disabled without 

requiring a system reboot or an application restart. Typical ETW events are discrete time-

stamped trace points, but sampling and statistical data captures are also possible. Storage 

related instrumentation includes, but is not limited to: initiation and completion disk 

events for reads, writes, and flushes; and file events for creates, deletes, reads, writes, and 

attribute queries and updates.  

There are several tools that can use ETW events to capture and correlate information 

about system activity. Since Windows 2008, the performance monitor built into Windows 

(PerfMon.exe) can capture ETW events. Another powerful tool designed specifically for 

system analysis using ETW is the Windows Performance Tools kit (WPT), which is an 

extensible performance analysis toolset that provides high level control and decoding of 

ETW events. It provides a controller that can be used to enable and disable ETW event 

capture. It understands the relationship between different ETW events in the system and 

presents a comprehensive visual representation of captured events. This allows detailed 

analyses of a wide range of system activities. WPT provides powerful interactive 

summary tables and graphs with dynamic grouping, sorting, and aggregation capabilities. 

WPT can also dump a trace in a text format that other analysis tools can consume. 

The ETW traces referenced in this paper contain ―Disk I/O‖ ETW events from the 

Windows kernel. The traces were broken into intervals to reduce the size of individual 

traces as well as to make analysis and visualization easier. The interval size was 

determined heuristically based on the storage activity of the workload. A post-processing 

script library was used to extract the workload characteristics and metrics reported in this 

paper. The traces analyzed for this paper contain only events related to the disk subsystem 

and do not have any information that can be related to the end-user; i.e., the disk traces 

used for our analysis are by definition anonymized from an end-user standpoint. 

 

 

 

 

 



2.4 

Trace analysis results 

Given a block-level I/O trace, we summarize the trace by computing a number of standard 

metrics.  Table 2 shows the most important summary metrics for the different workloads. 

The main load metric is IOPS: I/Os per second issued by the workload.  IOPS is 

computed for each 1-second interval in the trace; we then show the mean over all the 

intervals, as well as the peak, defined as the 99
th

 percentile of load seen during the trace. 

In general we use the peak IOPS value to compare workloads, since servers are 

provisioned for this load. Further, unlike TPC benchmarks, online services have high 

peak-to-mean ratios and hence comparing them to benchmarks using mean IOPS would 

be misleading. 

R/W is the read/write ratio of the I/Os seen in the workload. Seq is the fraction of I/Os 

that were considered sequential, i.e., the logical blocks read or written were contiguous to 

the immediately previous I/O. Finally GB is the size of the data set accessed by the 

workload, which we estimate as the highest logical block number accessed expressed in 

units of GB. Capacity usage (GB) is important because, unlike benchmarks, provisioning 

for some online services can be capacity-bound rather than I/O-bound. Further, these 

services are scaled out and load-balanced over many servers, and different services have 
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Figure 1: Peak IOPS and capacity Figure 2: Scaled IOPS and MB/s 

Workload Mean IOPS Peak IOPS R/W Seq GB

IM-DB 3386 4038 6.19 0.02 101

EMAIL-DB 59 610 0.69 0.00 2608

BLOB-DB 299 1030 1.67 0.11 265

MSN-DB 1056 3830 1.91 0.11 399

TPC-C 49757 52800 1.80 0.02 873

TPC-E 112654 186568 8.34 0.02 321

TPC-H 2228 11801 29.94 0.35 260

Table 2: summary of workload metrics 



different provisioning (e.g. number of spindles) per server as well as different numbers of 

servers. Hence, we cannot directly compare the raw IOPS rate across these servers.  

Instead, we use capacity as scaling factor, i.e., we compare ―IOPS per GB of data‖ instead 

of ―IOPS per server‖. 

In addition to I/O rate we also measured the mean and peak transfer rate (measured in 

MB/s). However as we will see later transfer rate is in general highly correlated to I/O rate 

due to the fixed transfer sizes used by SQL Server. For simplicity we do not show the 

transfer rate in Table 2. 

From Table 2, we can already see that the online services workloads differ widely both 

among themselves and from the TPC benchmarks. We now show this visually by plotting 

the workloads as points in two dimensions, using two workload metrics at a time. Note 

that all the graphs use log-log scales to capture the wide variation across workloads. 

 Figure 1 shows the workloads along the axes of capacity and peak I/O rate. We see 

that TPC-C and TPC-E do have much higher I/O rates relative to capacity than the other 

workloads, and in general there are order-of-magnitude differences between workloads. 

