
329

C h a p t e r N i n e t e e n

Animation for Visualization:
Opportunities and Drawbacks

Danyel Fisher

Does animation help� build richer, �more vivid, and more understandable visualiza-

tions, or simply confuse things?

The use of Java, Flash, Silverlight, and JavaScript on the Web has made it easier to

distribute animated, interactive visualizations. Many visualizers are beginning to think

about how to make their visualizations more compelling with animation. There are

many good guides on how to make static visualizations more effective, and many

applications support interactivity well. But animated visualization is still a new area;

there is little consensus on what makes for a good animation.

The intuition behind animation seems clear enough: if a two-dimensional image is

good, then a moving image should be better. Movement is familiar: we are accus-

tomed to both moving through the real world and seeing things in it move smoothly.

All around us, items move, grow, and change color in ways that we understand deeply

and richly.

In a visualization, animation might help a viewer work through the logic behind an

idea by showing the intermediate steps and transitions, or show how data collected

over time changes. A moving image might offer a fresh perspective, or invite users

to look deeper into the data presented. An animation might also smooth the change

between two views, even if there is no temporal component to the data.

As an example, let’s take a look at Jonathan Harris and Sep Kamvar’s We Feel Fine

animated visualization (http://wefeelfine.org). In this visualization, blog entries men-

tioning feelings are represented as bubbles. As users move between views, the bubbles

http://wefeelfine.org

330 Beautiful Visualization

are reorganized into histograms and other patterns. For example, one screen shows

the relative distribution of blog entries from men and women, while another shows

the relative distribution of moods in the blog entries. While the bubbles fly around the

screen freely, there are always a constant number on the screen. This constancy helps

reinforce the idea of a sample population being organized in different ways. Animation

is also used to evoke emotion: the bubbles quiver with energy, with those that represent

“happy” moving differently than bubbles that represent “sad.”

Not all animations are successful, though. Far too many applications simply borrow

the worst of PowerPoint, flying data points across the screen with no clear purpose;

elements sweep and grow and rotate through meaningless spaces, and generally only

cause confusion.

I have had several occasions to build animated visualizations. In 2000, I worked with

fellow grad students building GnuTellaVision, which visualized the growing Gnutella

peer-to-peer network. Since then, I have been involved in a variety of projects that

have shed light on animated visualization: for example, I worked on a project that

explored animated scatterplots, and I was a close bystander on the DynaVis project,

which looked at transitions between different visualizations. In this chapter, I will talk

through some of these experiences and to try to develop some principles for animating

visualizations.

Animation can be a powerful technique when used appropriately, but it can be very

bad when used poorly. Some animations can enhance the visual appeal of the visu-

alization being presented, but may make exploration of the dataset more difficult;

other animated visualizations facilitate exploration. This chapter attempts to work out

a framework for designing effective animated visualizations. We’ll begin by looking

at some background material, and then move on to a discussion of one of the most

well-known animated visualizations, Hans Rosling’s GapMinder. One of the projects I

worked on explored animated scatterplots like GapMinder; this makes a fine launch-

ing point to discuss both successes and failures with animation. As we’ll see, successful

animations can display a variety of types of transformations. The DynaVis project helps

illustrate how some of these transitions and transformations can work out. The chap-

ter concludes by laying out a number of design principles for visualizations.

Principles of Animation
At its core, any animation entails showing a viewer a series of images in rapid suc-

cession. The viewer assembles these images, trying to build a coherent idea of what

occurred between them. The perceptual system notes the changes between frames, so

an animation can be understood as a series of visual changes between frames. When

there are a small number of changes, it is quite simple to understand what has hap-

pened, and the viewer can trace the changes easily. When there are a large number of

changes, it gets more complex.

