Bias-Variance Tradeoffs in Program Analysis

Rahul Sharma

Stanford University
sharmar@cs.stanford.edu

Abstract

It is often the case that increasing the precision of a program anal-
ysis leads to worse results. It is our thesis that this phenomenon is
the result of fundamental limits on the ability to use precise abstract
domains as the basis for inferring strong invariants of programs. We
show that bias-variance tradeoffs, an idea from learning theory, can
be used to explain why more precise abstractions do not necessarily
lead to better results and also provides practical techniques for cop-
ing with such limitations. Learning theory captures precision using
a combinatorial quantity called the VC dimension. We compute the
VC dimension for different abstractions and report on its useful-
ness as a precision metric for program analyses. We evaluate cross
validation, a technique for addressing bias-variance tradeoffs, on
an industrial strength program verification tool called YOGI. The
tool produced using cross validation has significantly better run-
ning time, finds new defects, and has fewer time-outs than the cur-
rent production version. Finally, we make some recommendations
for tackling bias-variance tradeoffs in program analysis.

Categories and Subject Descriptors D.2.4 [Program Verifica-
tion]: Statistical methods; F.3.2 [Semantics of Programming Lan-
guages]: Program analysis; 1.2.6 [Learning]: Parameter learning

Keywords Program Analysis; Machine Learning; Verification

1. Introduction

In program analysis, it is well understood that imprecise abstrac-
tions can lead to inferior results. However, what is not so well un-
derstood is that precise abstractions can also produce inferior re-
sults, in some cases even worse than very imprecise abstractions.
We show that bias-variance tradeoffs, an idea from learning theory,
can be used to explain how the quality of analysis results changes
with precision. Learning theory quantifies precision using a combi-
natorial quantity called Vapnik-Chervonenkis dimension or VC di-
mension; we use VC dimension to analyze the behavior of a number
of commonly used program analysis abstractions. In addition, using
cross validation, a technique routinely applied in machine learning
to address bias-variance tradeoffs, we are able to improve the per-
formance of YOGI, an industrial strength program verification tool.

How can better precision adversely affect an analysis? Note that
we are not talking about cost or efficiency—the question only con-
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cerns the quality of the results. The class of static analysis sys-
tems to which our results apply have two distinguishing character-
istics. First, there is some domain of facts (e.g., an abstract do-
main) over which the analysis computes. Second, there is some
step in the analysis that takes such facts and attempts to generalize
them (e.g., to an invariant of the program). Many analysis frame-
works such as abstract interpretation [17], counter-example guided
abstraction refinement (CEGAR) [13], and various other inference
techniques [10, 28, 49] have this structure. For example, abstract
interpretation can use widening (Section 4.1) and CEGAR can use
interpolants (Section 4.2) as a generalization step. There are also
static analyses that do not have this structure and our results do
not apply to them (see Section 6). Using results on bias-variance
tradeoffs we show that increasing the precision of the underlying
domain, at some point, may lead to worse results from the general-
ization step.

Consider the program in Figure 1, which we analyze using
different program analyses with increasing precision. Each pro-
gram analysis is a basic abstract interpreter over a different ab-
stract domain. First, consider an interval analysis [16], which in-
fers upper and lower bounds for numeric variables. Using intervals
to analyze the program in Figure 1, we obtain the loop invariant
1 <7 < 5A 35 > 0[36]. This result is perhaps the best invari-
ant that one could expect with intervals. Intervals can only express
facts about single variables, and hence the invariant has no details
on any relationship between ¢ and j. The problem is lack of preci-
sion: the abstract domain is not precise enough to express certain
behaviors. We increase the precision to octagons [39], which can
infer bounds on the sum or difference of pairs of variables. We ob-
tain the following loop invariant [36]:

1<i<BAi—j<1Ai4+j>1Aj>0

This result is quite good, providing a useful relationship between ¢
and j and good bounds. Next, we use the even more precise domain
of polyhedra [19] which can express bounds on arbitrary linear
combinations of program variables. We obtain the weak invariant
1 < 5 [36]. This result is not only worse than octagons, it is even
worse than intervals. Increasing the precision of the analysis results
in a decrease in the quality of the results.

Let us examine this outcome in some detail. The abstract in-
terpreter generates some abstract states and then tries to generalize
via joins and widening [17]. However, because polyhedra are so
expressive, there are many incomparable polyhedra that perfectly
describe any finite set of abstract states. It is difficult for the gen-
eralization step to pick the best one for this particular program
from such a large candidate pool. For this example, we start with
i = 1 A j = 0 as the initial abstract state and we show the fixpoint
iterations [17] published in [41]. First, we fiton¢ = 1,57 = 0 and
1 = 2,7 = 1 to obtain the polyhedra —7 + 5 > —1 A ¢ > 1. Next,
weobtaini + j > —1ATi —4j > Tthatfits¢ = 1,5 = 0,
i =2,7=1,and i = 5,5 = 7. Note that there are an unbounded
number of polyhedra, including the one discovered by octagons,



1: int 1 =1, j = 0;
2: while (i<=5) {
3: j = j+i;

4: i = i+1;

5: }

Figure 1. Example program from [41].

that can fit these states. The domain of polyhedra is so precise that
the generalization step has many valid choices and hence it can pick
a hypothesis that fits these specific abstract states but does not hold
in general. In the next iteration, we obtain —i + j > —1, and, fi-
nally, true. Using the loop guard and narrowing [17], we terminate
with ¢ < 5 as the invariant. One might be tempted to blame specific
choices made in this analysis run for the result, but that misses the
point that the phenomenon is general: any method that attempts to
select the best generalization from a large set of equally viable but
different candidates will run into the same problem on many pro-
grams. For example, other analyses such as [3] meet a similar fate
on this example [41].

Very abstractly, a program has some behaviors, and if an anal-
ysis is not expressive enough to capture these behaviors, then we
have underfitting and the results are poor. If the analysis engine
is too expressive, then it can overfit the specific behaviors and
fail to generalize. Currently, program analysis designers apply folk
knowledge to avoid underfitting and overfitting. Our aim is to give
a formal framework to understand these rules of thumb and use the
foundations to obtain better tools.

In learning theory [34], underfitting is characterized by bias and
overfitting is characterized by variance [21], and by varying the
precision, one gets a bias-variance tradeoff. Low precision leads
to high bias and low variance, while high precision leads to low
bias but high variance. With an appropriate choice of precision,
one can balance bias and variance and obtain good results. As
an example, consider Figure 2. YOGI is a verification engine in
Microsoft Windows SDV (Static Driver Verifier) toolkit that checks
safety properties of Windows device drivers [25]. In Figure 2,
increasing values on the x-axis indicate increasing precision (for
details see [43] and Section 5). The y-axis shows the time taken by
YOGI on 2490 verification tasks (a superset of the tasks reported
in [25]). Higher analysis times are indicative of more time-outs and
poorer quality of results. One observes the bias-variance tradeoff
in Figure 2. At low precision the performance of the tool is poor.
With increasing precision, the bias decreases and the performance
of the tool improves. However, after a certain point, the variance
starts increasing and the performance starts to degrade.