However, the absolute value of I/O rate is affected by the provisioning of the specific 

server; as we saw in Table 1, the different servers are provisioned with different numbers 

of disks. Hence when a server is part of a scale-out configuration, it is more useful to look 

at a scaled metric of load, i.e., I/O rate relative to the amount of data stored on that server.  

Figure 2 shows the I/O rate and transfer rate metrics scaled by the data size, i.e. the 

capacity in GB. We see here that there is indeed a very wide variation between the online 

services workloads, and that they also differ substantially from TPC benchmarks. Thus for 

a server storing a given amount of data, for example, IM-DB sees an order of magnitude 

less I/O load than TPC-E. We also see that the ratio of transfer rate and I/O rate is similar 

for most of the workloads, with the exception of TPC-H. This ratio is just the most 

common transfer size used by SQL Server for its I/O request, i.e. 8 KB; for TPC-H large 

sequential scans also result in larger transfer sizes for some I/Os. 

Figure 3 shows the peak-to-mean ratio for I/O rate and transfer rate. We see that in 

general the TPC benchmarks and IM-DB have far lower variability than the other three. 

Interestingly BLOB-DB and MSN-DB have much higher variability in transfer rate than 

in I/O rate. 
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Figure 4 shows the metrics Seq (fraction of I/Os that are sequential) and R/W 

(read/write ratio). Here again we see a wide variation, with most workloads being read-

dominated except EMAIL-DB which is write-dominated. EMAIL-DB stores e-mail 

metadata and thus issues several write I/Os for each metadata update. We also see a wide 

variation in sequentiality: ranging from TPC-H (35% sequential) to EMAIL-DB. The 

latter is 0% sequential (shown as 0.1% sequential to accommodate the data point on a log 

scale). 

Finally, we are interested in diurnal patterns shown by our workloads, since these are 

important for server consolidation and energy savings. Clearly the notion of diurnal 

variation is not meaningful for TPC benchmarks, since the benchmarks do not specify any 

such variation. However, for two of our online services workloads --- BLOB-DB and 

MSN-DB --- we have 24-hour traces and hence can examine them for diurnal patterns. 

Figures 5 and 6 show load over time for BLOB-DB and MSN-DB. We see that BLOB-

DB shows a clear variation over a 24-hour period, indicating the concentration of users in 

different time zones. It also shows a second periodic behavior with a 1-hour period. For 

MSN-DB although there is substantial variation, i.e., burstiness, it is harder to identify any 

clear periodic behavior. 

2.5 Trace analysis summary 

In this section we compared online services workloads with TPC benchmarks across a 

range of I/O related metrics. We showed that they workloads vary widely among 

themselves --- by orders of magnitude in many cases --- and also differ from the TPC 

benchmarks. We also showed that some workloads have periodic variations in load, and 

these are not captured by today’s benchmarks. 
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3 Research case studies 

In the previous section we analyzed I/O traces from live productions servers supporting 

online services. These traces were key to understanding these workloads, which differ 

considerably from standard benchmark workloads. In addition, traces also allow us to 

evaluate new designs, features, and research systems with more realistic workloads. In 

this section we summarize briefly the results from three different research projects[2, 3, 4] 

at Microsoft Research Cambridge. In each case we highlight how production workload 

traces allowed us to evaluate metrics and test hypotheses where benchmark-based 

evaluation would not have sufficed. 

The research described in this section predates the traces described in Section 2, and 

was not specifically focused on online services. It was based on a previously collected set 

of traces from small and medium enterprise servers[2, 5]. The traces are ETW disk I/O 

traces as described in Section 2.3. 

3.1 Disk spin-down for energy savings 

In this study we examined the potential for saving energy in enterprise storage by 

powering down storage hardware during periods of idleness[2]. Previous work had 

claimed that there was little scope for power savings in enterprise storage since server I/O 

workloads had little idle time[6]. However, based on I/O traces from a range of 

small/medium enterprise servers, there is substantial idle time, mostly at night. This 

diurnal pattern reflects the user-driven load on the servers.  

During periods of low load, idle times are further lengthened by write off-loading[2]: 

temporarily logging writes from several spun-down storage volumes to a single spun-up 

volume. With write off-loading, spinning disks down during idle periods saves 45-60% of 

the disk power. However, there is a response time penalty for requests to a powered-down 

volume, which must be spun up to service read requests.   This happens rarely in the 

traces, but the penalty is large. 