331chapter 19: animation for visualization: opportunities and drawbacks

The Gestalt perceptual principle of common fate states that viewers will group large

numbers of objects together, labeling them all as a group, if they are traveling in the

same direction and at the same speed. Individual objects that take their own trajecto-

ries will be seen as isolates, and will visually stand out. If all the items move in differ-

ent directions, however, observers have far more difficulty following them. Perception

researchers have shown that viewers have difficulty tracking more than four or five

objects independently—the eye gives up, tracking only a few objects and labeling other

movement as noise (Cavanagh and Alvarez 2005).

Animation in Scientific Visualization
Attendees at the annual IEEE VisWeek conference—the research summit for visual-

ization—are divided into two groups: information visualizers and scientific visualizers.

The two groups give different talks, sit in different rooms, and sometimes sit at differ-

ent tables at meals. Watching the talks, one quickly notices that roughly half of the

papers in the scientific visualization room feature animation, while almost no papers

in the information visualization room do. You could say that the difference between

the groups is that scientific visualizers are people who understand what the x-, y-, and

z-axes actually mean: they are very good at picturing the dimensions of an image and

understand the meaning of depths and distances. The dynamic processes they often

represent—wind blowing over an airplane wing, hurricanes sweeping across maps,

blood flowing through veins—also involve an additional dimension: that of time. As it

would be difficult to squeeze its representation into any of the other three dimensions,

animating is an attractive method for displaying such processes.

In contrast, data visualization is less straightforward. Information visualizers usually

work with abstract data spaces, where the axes do not correspond to the real world

(if they mean anything at all). Viewers need to get acclimated to the dimensions they

can see, and learn how to interpret them. Consequently, there are comparatively few

examples of animation published in the information visualization community. (We

will discuss some of these later.)

Learning from Cartooning
Animation, of course, appears popularly in places outside of visualizations. Movies and

cartoons depend on some of the same physical principles as computer animation, so

several people have asked whether cartooning techniques might bring useful insights

to the creation of animated visualizations. As early as 1946, the Belgian psycholo-

gist Albert Michotte noted the “perception of causality” (Michotte 1963). It is easy

to believe that the movement in an animation shows intent: that this point is chasing

another across the screen (rather than moving in an equivalent trajectory one second

behind it), that this ball hit another (rather than “this dot stopped at point A, and this

other dot moved from A to B”), and so on. Thus, we can ascribe agency and causality

where none really exists.

332 Beautiful Visualization

In cartoons, of course, we wish to communicate causality. Traditional cartoonists have

described how they endow drawn shapes with the “illusion of life” (Johnston and

Thomas 1987) in order to convey emotion, and several rounds of research papers

(Lasseter 1987; Chang and Ungar 1993) have tried to see how to distill those ideas for

computer animation and visualization.

Traditional cartoonists use a barrage of techniques that are not completely true to

life. Squash and stretch, for instance, distorts objects during movement to draw the eye

toward the direction of motion: objects might stretch when they fly at their fastest, and

squashing them conveys a notion of stopping, gathering energy, or changing direc-

tion. Moving items along arcs implies a more natural motion; motion along a straight

line seems to have intent. Before objects begin moving, they anticipate their upcom-

ing motion; they conclude with a follow-through. Ease-in, ease-out is a technique of tim-

ing animations: animations start slowly to emphasize direction, accelerate through the

middle, and slow down again at the end. Complex acts are staged to draw attention to

individual parts one at a time.

Visualization researchers have adapted these techniques with differing degrees of

enthusiasm and success—for example, the Information Visualizer framework (Card,

Robertson, and Mackinlay 1991), an early 3D animated framework, integrated sev-

eral of these principles, including anticipation, arcs, and follow-through. On the other

hand, some elements of this list seem distinctly inappropriate. For instance, squash-

ing or stretching a data point distorts it, changing the nature of the visualization; thus,

we can no longer describe the visualization as maintaining the consistent rule “height

maps to this, width maps to that” at each frame of the animation. In their research on

slideshows, Zongker and Salesin (2003) warn that many animation techniques can be

distracting or deceptive, suggesting causality where none might exist. Also, they are

often meant to give an illusion of emotion, which may be quite inappropriate for data

visualization. (An exception would be We Feel Fine, in which the motion is supposed

to convey emotion and uses these techniques effectively to do so.)