To develop a theory that can explain these empirical observa-
tions, we need a formal definition of generalization. Unfortunately,
even though the term generalization frequently occurs in the pro-
gram analysis literature, defining generalization precisely is diffi-
cult and there is no widely accepted definition. Just as complex-
ity theory works with a model of machines and generates quali-
tative (as opposed to quantitative) results for comparing the effi-
ciency of algorithms, we want a useful theory, perhaps working
with a model, that generates useful qualitative feedback about bias-
variance tradeoffs.

In a recent work, [47] applied the definition of generalization
given by the PAC (probably approximately correct) learning frame-
work [48] to prove that a verification algorithm for checking safety
properties generalizes. According to this definition (which we give
formally in Section 2), an algorithm generalizes if given enough
samples of program states as input, it is likely to generate predicates
that separate almost all the program’s safe reachable states from er-
roneous program states. In this paper, we explore an alternative use
of this framework, namely modeling bias-variance tradeoffs. We
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Figure 2. Result of running YOGI on 2490 driver-properties pairs.
The best performance is achieved at 7 = 500.

do not claim that this definition is the correct definition of general-
ization. However, the motivation for our work is largely practical,
and we show that this existing framework yields some immediately
useful results. In the future, different definitions of generalization
might be available and the framework developed here can be instan-
tiated with the alternative definitions to derive other useful conclu-
sions for the benefit of program analysis tools.

We believe that if program analysis tool designers are explicitly
made aware of bias-variance tradeoffs and have mathematical tools
to qualitatively reason about generalization, they can make better
informed design decisions. In our framework, variance is propor-
tional to VC dimension (Theorem 2.2). Hence, a high VC dimen-
sion is indicative of overfitting. We calculate the VC dimension of
several abstractions used in program analysis (Section 3), including
abstractions for numerical programs, array manipulating programs,
and heap manipulating programs. We observe that more precise ab-
stractions, that is, the abstractions with higher variance, have higher
VC dimension. These proofs increase our confidence in the applica-
bility of our framework to program analyses and provide evidence
that VC dimension is a useful qualitative metric for characterizing
the precision of abstractions.

Since our definition of generalization has been borrowed from
learning theory, we can build on well-known techniques in the ma-
chine learning community for addressing bias-variance tradeoffs.
Cross validation [2] is one of the simplest techniques for this pur-
pose. Consider a fully automatic analysis tool that has a number of
configuration parameters. How to set these parameters optimally is
usually unclear, and the typical case is that such an optimal config-
uration might not even exist, although clearly some configurations
are better than others. One logical candidate configuration is the
one that performs best on a benchmark suite. However, we demon-
strate that this strategy can overfit on the particular benchmark suite
and significantly degrade the quality of the tool on new inputs (Sec-
tion 5). Cross validation avoids overfitting, and we show that by
applying cross validation to tune the configuration parameters of
YOGI [25], we are able to significantly improve YOGI’s running
time while also reducing the number of timeouts and finding new
defects.

Thus, overfitting can adversely impact program analysis in at
least two ways. First, overly precise abstract domains can overfit
and lead to poor generalization and hence inferior invariants. Sec-
ond, tools can overfit their benchmark suite resulting in poor per-
formance on new analysis tasks. We show that these seemingly dif-
ferent problems are both instances of bias-variance tradeoffs and
hence the same principles (Theorem 2.2) apply to both. Learning
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Figure 3. Regression example: underfit (a), good fit (b), overfit (c).

theory addresses bias-variance tradeoffs in general and can provide
techniques to tackle both these problems.
To summarize, our contributions are as follows:

e We observe that improving precision does not necessarily lead
to better results in program analysis. We connect this phe-
nomenon to bias-variance tradeoffs in learning theory (Sec-
tion 2).

We show that VC dimension captures the precision of abstract
domains used in program analysis. We calculate the VC dimen-
sion of a number of abstractions relevant to program analysis,
including formulas over arrays and separation logic (Section 3).

We explain several empirical observations in program analysis
using bias-variance tradeoffs. For example, by incrementally
increasing precision, one can balance bias and variance (Sec-
tion 2), a strategy that is employed in several existing program
analyses [32, 41, 49] (Section 4).

e Using bias-variance tradeoffs we show how overfitting to
benchmark suites can result in unnecessarily poor performance
on new inputs. Using cross validation to guide precision tuning,
we are able to improve the performance of YOGI, a fully auto-
matic, production quality program verification tool (Section 5).

e We make some specific recommendations for tackling bias-
variance tradeoffs in program analysis (Section 6).

2. Preliminaries

We first review concepts from learning theory used in subsequent
sections; readers already familiar with learning theory may safely
skip this section. For more details, the reader is referred to the
excellent textbook by Kearns and Vazirani [34].

2.1 Bias-Variance Tradeoffs in Regression

Bias-variance tradeoffs have been well-studied in machine learning
and before introducing the formal definitions it is instructive to look
at a machine learning example.

Consider the problem of regression [6]. We are given a set
of input-output pairs (observations) (z1,y1), ... (Zn,yn) and we
want to predict the output y for additional but unknown input
values x. In other words, we want to learn a function f, such that
yi = f(z:), 1 <1 < n.The standard way to solve this problem is
to consider a template for f (a restricted class of functions from
which the solution is chosen) and then fit the template to these
observations.

Figure 3 fits three different templates to the same set of six ob-
servations. In Figure 3(a), we show the best fit line. Even though we
have chosen the best of all possible lines, the fit is quite poor (mean-
ing there are large errors even for the observed data points) and we
do not expect the predictions obtained to be good. Figure 3(a) il-
lustrates underfitting: lines are too imprecise to represent our ob-
servations. Next, we fit a quadratic curve (Figure 3(b)) and it seems

to be a good fit: we expect it to produce good predictions. Fig-
ure 3(c) shows the fit of a polynomial of degree five: a fifth degree
polynomial can interpolate between the six observations. The fit is
extremely good for the actual observations, but there seems little
reason for confidence in the predictions for very large or very small
values of x given by this particular choice of function. Figure 3(c)
illustrates overfitting.

The nature of the underfitting and the overfitting for the exam-
ples in Figure 1 and Figure 3 have similarities and differences. We
observe that both excess precision and limited precision lead to bad
results. But there are some obvious differences. The program anal-
ysis example in Figure 1 looks cleaner: the abstractions are over-
approximating some of the loop behaviors, whereas in Figure 3(b)
the quadratic model does not even agree with the observations. The
difference is due to noise. In machine learning, the data is typically
noisy, whereas programs are precise descriptions. Therefore, the
definition of generalization we use and the development in this pa-
per are for the noise-free case. Of course, programs can have bugs
and these can be thought of as noise and learning theory has mech-
anisms for incorporating noise in generalization [34]. Defining and
handling noise in program analysis is interesting future work.