Both the costs and benefits of write off-loading depend on the variation in I/O load 

over time, specifically the existence of large amounts of idle time. Standard benchmarks 

do not capture this property and would not tell us anything about potential energy savings 

for real workloads. For example, TPC-C is a saturation benchmark and hence by design 

has little idle time at the storage level[6] (TPC-C’s successor, TPC-E, has a similar, albeit 

lighter, steady-state I/O load). 

3.2 Burst absorption 

Write off-loading can also be used during periods of high load, i.e. bursts[3]. Here the aim 

is not energy savings but reducing the high I/O response times seen during such bursts. A 

volume under heavy load can temporarily off-load writes to lightly loaded volumes: this 



improves performance both for writes (since they are redirected) and for reads (since they 

see less contention from writes. When the volume’s load level subsides, the off-loaded 

data is reclaimed and subsequently deleted from the remote volumes.  If bursts are short 

and have sufficient idle time in between, only a small amount of capacity is used on the 

remote volumes, and only for a small amount of time. 

An evaluation of this technique using disk I/O traces from a large Exchange server with 

over 100 spindles, showed a 1.4 to 70 times reduction in response times at peak load. Note 

that the evaluation is only meaningful when both bursts in I/O load as well as the idle 

periods following them, are correctly captured. Further, the performance benefits depend 

on the read/write mix and the access locality of I/O during the burst. Thus the 

performance is strongly tied to workload-specific behavior, which is best captured by a 

trace.  

3.3 Evaluating solid-state disks (SSDs) 

We have also used disk I/O traces to drive a cost-benefit analysis of the potential uses of 

SSDs in enterprise storage[4]. The analysis is based on a tool that computes the cheapest 

storage configuration that will satisfy all the requirements for a given workload: capacity, 

random-access I/O, sequential I/O, and fault-tolerance. It considers disk-only 

configurations, SSD-only configurations, and hybrid configurations where SSDs are used 

as an intermediate tier. 

To adequately provision storage for a workload, we must satisfy several requirements: 

capacity, random-access I/O rate, and sequential  bandwidth. The best configuration is the 

one that satisfies all workload requirements at the lowest cost. SSDs score much higher 

than disks on some metrics (e.g. IOPS/$) but much lower on others (GB/$). Thus the 

provisioning decision depends on the demand for the different metrics, which we 

estimated from production workload traces. Thus while a TPC-C benchmark is always 

configured to be ―IOPS-bound‖, we found that most real workloads become capacity-

bound when using SSDs, due to the very high cost per GB of SSDs. Overall, we found 

that few workloads had a sufficiently high IOPS/GB ratio to warrant replacing disks by 

SSDs at current prices. 

In this research we also observed one disadvantage of evaluation based on disk I/O 

traces. Trace replay relies on an "open loop" assumption, i.e., an assumption that the rate 

of I/O requests would be the same no matter what storage was used. From an open-loop 

I/O model we cannot compute the effect of alternate storage configurations on higher-

level application performance metrics such as transaction rate. Benchmarks, on the other 

hand, can give these higher-level performance metrics, but do not realistically model the 

application. Thus we need a hybrid approach that combines the realism of traces with the 

"end-to-end" measurement given by benchmarks.  We will explore this idea further in 

Section 5. 



4 Tracing guidelines 

The value of tracing production servers is that they provide a very realistic picture of real 

user-driven workloads. However this also presents a challenge: the tracing must be done 

without impacting the efficient operation of the service. This section provides some 

recommended techniques and processes that can be used for collecting traces from 

production servers. 

The first step in tracing production servers is establishing communication with the 

people who can authorize trace collection, demonstrating the value of tracing to them, and 

convince them of low impact on the operations team. Also one needs to find a sponsor 

with sufficient influence to get past the inevitable initial negative reaction, and convince 

the legal group that the rewards outweigh the risks.  The primary legal concerns will be 

safeguarding company IP and anonymizing any personally identifiable information (PII). 

For ETW traces of storage activity, we have already convinced Microsoft Legal that 

traces can be sufficiently sanitized to remove PII, and thus have a very useful precedent 

for others to reference. Once collection has been authorized, the people gathering the 

actual traces must be provided with sufficient detail about the "How-To" and logistics of 

tracing (e.g., where to store traces, how to sanitize and transfer them). Having a clear set 

of guidelines and instructions as well having an automated process for tracing goes a long 

way to smooth this process. 

Once you have one or more precedents of successful tracing efforts, convincing the 

next set of participants is much easier.  However, it takes only one instance of a negative 

impact from tracing to make it extremely difficult to obtain future traces. Thus, it is wise 

to be very conservative during the initial phases of collecting traces – e.g., by collecting 

traces for shorter durations or at lower rates, by directly monitoring the performance 

impact of tracing, and by providing precise  guidelines to the operations team. Production 

environments often run ―stress‖ benchmarks for testing their deployments. Sample traces 

from the stress environment can help to estimate the worst case impact of tracing.  Also 

make sure to be sensitive and responsive to the concerns expressed by the operations staff.  