The Downsides of Animation
Animation has been less successful for data visualization than for scientific visualiza-

tion. Two metastudies have looked at different types of animations—process anima-

tions and algorithm visualizations—and found that both classes have spotty track

records when it comes to helping students learn more about complex processes.

The psychologist Barbara Tversky found, somewhat to her dismay, that animation

did not seem to be helpful for process visualization (i.e., visualizations that show how

to use a tool or how a technique works). Her article, “Animation: Can It Facilitate?”

(Tversky, Morrison, and Bétrancourt 2002), reviews nearly 100 studies of animation

and visualization. In no study was animation found to outperform rich static diagrams.

It did beat out textual representations, though, and simple representations that simply

showed start and end state without transitions.

333chapter 19: animation for visualization: opportunities and drawbacks

Algorithm animation is in many ways similar to process visualization: an algorithm

can be illustrated by showing the steps that it takes. Some sort algorithms, for exam-

ple, are very amenable to animation: an array of values can be drawn as a sequence of

bars, so the sort operations move bars around. These animations can easily show the

differences between, say, a bubble sort and an insertion sort. Christopher Hundhausen,

Sarah Douglas, and John Stasko (2002) tried to understand the effectiveness of algo-

rithm visualization in the classroom, but half of the controlled studies they examined

found that animation did not help students understand algorithms. Interestingly, the

strongest factor predicting success was the theory behind the animation. Visualization

was most helpful when accompanied by constructivist theories—that is, when stu-

dents manipulated code or algorithms and watched a visualization that illustrated their

own work, or when students were asked questions and tried to use the visualization to

answer them. In contrast, animations were ineffective at transferring knowledge; pas-

sively watching an animation was not more effective than other forms of teaching.

GapMinder and Animated Scatterplots
One recent example of successful animated visualization comes from Hans Rosling’s

GapMinder (http://www.gapminder.org). Rosling is a professor of Global Health from

Sweden, and his talk at the February 2006 Technology, Entertainment, Design (TED)

conference* riveted first a live audience, then many more online. He collected public

health statistics from international sources and, in his brief talk, plotted them on a

scatterplot. In the visualization, individual points represent countries, with x and y val-

ues representing statistics such as life expectancy and average number of children and

each point’s area being proportionate to the population of the country it represents.

Rosling first shows single frames—the statistics of the countries in a single year—

before starting to trace their progress through time, animating between the images

with yearly steps in between.

Figure 19-1 shows three frames of a GapMinder-like animation. On the x-axis is the

life expectancy at birth; on the y-axis is the infant mortality rate. The size of bubbles is

proportionate to the population. Color-coding is per continent; the largest two dots are

China and India.

Rosling’s animations are compelling: he narrates the dots’ movement, describing their

relative progress. China puts public health programs in place and its dot floats upward,

followed by other countries trying the same strategy. Another country’s economy

booms, and its dot starts to move rapidly rightward. Rosling uses this animation to

make powerful points about both our preconceptions about public health problems

and the differences between the first and third world, and the animation helps viewers

follow the points he is making.

*	Available online at http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html.
Rosling presented similar discussions at TED 2007 and TED 2009.

http://www.gapminder.org
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html

334 Beautiful Visualization

Figure 19-1.  A GapMinder-like visualization showing information about a set of 75 countries
in 1975, 1985, 1995, and 2000; this chart plots life expectancy (x axis) against infant mortal-
ity (y axis)—countries at the top-left have a high infant mortality and a short life expectancy

Too many dots?
The perceptual psychology research mentioned earlier showed that people have

trouble tracking more than four moving points at a time. In his presentation, Rosling

is able to guide the audience, showing them where to look, and his narration helps

them see which points to focus on. He describes the progress that a nation is making

with the assistance of a long pointer stick; it is quite clear where to look. This reduces

confusion.