2.2 Learning Theory Primer

Consider an instance space x which is the set of all instances.
Suppose each z; € x is associated with a label £(z;) that belongs
to a label set . Let H be a hypothesis class, that is, the set of
all functions b : x — -~y considered by the learning algorithm.
The goal of a learning algorithm is to choose an A € H such that
for each z; € x, h(z;) is a good estimate of the label £(x;). For
the example in Section 2.1, x = R, v = R, and H is a set of
polynomials. We are given aset S = {(zs,y:) : ¢ =1,...,m} C
X X <y called the training set, and we want to find a hypothesis
h € H which generalizes over the whole instance space, that is, for
allz € x, |h(z) — £(z)| is small.

The notion of instance space is general and can capture pro-
gram states: it can be the collection of points in R™ for numerical
programs, a collection of stack and heap pairs for heap manipu-
lating programs, or a valuation of some numerical variables and
arrays for array manipulating programs. One example of labels can
be whether a state is reachable or unreachable and we might want
our hypothesis to be a predicate which predicts for each state a label
true (denoting reachable) or false (denoting unreachable), given
some known reachable and unreachable states. For program anal-
ysis, we are interested in predicates as hypothesis classes. Hence,
there are only two labels, frue and false, and we limit our discussion
to binary labels v = {true, false} unless stated otherwise.

Given a set of labeled instances called the training set S C
X X 7, one natural method to perform learning is empirical risk
minimization (ERM): find a hypothesis h € H such that the
number of labeled instances (x;,y;) € S for which h(x;) # v
is minimized. By finding a hypothesis that works well on the
training set, we hope to find a hypothesis which works for the whole
instance space x.

However, it is not clear whether such an h generalizes. Next, we
formally define the notion of generalization that we use. PAC learn-
ing [48] assumes that the training set .S consists of m independent
and identically distributed (iid) labeled instances drawn from an ar-
bitrary but fixed distribution D over the instance and label space. If
we draw a new labeled iid sample from D, then we are interested in
the probability that the actual label agrees with the predicted label:
if (x,y) ~ D then what is Pr [h(x) = y]? So first we frain, that
is, generate a hypothesis using a training set, and then we fest, that
is, evaluate the performance of the hypothesis on the new samples.
A PAC learner takes some samples from D as input and with high
probability outputs a hypothesis that is approximately correct—if



one were to draw a new sample from D, then with high probabil-
ity the predicted and the actual label agree. Since the output of the
PAC learner predicts the labels for instances that it has not seen, we
say that it generalizes.

Definition 2.1. A learner generalizes if given m samples (deter-
mined by parameters 9, € and the hypothesis space H) from a dis-
tribution D, with probability 1 — § it outputs a hypothesis h € H,
such that (z,y) ~ D = Pr[h(z) #y] <e

Now, why does this definition make sense? Suppose the learner
wants to convince an adversary that it can produce hypotheses
that generalize. If an adversary controls the training set, then she
can generate a very bad training set with no information about
the structure of the problem. For example, the adversary can just
duplicate a labeled instance an unbounded number of times and
can claim to have generated a large or even an unbounded training
set. Or she can generate samples in the training set that are related
to some particular behaviors, and when testing the generalization
properties of the generated hypothesis use completely different
behaviors. The poor hypothesis generated using certain behaviors
is bound to perform poorly on behaviors that it has no idea about.
An algorithm that can succeed against such a powerful adversary
seems unlikely and so it seems reasonable to weaken the adversary.
First, to define generalization, the training set should have some
guarantee of having a good coverage of behaviors; by selecting
training inputs randomly, we ensure formally that our training set is
not adversarially generated. In testing, the adversary might defeat
the generated hypothesis by testing on very skewed inputs. By
testing on iid samples, we also take this power away from the
adversary.

2.2.1 Bias and Variance

First, we formally define ERM. The learner finds a hypothesis that
minimizes the empirical error € over a training set S = {(z;,v;) :
1<i<n}:

m

&(h) = % S 1{h(e) # i) )
=1
where 1 is the indicator function: 1{b} = 1if b is true and 0 if b is
false. In empirical risk minimization, we try to find a hypothesis h
that minimizes the empirical error €(h) and hope that it generalizes.
The generalization error ¢(h) for a hypothesis h is defined as
follows:

E(h) = Pr(z,y)ND [h(ZC) 75 y] 2
The objective of a learning algorithm is to compute a hypothesis
with low generalization error. By minimizing the empirical error,
we hope to achieve this objective.
One of the fundamental theorems in machine learning is the
following [34]:

Theorem 2.2. For a hypothesis space H, let d = VC(H) (defined
in Section 2.3). Then, given m samples, empirical risk minimization
with high probability produces h € H such that:

e(h) < &(h)+0O < d)

m

and also

e(h) < e(h) + O < d)

m

where h* is a hypothesis with the minimum generalization error in

H.

This theorem gives us a bound on the generalization error. In
particular, the first part of the theorem bounds the generalization

error using the empirical error. To generalize well or to have a
low generalization error we want the bound to be small. This
theorem says that we can produce a large generalization error for
two reasons:

1. The term e(h™), the bias, is the generalization error of the best
hypothesis in H, i.e., the one that minimizes the generalization
error. If this value is large then the hypothesis class underfits:
even if we select the best available hypothesis, we still have
generalization errors.

2. The term O | 4/ % , the variance, grows with the VC dimen-

sion or precision of the hypothesis class. If this value is large
generalization errors occur from overfitting the training data.

Therefore, low precision causes generalization error due to bias
and high precision causes generalization error due to variance, and
this leads to the bias-variance tradeoff. A corollary of this theorem
has been used by [47] for an alternative purpose: for a specific
hypothesis class #, using V' C(#H) to bound the number of samples
required to ensure that the generalization error is below a user-
specified tolerance.

By trying multiple hypothesis classes in order of increasing pre-
cision, one can address bias-variance tradeoffs. One starts with an
imprecise hypothesis class and gradually increases precision until
the bounds start degrading. In the extreme, when we have an empty
hypothesis class, then the bias is high and the variance is zero. At
the other extreme, for very expressive classes, the bias can become
zero and the variance is high. When the size of the hypothesis class
increases, so that successive hypothesis classes include the previous
hypothesis classes, then bias decreases monotonically and variance
increases monotonically. By gradually increasing precision, we can
find a “sweet spot” and achieve low bounds on generalization er-
ror [24].