At least initially, tracing is an imposition on their work schedule, perhaps with no proven 

upside and a nontrivial potential for a job-threatening downside. 

When actually collecting traces there are several factors to consider: here we describe 

the most important ones and some guidelines to address each. 

Performance impact 

Typically, the runtime tracing overhead as well as logistics such as trace size and 

available space need to be considered. It is a recommended best practice to take a sample 

trace on any production server before deployment. It is also recommended to store the 

trace on a separate disk or network share, if available, so tracing activity does not impact 

the storage I/O traffic of the real workload. In cases where this is not possible, the tracing-

related I/Os can be filtered out during post processing.  



For the worst case scenario, factors to consider include the maximum peak workload, 

the possibility of system failures, and the ability to stop trace collection in case of a real or 

perceived emergency. For example, ETW tracing can be stopped either programmatically 

or from the command line at any time during the trace collection process.  

Operations Impact 

Providing automated scripts for capturing traces and setting up a process for transferring 

the traces from the production environment reduces the actual time an operations engineer 

has to spend collecting the traces. The operations engineers will also need to provide 

information about the system configuration, especially the storage subsystem hardware, 

which may not be available directly to the operating system (e.g., any hardware RAID 

configuration, storage cache configuration, and the number of physical spindles). It is 

useful to know if a backup, replication, or rebalancing operation is in progress during the 

trace capture, or if the workload has innate periodic or phased behavior that can be tagged 

during trace post-processing. Long enough traces should be captured since periodic 

activity can have a significant impact on the characteristics of the workload. 

Security and access 

The security of the production servers as well as the trace content must be considered. 

Typically kernel level trace collection tools need administrator privileges on servers, and 

they should come from a trusted source (e.g. via digital signatures).  The traces may 

contain personally identifiable information (PII) in the form of filenames, directory paths, 

or process names.  These same fields could also expose confidential application or 

hardware configuration detail. All information captured by the trace events should be 

disclosed beforehand and cleared by the appropriate parties. Post processing tools can 

sanitize and encrypt the traces or selected portions after they are captured.   

Most production servers are insulated from the other systems on the corporate network. 

They can be accessed only from dedicated systems such as boundary servers that have 

additional access restrictions. If any of the servers along this chain do not have enough 

space to store the traces, then transferring them becomes more difficult. In one case we 

encountered, a boundary server had no available permanent storage space at all. This was 

by design, for security. The transfer of traces had to be done serially from the temporary 

drive of the boundary server via an automated script to iteratively check available space 

and transfer files one at a time. If systems along the path are under the control of different 

administrators with different access rights, coordinating trace transfers can be challenging. 

Excessive tracing 

Sometimes trace providers can be too aggressive in collecting traces. We encountered one 

case where the operations team collected day-long traces from a large number of servers, 

exhausting the space on the trace storage server. This experience taught us to carefully 

select representative servers to avoid the storage and processing overhead of tracing 

servers with basically identical workloads. 



5 Challenges 

Although block I/O tracing is a very valuable tool for understanding workload 

performance as well as server provisioning, it is not a panacea. Here we discuss several 

challenges, limitations, and directions for future research. 

5.1 End-to-end tracing 

Trace replay at the block I/O level is generally performed open-loop. This ignores 

feedback effects, e.g., a faster storage system could have higher overall throughput and as 

a result receive a higher request rate.  Thus while I/O tracing can help to size the storage 

layer to avoid overload and give good response times, it cannot predict overall server 

throughput. Depending on the provisioning task, traces from other components, such as 

the main memory buffer cache, CPU scheduler, and network stack may also be required.  

Ideally, all the individual resource utilizations of each request (e.g., SQL statement) are 

captured, from the moment the request enters the system until it exits. Such end-to-end 

tracing is very useful for holistic system analysis. For example, we built a Resource 

Advisor prototype for SQL Server that, given an end-to-end trace, can answer ―what-if‖ 

questions about upgrading system resources[7].  E.g., "What would be the throughput of 

transaction type X if the amount of memory in the system were doubled?"  

In general, the idea of end-to-end tracing is that traces be collected simultaneously 

from multiple levels of the system. This allows maximum flexibility in characterizing the 

workload and its use of different system resources such as CPU, memory, network, and 

disk I/O. For example: 

1. Traces at the SQL statement level can be used to evaluate the overall throughput of 

a proposed configuration. 