It also helps that many of the two-dimensional scatterplots he uses have unambigu-

ously “good” and “bad” directions: it is good for a country to move toward a higher

GDP and a longer life expectancy (i.e., to go up and to the right), and bad to move in

the opposite direction (down and to the left).

With Rosling’s sure hand guiding the watcher’s gaze, the visualization is very effective.

But if a temporal scatterplot were incorporated into a standard spreadsheet, would it

be useful for people who were trying to learn about the data?

335chapter 19: animation for visualization: opportunities and drawbacks

Testing Animated Scatterplots
At Microsoft Research, we became curious about whether these techniques

could work for people who were not familiar with the data. We reimplemented a

GapMinder-like animation as a base case, plotting points at appropriate (x, y) locations

and interpolating them smoothly by year. We then considered three alternative static

visualizations that contained the same amount of information as the animation. First,

of course, we could simply take individual frames (as in Figure 19-1). Even in our ear-

liest sketches, however, we realized this was a bad idea: it was too difficult to trace the

movement of points between frames. The ability to follow the general trajectories of

the various countries and to compare them is a critical part of GapMinder; we wanted

users to have a notion of continuity, of points moving from one place to another, and

the individual frames simply were not helpful.

We therefore implemented two additional views, using the same set of countries and

the same axes as Figure 19-1, for the years 1975–2000. The first is a tracks view, which

shows all the paths overlaid on one another (Figure 19-2). The second is a small mul-

tiples view, which draws each path independently on separate axes (Figure 19-3). In

the tracks view, we cue time with translucency; in the small multiples view, we instead

show time by changing the sizes of the dots.

Figure 19-2.  Tracks view in which each country is represented as a series of dots that become
more opaque over time; years are connected with faded streaks

336 Beautiful Visualization

Figure 19-3.  Small multiples view in which each country is in its own tiny coordinate system:
dots grow larger to indicate the progression of time

We wanted to understand how well users performed with the animation, as com-

pared with these static representations. Users can set up their own scatterplots at the

GapMinder website, but would they be able to learn anything new from their data?

We chose 30 different combinations of (x, y) values based on public health and demo-

graphic data from the United Nations, and presented users with fairly simple questions

such as “In this scatterplot, which country rises the most in GDP?” and “In this scatter-

plot, which continent has the most countries with diminishing marriage rates?” We

recruited users who were familiar with scatterplots, and who dealt with data in their

daily work. Some subjects got to “explore” the data, and sat in front of a computer

answering questions on their own. Others got a “presentation,” in which a narrator

showed them the visualization or played the animation. We measured both time and

accuracy as they then answered the questions.

The study’s numerical results are detailed in Robertson et al. (2008). The major con-

clusions, however, can be stated quite simply: animation is both slower and less accu-

rate at conveying the information than the other modalities.

Exploration with animation is slower
We found that when users explored the data on their own, they would often play

through the animation dozens of times, checking to see which country would be the

correct answer to the question. In contrast, those who viewed a presentation and

337chapter 19: animation for visualization: opportunities and drawbacks

could not control the animation on their own answered far more rapidly: they were

forced to choose an answer and go with it. Thus, animation in exploration was the

slowest of the conditions, while animation in presentation was the fastest.

Interestingly, this might shed light on why the process animations by Tversky et al.

found so little success. In our tests, users clearly wanted to be able to move both for-

ward and backward through time; perhaps this is true of process animations, too.

More effort may be required to get the same information from an animation as

opposed to a series of static images, because you have to replay the entire thing rather

than just jumping directly to the parts you want to see.

Animation is less accurate
Despite the extra time the users spent with the animation, the users who were shown

the static visualizations were always more accurate at answering the questions. That is,

the animation appeared to detract from the users’ ability to correctly answer questions.

Their accuracy was not correlated with speed: the extra time they spent in exploration

did not seem to drive better outcomes.