2.3 VC dimension

The Vapnik-Chervonenkis or VC dimension [34] is a purely combi-
natorial quantity that measures the capacity of a hypothesis class.

Definition 2.3. A hypothesis h satisfies a set of labeled instances
(X,0), iff Vz € X, h(z) = ().

Definition 2.4. Given a set X of instances, a hypothesis class H
shatters X if for any labeling { there exists an h € H s.t. h satisfies
(X, 0).

Definition 2.5. VC(H) is the cardinality of the largest set that H

can shatter.

In our setting, when a hypothesis satisfies a set of labeled in-
stances, some of the instances are labeled true and others are la-
beled false, and the hypothesis is a predicate containing all the
points labeled ¢rue and excluding the points labeled false. If a
class is able to shatter large sets, then it has high precision, and
it is precisely able to separate instances with different labels. The
VC dimension is the largest number of points that one can shatter.
If the VC dimension is too high then we can overfit, and ERM does
not produce a hypothesis that generalizes. In the extreme case, if
the VC dimension of a hypothesis class is infinite, then we cannot
bound its generalization error (Theorem 2.2).

To prove that the VC dimension of a hypothesis class H is at
least d, we need to show a set of d points in the instance space x
that ‘H can shatter. To prove an upper bound « on VC dimension,
we need to show that for any possible selection of « points from Y,
‘H cannot shatter the u points. Since we want an upper bound on
generalization error, it is generally sufficient to find upper bounds
on VC dimension.
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3. Abstract Domains

In this section, we calculate the VC dimension for several popu-
lar abstract domains and show that the VC dimension gives results
which match our expectations. Our goal is not to calculate the VC
dimension of every possible abstract domain. We consider some
simple abstract domains and the techniques we develop are use-
ful (but might not be sufficient) for computing the VC dimension
of other more complicated abstract domains as well. The VC di-
mensions of the numerical domains we consider (Section 3.1, Sec-
tion 3.2, and Section 3.3) follow from standard results in learn-
ing theory. We also consider predicates over arrays (Section 3.4)
and separation logic (Section 3.5). We are unaware of any previous
study of VC dimensions of these domains.

3.1 Standard numerical domains

Our main idea is to compute the VC dimension of different abstract
domains in order to capture their precision. The formal proofs
for the numerical domains discussed in this section are standard
textbook material in machine learning [34]. The instance space x
we first consider is R"™, which can represent the state of n-variable
numerical programs with no arrays and no data structures. Arrays
and data structures are discussed in Sections 3.4 and 3.5.

3.1.1 Single Inequality

First, let us consider the hypothesis class consisting of single linear
inequalities. We select this class as it is one of the simplest hypoth-
esis classes. The following result is known:

Theorem 3.1. The VC dimension of the set of single inequalities
in n dimensions is n + 1.

Consider the 2-dimensional space R?. This theorem states that
the VC dimension of the class of inequalities of the form ax +
by + ¢ > 0 is three. Figure 4 shows a set of three points that can be
shattered using this hypothesis class. Circles are the points labeled
false and crosses are the points labeled true.

Note that we cannot shatter some configurations of three points,
but that does not matter for VC dimension (Definition 2.5). For
instance, as shown in Figure 5, if the points are collinear, then there
is a labeling that cannot be satisfied by a single inequality: there
is no inequality that can include the two crosses and exclude the
circle.

We cannot shatter any configuration of four points using a single
inequality, and the canonical configurations that cannot be shattered
are shown in Figure 6. In the first configuration of four points, we
cannot satisfy the inner point with label false and the other three
with label true. In the second configuration, we cannot satisfy the
labeling in which diagonally opposite points have the same label
and adjacent points have different labels.

Figure 6. One inequality cannot shatter four points.

To prove Theorem 3.1, observe that an inequality in n — 1
dimensions can be looked upon as f(x) > 0, where f(x) is a plane
in n dimensions passing through the origin. It is easy to see that we
can shatter n points with such inequalities. Consider a set X of n
points where the " point has the coordinate 1 in the i** dimension
and 0 otherwise. If Z C X is the set of examples labeled true,
then the inequality f(z) > 0, where f(x) has the i*" coordinate
1 if x; € Z and —1 otherwise, satisfies X. So the VC dimension
of an inequality in n dimensions is at least n + 1. To get the upper
bound, we instantiate the following generalized lemma:

Lemma 3.2. Let F be a function class containing functions f :
X — Roandlet A = {{z : f(z) > 0} : f € F}, then
VC(A) < dimension(F).

Since planes in n dimensions passing through the origin are
generated from n basis vectors, we conclude that the dimension
of such planes is n, and Theorem 3.1 follows.

From this simple example of a VC dimension calculation, one
can observe that computing the VC dimension of a hypothesis
class can be a non-trivial task and can require reasoning about
the mathematical structures underlying the instance space and the
hypothesis class. Now we proceed to some of the more complicated
hypothesis classes that are relevant for program analyses.

3.1.2 Intervals

Intervals or conjunctions of inequalities of the form +x > cis a
well-studied abstract domain [16]. It is also known for underfitting,
as useful invariants often require relationships between multiple
variables.

Theorem 3.3. The VC dimension of intervals in n dimensions is
2n.

Proof. Consider the 2n points X = {z_p,...,2-1,%1,...,Zn},
where x; has sign(i) as coordinate |¢| and the rest of the coordi-
nates zero. We can shatter these 2n points using a construction that
is a generalization of Figure 7. Moreover, intervals cannot shatter
2n + 1 points. Any collection of 2n + 1 points has at most 2n
extreme points: an extreme point of a collection of points has the
highest or the lowest coordinate along some dimension among the
points in the collection. There is at least one non-extreme point as
there are 2n extremes and 2n + 1 total points. Since intervals are
convex, if we consider any set of 2n + 1 points, and assign the ex-
treme points the label frue and the non-extreme point(s) the label
false then no interval can include all the frue and exclude the false
point(s). For example, if we consider 2n 4 1 points consisting of
X and the origin, then the points in X are extreme points and an
interval cannot satisfy the labeling, where points in X are labeled
true and the origin is labeled false. O
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Figure 8. Using a polyhedron to satisfy a labeling.

‘We now move on to more expressive abstract domains and show
that these have higher VC dimension than intervals.

3.1.3 Polyhedra

Given an arbitrary number of points on a circle, with arbitrary
labelings, using convex hulls, polyhedra can separate the points
labeled true from points labeled false. An example is shown in
Figure 8. As a consequence, we have the following theorem:

Theorem 3.4. The VC dimension of polyhedra is infinite.

Using Theorem 2.2, we can conclude that when using polyhe-
dra, it is not possible to bound the generalization error in our frame-
work. However, many useful invariants require general inequalities.
The fact that the VC dimension of polyhedra is infinite does not pre-
vent us from handling general inequalities and these are addressed
in the next section.