2. Correlated traces of CPU, network, and disk usage can be used to find out which 

of the resources dominates throughput and latency, as well as evaluate ―what-if‖ 

questions about bottleneck shifts for entire workload or a part of the workload. 

3. SQL buffer cache traces can address ―what-if‖ questions about memory sizing. 

Our experience indicates that the overhead of collecting large amount of traces varies 

widely based on the number of events captured, the hardware configuration, the specific 

type of workload, and the workload intensity. The overhead can be reduced arbitrarily 

through sampling, i.e. selective enabling of events at runtime. 

Much, though not all, of the support for end-to-end tracing on a single machine already 

exists today. For example, both Windows and SQL Server can post thread context switch 

events to ETS to enable tracking of CPU usage and control flow of concurrent threads. 

True end-to-end tracing would also track requests as they move across different tiers and 

machines on the network. This could require modification of standard network protocols 

to enable matching requests and events across systems, or perhaps a new layer in the 

network driver stack to communicate end-to-end metadata for individual requests. 



 

5.2 Scaling and sampling 

A second limitation of trace-based evaluation is the difficulty of scaling trace replay up or 

down. This limitation is shared by most benchmarks. For example, in the evaluation of 

Everest (Section 3.2), our test bed was too small to accommodate the traces from all 

volumes collected. Hence, we had to "scale down" the tracing by making a decision as to 

which traces to incorporate (three of the volumes were chosen). Scaling up is similarly 

difficult. For example, if one collects traces from three volumes and has a testbed of 1000 

machines, one might use some mixture or permutation of the traces from the three 

volumes and duplicate it 997 times. It is unclear that such scaling reflects reality. 

Large-scale online services have a single application that is load-balanced across a 

large number of servers. Thus a good approach to scaling would be to apply statistical 

tests to capture similarities between traces from many servers. This would ensure that the 

traces remain representative. The challenge is to devise the appropriate tests for any given 

purpose, e.g., provisioning, simulation of new system design, etc. 

5.3 Workload model extraction 

Trace replay and simulation is more effective for capturing workload specifics than 

benchmarks. However, benchmarks are standardized, simple, and scalable (although 

typically only linearly along one dimension). To ideally represent a workload class, we 

would extract key features of workloads and use them to construct a parameterized 

workload model and hence a representative custom benchmark. The parameter values 

may be based actual trace characteristics, or on hypothetical workloads. 

A production workload typically contains a variety of asynchronous and synchronous 

activities occurring in parallel. Thus a key component of modeling this complex activity is 

identifying the sub-workloads. As an example, a workload may consist of periods of 

heavy as well as light activity. These may be further divided into regions of read-heavy 

versus write-heavy activity, which may be further divided into sequential and random 

activity. Time-varying characteristics include not only the well-known concept of 

burstiness (i.e., workload intensity variations at short time scales) but also periodicity at 

different time scales, e.g. diurnal patterns.  

Finer granularity leads to better simulation but also increases the complexity of the 

benchmark. It is essential to identify the point of diminishing returns, where the simulated 

benchmark is "close enough" to the real workload and provide the necessary level of 

accuracy. Tools can be written to automatically extract sub-workloads based on heuristics; 

to simulate these workloads through a I/O request generator; and, to compare and contrast 

various load metrics produced by the simulated workload against the original trace[8]. 



6 Conclusion 

We analyzed  I/O workload trace from the structured storage tier in four online services. 

Our analysis shows that real-world workloads have very different characteristics from 

TPC benchmarks in terms of basic metrics such as IOPS/GB and read/write ratios, as well 

as in time-varying characteristics such as peak-to-mean ratios and diurnal patterns. 

We believe there is a need for greater use of traces when designing benchmarks and 

also when designing systems for deployment. Benchmarks should derive burstiness 

metrics, request mixes, and think times from real traces. They should also mimic the 

periodic load variations found in real workloads. This calls for more flexible and tunable 

benchmarks.  In addition, it would be advantageous for the research community to have 

access not only to more realistic benchmarks, but also to the traces upon which such 

benchmarks are based. For example, the TPC could create and maintain a database trace 

repository similar to that maintained by the Storage Networking Industry Association 

(SNIA)[9]]. The traces used for the research described in Section 3 have been contributed 

to the SNIA repository. Hence, we call on the TPC to create such a repository and 

encourage enterprises to trace their productions systems and to make the traces (suitably 

anonymized and obfuscated) available for research purposes. 
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