3.2 Templates

If we restrict polyhedra to k inequalities, then it turns out that
the VC dimension is bounded above by O(kn log(k)). The proof
of this fact relies on general composition theorems [8, 9] that
relate how the VC dimension composes when complex hypothesis
classes are obtained by composition of more primitive classes.
Here we are composing k inequalities to generate a polyhedra
and these theorems are applicable. To state these theorems, we
require additional technical machinery that does not add to the
development of the ideas in this paper and therefore we omit them.

In this case, as expected, the VC dimension is higher than inter-
vals but seems manageable. If one can perform program analysis
while keeping the number of inequalities fixed, then the general-
ization error is bounded in our framework and one might be able
to combat overfitting. Template-based invariant inference engines
perform analysis assuming the number of inequalities to be a fixed
user-provided constant [15, 27, 28].

Now consider a given boolean combination instead of just con-
junctions of inequalities. Approaches for performing abstract inter-

pretation with a given fixed number of disjunctions are known [46].
In the case of template-based invariant inference, the recipe for
finding the invariant is the same—one constructs a template and
solves constraints to instantiate template parameters. The template
can have only conjunctions [15] or a given boolean combination
of inequalities [27]. Indeed, the VC dimension of a given boolean
combination of k inequalities in n dimensions is also bounded by
O(knlog(k)), which is the same as the VC dimension of conjunc-
tions of k inequalities [9]. This observation suggests that one does
not expect results to degrade significantly due to higher variance
when using this more expressive template.

TCM (template constrained matrix) domains [45] provide a
knob to vary precision. In TCM, one can provide linear expressions,
and abstract interpretation infers lower and upper bounds for them.
Intervals and octagons are special cases of TCM. As we increase
the number of linear expressions, the VC dimension increases. In
the limit, when we have an infinite number of linear expressions,
TCM becomes polyhedra and the VC dimension is infinite. Here is
an example of a family of abstract domains that can combat bias-
variance tradeoffs. An intelligent template choice ensures that we
neither underfit nor overfit and therefore leads to better results.

Moreover, by calculating the VC dimension, one can observe
how the precision increases if additional linear expressions are
added and thus can help an abstract interpretation designer make
systematic decisions for choosing linear expressions by answering
questions such as the expected increase in precision from adding a
new linear expression.

3.3 Non-linear arithmetic

First, we compute an upper bound on the VC dimension of the hy-
pothesis classes composed of polynomial inequalities. Recall that
an upper bound on the VC dimension suffices for bounding the
generalization error (see Theorem 2.2). We show that the bound
depends on the degree of the polynomial. Suppose we are given
that the invariant is composed of quadratic inequalities. Conceptu-
ally, we can create a new variable for every monomial up to degree
two [1]. The quadratic invariant in the old set of variables becomes
a linear invariant over the new set of variables. The calculations
done above carry over, just with an increased dimension. Since the
number of monomials increases with the degree under considera-
tion, the bound also increases with the increasing polynomial de-
gree.

In the extreme, when the degree is unbounded, we cannot bound
the VC dimension. If there are other sources of non-linearities,
similar arguments apply and we can add new variables so that non-
linear invariants are reduced to linear invariants [26].

3.4 Arrays

Consider an array manipulating program. The program state is the
valuation of integer variables and potentially unbounded arrays.
The examples of useful invariants over arrays that occur in the pro-
gram analysis literature are generally universally quantified pred-
icates involving a small number (1 to 3) of arrays [7]. Likewise,
if we consider the predicates of the form Vi . + a[i] > c as the
hypothesis class H, and the instance space  as the valuation of an
array denoted by a, then the VC dimension is 2, which is the same
as an interval in one variable. Thus, such predicates can suffer from
the same problem of underfitting as intervals.

Theorem 3.5. The VC dimension of predicates Vi . £ a[i] > cis
2.

Proof. Consider three states, and let v; denote the smallest value
stored in the array of the ' state. Among the eight labelings that
need to be satisfied, consider the configuration in which the states
with the smallest and largest v; are labeled frue and the third state



is labeled false. This labeling cannot be satisfied by this class of
predicates. Also, two distinct states, each consisting of only a single
element in the array, are shattered by the predicates of the form
T > *c. O

We can extend the above result to a more general statement. Con-
sider the instance space x of points in n + 1 dimensions, x =
R™1 that represents the values of n + 1 numerical variables.
Also consider the instance space x“ that represents the values of
an array a of unbounded size and n numerical variables, x* =
R* x R™. We define three maps. The map M maps each pred-
icate over x to a predicate over x*, M(P(x,z1,...,Tn)) =
Vji.P(alj],z1,...,2n) and j ¢ {z1,...,2,}. We also use M
to denote pointwise extension of this map to a set of predicates.
Next, f : x — X% is a map such that f(c,c1,...,cy) is an in-
stance in x® where the array a has all elements equal to ¢ and the
i*" numerical variable of x® is assigned c;. Finally, g : x® — x
is a map where g(a, c1, . . ., ¢ ) assigns the first numerical variable
of x an arbitrary element of a and the rest of the n variables are
assigned values cy, . . ., c,. If H is an arbitrary hypothesis class of
predicates over x then the following result holds:

Theorem 3.6. VC(H) = VC(M(H)).

Proof. To prove VC(H) < VC(M(H)), observe that if H can
shatter m points pi,...,pm using predicates Pi, ... Pym then

M(H) can shatter f(p1), ..., f(pm)using M(Py), ..., M(Pam).

The proof for the reverse inclusion, thatis, VC(H) > VC(M(H))
is similar and uses g and M ™! (which exists since M is one to
one). O

This result allows us to compute the VC dimension of richer
hypothesis classes and boolean combinations of the same. For ex-
ample, if we have a numerical variable z and an array a as our pro-
gram variables, then by the results in Section 3.1 and Theorem 3.6
the VC dimension of the class of predicates Vj.a[j] + c1z < £eo
is three and for the class of conjunctions of predicates of the form
Vj.a[j] > £cand z > +c s four.

3.5 Separation Logic

For heap manipulating programs, separation logic has emerged as
a successful approach [44]. We do not review all the details of
separation logic here and keep the discussion at an abstract level.
The predicates or the elements of the hypothesis class are formulas
written in separation logic and elements of the instance space or the
program states are pairs of a store s and a heap h. Since we focus on
the heap, we keep the store fixed. Our instance space is composed
of program states in which the store maps a single variable z to a
heap location [.

In [10], a heuristic algorithm for inference with lists has been
described. The related fragment shown below has an infinite VC
dimension.

e z|X|c
p == emp|eirrez,e3|pxq|liste

An expression is either a variable z, or a logical variable X, or a
constant ¢ (e.g. nil) and an assertion says that the heap is either
empty, or it contains one cons cell and e; is the address of the
cons cell with contents ez and es, or the assertion has a separating
conjunction (p*q) that decomposes the heap into two disjoint parts,
one where p is true and one where q is true. A list denotes a nil
terminated singly linked list. The logical variables in the assertions
are implicitly existentially quantified.

Theorem 3.7. VC dimension of the above class of predicates is
infinite.

Bench PK/OCT PK/BOX OCT/BOX

C 2 unc. c 2 unc. - 2 unc.
a2ps 12.74 0.78 0 21.64 0 2.13 18.94 0 0.93
gawk 21.34 0 0 26.96 0 0 17.97 0 0
chess 5.99 5.78 2.47 12.67 3.68 2.24 14.87 0 0
gnugo 18.75 2.08 2.08 22.50 1.66 1.11 10.86 0 1.12
grep 3.30 0 0 8.26 0 0 8.26 0 0
gzip 21.16 2.18 0 32.84 0.72 1.45 26.27 0 0
lapack 11.84 5.67 0.85 78.96 2.16 2.99 85.03 0 0
make 6.50 4.00 5.50 6.52 4.34 5.97 11.94 0 0
tar 5.17 4.20 0 9.70 3.23 0.97 9.38 0 0

Figure 9. Results of comparing abstract domains published
in [29].

Proof. We need to show that given any n, we can construct n heaps
and shatter them using the predicates of our logic. We give a proof
sketch. The intuition is that we can introduce an unbounded num-
ber of logical variables in the heap and lists can encode a boolean
choice. Therefore, we can make an unbounded number of boolean
choices and shatter unbounded sets. Suppose n is two. The con-
struction below can be generalized to arbitrary n. Recall, the store
maps z to [. Consider two heaps, h1 = [l +— (I1,nil),l; —
(nil,nil)] and he = [l — (nil,l1),li — (nil,nil)]. The
predicates z — (X,Y), z — (X,Y) * list(X), z — (X,Y) %
list(Y), and z — (X,Y)  list(X) * list(Y') shatter the four
labelings, (false, false), (true, false), (false, true), (true, true),
of (hi, h2) repectively. In general, by introducing n logical vari-
ables we can shatter n heaps obtained using this construction. [J

Similar to Section 3.2, we can restrict the size of the predicates
to bound the VC dimension and hence the generalization error.
We are unaware of any template-based analysis that restricts the
structure of the predicates in separation logic, but given the success
of template-based invariant inference for numerical programs, it
seems to be a useful research direction to pursue in the future.

4. Discussion

In this section, we consider empirical results from various papers
on program analysis and try to interpret these results using bias-
variance tradeoffs. We do not claim to be exhaustive; the goal here
is to show that a variety of useful techniques can be justified using
our framework.

4.1 Abstract Interpretation

Consider the subset of results (Figure 9) obtained from the PA-
GAL static analyzer that were published in [29]. The columns in
the table of Figure 9 compare the quality of invariants found by
polyhedra (PK) and octagons (OCT), polyhedra (PK) and intervals
(BOX), and octagons (OCT) and intervals (BOX) respectively. In
each comparison there are three values: the first value is the per-
centage of invariants for which the results of the first abstract do-
main are logically stronger than the second; the second value is the
percentage of invariants for which the results of the second domain
are stronger than the first; the third is the percentage of incompara-
ble invariants; the remaining percentage of invariants are logically
identical.

It can be seen from Figure 9 that as precision increases the qual-
ity of the inferred invariants gets better: this result is expected as
richer abstract domains can express invariants that weaker domains
cannot. We share the observation with the authors that for a non-
negligible percentage of invariants, polyhedra perform worse than
intervals and octagons. Other evaluations in [29] (not studied here)
show that the basic forward analysis of [19] can produce better re-
sults than the “path-focused” approach of [30, 40], even though
the latter can produce more precise intermediate results. The au-
thors explain these observation using the non-monotonicity of the



Outcome SATABS | MAGIC | BLAST | BLAST (new)
Verified 0 0 8 12
Refinement failed | 13 13 0 0

Did not finish 0 0 5 1

Figure 10. Results for interpolation with incremental increase of
precision published in [32]. SATABS [14] and MAGIC [12] are
based on weakest preconditions and BLAST [31] uses interpolants.

widening operator. In abstract interpretation, the widening opera-
tor is responsible for generalization [17]. Widening is usually non-
monotonic because widening more precise information can lead to
worse generalizations [18]. For example, [0,1]V[0,2] = [0, co]
and [0, 2]V[0, 2] = [0, 2]. In this example, widening more precise
intervals leads to less precise results.

Non-monotonicity of the widening operator is related to bias-
variance tradeoffs. Intuitively, if there were a monotonic widening
operator, then improving the precision of the underlying abstract
domain would lead to better generalizations, consequently, there
would be no bias-variance tradeoff. The tradeoff seems to be a fun-
damental limit on generalization, and therefore monotonic widen-
ing operators for sophisticated abstract domains seem unlikely.

4.2 Interpolants

Interpolant-based engines [31, 38] find simple proofs of infeasi-
bility of a finite number of spurious counterexample paths and
hope that because the proofs are simple the predicates used in the
proof will generalize and refute all possible spurious counterexam-
ples. Inability to find good predicates can result in divergence in
CEGAR. We motivate the usefulness of simple proofs using bias-
variance tradeoffs.

An interpolant is required to prove the infeasibility of a spurious
counterexample. This requirement ensures that the interpolant is
not too weak—it must be strong enough to prove a potentially
useful fact. This requirement can also be seen as a means to tackle
underfitting: we are imposing a lower bound on the precision of
the language of interpolants. To avoid overfitting, we want the
interpolant to be simple. The hope is that simple predicates will
not overfit to a specific path and hence can avoid high variance.
The definition of an interpolant ensures simplicity by restricting
the variables that can occur in an interpolant, which corresponds to
lowering the dimension of the instance space, and consequently the
VC dimension as well.

However, it has been observed that only restricting the variables
is not enough to avoid divergence. In [32], the language of inter-
polants or the hypothesis class is restricted to a finite set and this
set is expanded gradually. If the hypothesis class is finite, then in
our framework the following result is known:

Theorem 4.1. If h is obtained from an ERM algorithm, |H| = k,
m is the size of the sample set, and 0 is fixed, then with probability
at least 1 — § we have

- 1 2
e(h) < (minpene(h)) + 2 %long

This theorem states that when the language is inexpressive, we
have high bias, and as we increase the expressiveness of the lan-
guage under consideration, || increases, and so does the variance.
Similar to Theorem 2.2, by gradually increasing the size of the hy-
pothesis class, the bounds on the generalization error can be mini-
mized.

Consider the empirical results of Jhala and McMillan published
in [32] and shown in Figure 10. SATABS, MAGIC, and BLAST
are predicate abstraction based tools that use CEGAR [13] and
add predicates during their analysis to perform refinement. A poor

choice of refinement predicates can cause divergence. These pred-
icates are obtained by refuting spurious counterexample paths. If
the predicates overfit the paths, then they are typically not useful
for finding an invariant. The last column shows the results obtained
from the following strategy for generating predicates: use inter-
polants as refinement predicates and first restrict the interpolants to
a finite language Lo. For example, L can be the language of pred-
icates that have their numeric constants restricted to either zero or
c £+ 0 where c is a numerical constant statically occurring in the
program. The language is incrementally expanded to L1, Lo, and
so on. The penultimate column just uses the interpolants in the lan-
guage L. We observe that by incrementally increasing the expres-
siveness of the language of interpolants, one can avoid the overfit-
ting present in L., and obtain better results, verifying 12 instead of
8 programs from the benchmark suite of 13 programs.

4.3 Incrementally Increasing Precision

In recent years, there has been a growing interest in exploring op-
timal abstractions [37, 49]. These papers argue for the most im-
precise abstraction that is sufficient to prove the desired property
of a program. (This line of work is different from the techniques
that aim to compute the least fixed point [22, 23].) Generally, an in-
crease in precision is associated with a decrease in efficiency. Im-
precise abstractions are computationally cheap and hence are de-
sirable. Liang et al. [37] show that quite imprecise abstractions can
be sufficient to prove most properties of interest. Zhang et al. [49]
have an abstraction refinement algorithm that successively tries ab-
stractions of increasing cost. Stratified analysis [41] is another tech-
nique that incrementally increases precision: abstract interpretation
is performed in a stratified fashion, running successive analyses
of increasing precision by incrementally increasing the number of
program variables under consideration. The later analyses use the
results of the previous analyses and heuristics based on dataflow
dependencies. By performing the stratified analysis, the authors
obtain the same or better invariants than classical [19] or alter-
native widening schemes [3] for all the cases of their study [41].
All of these, including [32] (discussed in Section 4.2), can be seen
as examples of addressing bias-variance tradeoffs by starting with
low precision and moving to high precision. It is also possible to
achieve the same effect by starting from high precision and moving
towards lower precision (e.g., as done in [5]). In the next section,
we explore whether the techniques for combating bias-variance
tradeoffs in machine learning can also benefit program analysis
tools.

5. Cross Validation

In this section, we describe our experience with applying tech-
niques for addressing bias-variance tradeoffs to program analysis
tools. In particular, we discuss the application of cross validation to
YO0GI, a verification engine in Windows SDV [25].

Machine learning tools generally have a number of precision
knobs and finding a configuration of these knobs that does not
overfit the training set is recognized as a problem [11, 21]. One
widely used solution is cross validation [2]. While providing formal
guarantees for cross validation algorithms is a topic of current re-
search [2, 33], cross validation has been found to be extremely use-
ful empirically and is standard practice in machine learning [21].
We study the simplest cross validation algorithm here. Evaluation
of more sophisticated variants such as k-fold cross validation [2] is
left as future work.

Cross validation partitions the training set into training data and
test data. Next, multiple learning algorithms, called learners, are
trained on the training data and tested on the test data. The learner
that generates the hypothesis performing best on the test data is
selected. For example, for the regression example of Section 2.1,



we would consider a subset of the observations as training data
and the rest as test data (say a 70-30 split). Now consider different
learning algorithms where each algorithm fits a polynomial of a
different degree on the training data. We find the best fit line,
quadratic, cubic, etc., for the training data and pick the degree
which corresponds to the hypothesis that performs the best on our
test data.

We observe that the learner obtained from cross validation gen-
erates a hypothesis using training data that generalizes to test data.
If we train a learner on the full training set without performing
cross validation, then we might overfit. In Figure 3, the curve that
corresponds to the fifth degree polynomial curve best fits the ob-
servations (among linear, quadratic, and fifth degree polynomials)
and thus performs the best on the observed data. During cross vali-
dation, the fifth degree polynomial overfits on the training data and
shows large deviations from the observations in the test data. Thus,
cross validation can serve as a guide which rejects fifth degree poly-
nomials for this example and prevents overfitting.

Here is a full description of cross validation:

1. Randomly split the training set .S into Sirqin and Sies:.

2. For each learner M;, train it on Siqin to get a hypothesis h;.
Training can be just ERM over Strain.

3. Pick the learner M, corresponding to hj with smallest error on
Stest. Train My, on S to obtain the output hypothesis h.

Note that once we have selected the learner Mj, that generalizes
best to the test data, the final hypothesis is computed by training
M, on all of the available data. We remark that cross validation
is not a silver bullet and if used improperly can itself start to
overfit [42].

YOGT is an industrial strength tool for checking Windows de-
vice driver properties. YOGI has a benchmark suite of 2490 driver-
property pairs and in the current production version its preci-
sion knobs have been tuned to perform the best on these bench-
marks [43]. As discussed above, this process can lead to overfit-
ting; in fact, we show that simply by using cross validation we can
significantly improve YOGI’s performance.

In our setting, the instances are input programs that YOGI ana-
lyzes and the hypothesis class consists of all the versions of Yogi
that can be created by different choices of configuration parameters.
We are given some benchmarks and these constitute our training
set. The labels for these benchmarks, correct or buggy, are known.
The goal of the learner is to find a hypothesis (which is a tool) that
generalizes well, that is, even for new programs it has not seen, we
want it to assign the correct label. For YOGI, the learner is simply
ERM, which selects the best parameter configuration for YOGI on
the training set.

We consider a sequence of tools Yogi, where ¢, the number
of test steps, is one of the most important parameters in YOGI
(see [43] for details). The actual details of how YOGI works are
unimportant; what is pertinent here is that a higher ¢ corresponds
to increased precision. In Figure 2, the timing results are shown
where each Yogi; has been trained on the full benchmark set:
the parameters (other than ¢) have been tuned to obtain the best
results. We observe the expected bias-variance tradeoff curve. As
i is increasing, the precision is increasing, and the results first
improve with increasing precision and then they degrade. From
Figure 2, the best value of ¢ for all 2490 driver-property pairs is
500. Note that [43] uses the total runtime as a performance metric.
Hence, we also use total runtime for comparing performance of
different configurations during cross validation. However, more
general performance metrics are certainly possible. We observe that
the authors of [43] have discovered a good configuration of the tool,
which we call the old YOGI; old YOGI is Yogis, trained on the
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Figure 11. Result of running Yogi on 747 driver-properties test
pairs with ¢ € [250, 600].

Tool Time (min) | #defects | #time-outs
Yogiss, | 4704 189 21
Yogisy, | 8279 183 66

Table 1. Performance of Yogi s, and Yogi,,, on 2106 new driver-
property pairs. The time-out was set to 30 minutes.

full set of 2490 driver-property pairs and is the current production
version.

Now we consider the alternative, performing cross validation
on YOGI. We split the 2490 driver-property pairs into 70% train-
ing data (consisting of 1743 driver-property pairs), and 30% test
data (consisting of 747 driver-property pairs). We train each Yogi,
(finding values for the parameters other than ¢) so that it performs
as well as possible on the training data. Next, we pick the Yogi,,
that performs best on the test data (shown in Figure 11). From Fig-
ure 11, this best value occurs for i = 350. Next we train Yogiss,
on all 2490 driver-property pairs to obtain the new YOGI.

When verification is performed on new verification tasks (in this
case, a new set of 2106 driver-property pairs), we observe that the
new YOGI (with ¢ = 350) shows better generalization properties
than the old YOGI (with ¢ = 500). Even though the new YOGI
performs worse on the 2490 driver-property pairs (the old YOGI
was the best configuration), it actually performs better on the new
verification tasks, as shown in Table 1. We conclude that old YOGI
was overfitted to the benchmarks. Here we have been able to reduce
the run time by more than 40%, find new defects, and decrease
the number of time-outs simply by using cross validation to set
configuration parameters.

Here are some additional details about Table 1. The new YOGI
and the old YOGI find 182 defects in common. The new YOGI
timed out on one defect which the old YOGI could find. Also, there
are 19 time-outs that are common between the old and the new
YOGI. Such a result is expected as there is no best configuration.
Using cross validation we are trying to find a configuration that
avoids overfitting and is expected to work well in most cases.

To summarize, we empirically validate that YOGI has been
overfitted to its benchmark suite and we remove this overfitting by
cross validation to obtain a better tool. We believe other existing
tools could be similarly improved with the straightforward applica-
tion of cross validation.

6. Recommendations and Limitations

In this section, we consider the implications of bias-variance trade-
offs in the design of automatic program analyses. We also discuss



some limitations of our approach and make a number of specific
recommendations.

Bias-variance tradeoffs can help in the selection of an abstract
domain. One should avoid abstract domains with infinite VC di-
mension, otherwise we cannot bound the generalization error in our
framework (Theorem 2.2) and we expect it to be large in practice.
Ideally, one should use domains with finite VC dimension while en-
suring the domain is rich enough to express the invariants of interest
(to avoid large generalization error due to bias). One natural way to
achieve this goal is to start with an imprecise domain and increase
precision by gradually expanding the hypothesis class (Section 4).

We now discuss how bias-variance tradeoffs apply to fully auto-
matic verification. Most practical tools have benchmarks and some
parameters to tune. Take for instance the Astrée tool [20], which has
more than a hundred parameters governing the abstract domains
to enable, widening strategies, and so on. The best choice for the
parameters is not usually clear. If one aims for a fully automatic
tool like YOGI [25], then before shipping the tool one generally
performs ERM: the parameters are tuned to give best results on
a benchmark suite [43]. But if bias-variance tradeoffs exists, then
this strategy is suboptimal. One can overfit to the benchmarks and
unknowingly hamper the performance of the tool on new inputs
(Section 5).

A common practice in the program analysis community is to
tune to a benchmark suite and then report results [25, 43]. Given the
results in this paper, it is clear that this approach provides no pro-
tection against overfitting and is therefore methodologically weak.
As an extreme example, one can build a tool for any benchmark
suite by simply creating a lookup table with the correct answer for
each benchmark. This tool works perfectly in the reported exper-
imental results and fails completely in practice. A more realistic
scenario is that a tool builder discovers her tool gives poor results
on some program P in her benchmark suite. She makes a change
and as a result the tool works better on P. But has the tool really
improved in general, or has the tool designer overfit to P? It might
be that the tool’s users were better off without the change. A tool
that performs poorly on some of its benchmarks is not a bad thing
if the alternative is overfitting.

The goal, of course, should be to build tools that work on
previously unseen examples, not just on the benchmark suite. An
experimental methodology that divides inputs into a training set
that can influence the design of the tool and a separate test set
that cannot inform the design of the tool is one way to validate
that tools generalize beyond the benchmarks used to design them.
Some researchers may be doing this already, but we are unaware of
anyone mentioning this point explicitly in the literature. Note that
this recommendation might not be directly applicable to tools that
are not designed to be fully automatic. For example, Astrée [20]
relies on user interaction to select the appropriate parameters for
the program under analysis.

Despite our general critique of overfitting static analysis tools
to benchmarks, there are situations in which that may be the right
thing to do. When the goal is to analyze a specific program (e.g., the
verification of selL4 [35]) rather than to build a tool that works for
any program, it might make sense to overfit to the one important
benchmark. The situation is also different for analysis algorithms
that can be proven analytically to give an optimal or best result,
such as certain classes of type inference, dataflow analysis, abstract
interpretation over finite lattices, and the analysis of loop-free and
recursion-free programs. Here the setting is sufficiently tractable
that the generalization strategy is provably the best possible (or
generalization is not needed at all) and reporting how well the
algorithm works on a single full benchmark suite is a reasonable
practice. Finally, if one had some guarantee that a benchmark suite
was representative of all possible inputs there would be no need for

a separate test suite—in this case improving performance on the
training set guarantees improvement in general. However, it seems
difficult to obtain or prove that a benchmark suite is representative,
even for a particular domain. The drivers we consider as the training
set in Section 5 are a superset of the benchmarks of [25] and from
our results we can conclude that they are not representative.

The competition on software verification [4] was introduced as a
common platform to compare tools. However, the current structure
of the competition does not avoid overfitting. The benchmarks
and the expected results of the competition are public and the
benchmarks used to compare tools are a subset of the publicly
released benchmarks. This contest design addresses a real concern,
which is that because the semantics of C is underspecified and
the benchmarks are C programs, publishing all benchmarks in
advance helps ensure that the organizers and participants agree on
the intended meaning of the programs. Our recommendation to
organizers of competitions to evaluate software tools is that they
should always evaluate the tools on some new, unseen programs
as a check on overfitting. These unseen programs must be chosen
carefully to ensure that any possible variations in interpretation are
irrelevant to the verification task.

7. Conclusion

Because of bias-variance tradeoffs, increasing the precision of a
program analysis can lead to a decrease in the quality of results. We
have adapted the PAC learning framework to explain bias-variance
tradeoffs in program analysis and used VC dimension as a measure
of the precision of abstract domains. We have computed the VC
dimension for some popular abstractions for numerical, array ma-
nipulating, and heap manipulating programs and we observe that
more precise abstractions have higher VC dimension. We have also
shown that standard techniques for addressing bias-variance trade-
offs, such as incrementally increasing precision and using cross
validation in tuning parameters, are applicable to program analy-
sis tools.
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