This seems like bad news for animation: it was slower and less accurate at communi-

cating the information. On the other hand, we found the animation to be more engag-

ing and emotionally powerful: one pilot subject saw life expectancy in a war-torn

country plummet by 30 years and gasped audibly. Generally, users preferred to work

with the animation, finding it more enjoyable and exciting than the other modes. They

also found it more frustrating, though: “Where did that dot go?” asked one angrily, as

a data point that had been steadily rising suddenly dropped.

These findings suggest that Rosling’s talk is doing something different from what

our users experienced. Critically, Rosling knows what the answer is: he has worked

through the data, knows the rhetorical point he wishes to make, and is bringing the

viewers along. He runs much of his presentation on the same set of axes, so the view-

ers don’t get disoriented. His data is reasonably simple: few of the countries he high-

lights make major reversals in their trends, and when he animates many countries at

once, they stay in a fairly close pack, traveling in the same direction. He chooses his

axes so the countries move in consistent directions, allowing users to track origins and

goals easily. He takes advantage of the Gestalt principle of common fate to group them,

and he narrates their transitions for maximum clarity.

In contrast, our users had to contend with short sessions, had to track countries that

suffered abrupt reversals, and did not have a narrator to explain what they were about

to see; rather than learning the answer from the narrator, they had to discover it

themselves. This suggests to us that what we were asking our users to do was very dif-

ferent from what Rosling is doing—so different, in fact, that it deserves its own section.

338 Beautiful Visualization

Presentation Is Not Exploration
An analyst sitting before a spreadsheet does not know what the data will show, and

needs to play with it from a couple of different angles, looking for correlations, connec-

tions, and ideas that might be concealed in the data. The process is one of foraging—it

rewards rapidly reviewing a given chart or view to see whether there is something

interesting to investigate, followed by moving on with a new filter or a different image.

In contrast, presenters are experts in their own data. They have already cleaned errors

from the dataset, perhaps removing a couple of outliers or highlighting data points that

support the core ideas they want to communicate. They have picked axes and a time

range that illustrate their point well, and they can guide the viewers’ perception of the

data. Most importantly, they are less likely to need to scrub back and forth, as we saw

users doing with our animation, in order to check whether they have overlooked a

previous point. In these conditions, animation makes a lot of sense: it allows the pre-

senter to explain a point vividly and dramatically.

The experience of exploration is different from the experience of presentation. It is

easy to forget this, because many of our tools mix the two together. That is, many

packages offer ways to make a chart look glossy and ready for presentation, and those

tools are not clearly separated from the tools for making the chart legible and ready

for analysis. In Microsoft Excel, for example, the same menu that controls whether my

axis has a log scale also helps me decide whether to finish my bar chart with a glossy

color. The former of these choices is critical to exploration; the latter is primarily use-

ful for presentation. After I finish analyzing data in Excel, I can copy the chart directly

into PowerPoint and show the result. As a result of this seamlessness, few people who

use this popular software have seriously discussed the important distinctions between

presentation and exploration.

Table 19-1 summarizes major differences between the needs of exploration and

presentation.

Table 19-1.  Differentiating exploration from presentation

Exploration Presentation

Characteristics Data is surprising.

Data may have outliers.

Data is likely to move unpredictably.

Viewer controls interaction.

Data is well known to the
presenter.

Data has been cleaned.

Viewer is passive.

339chapter 19: animation for visualization: opportunities and drawbacks

Table 19-1.  Differentiating exploration from presentation

Exploration Presentation

Goals/procedures Analyze multiple dimensions at
once.

Change mappings many times.

Look for trends and holes.

Present fewer dimensions
to make a point.

Walk through dimensions
clearly.

Highlight critical points.

Group points together to
show trends and motion.

These two perspectives are not completely disjoint, of course. Many interactive web

applications allow users to explore a few dimensions, while still not exposing raw data.

The tension between presentation and exploration suggests that designers need to con-

sider the purpose of their visualizations. There are design trade-offs, not only for ani-

mation, but more generally.

Types of Animation
Some forms of animation are most suited to presentation, while others work well for

exploration. In this section, we’ll discuss a hierarchy of different types of transfor-

mations, ranging from changing the view on a visualization to changing the axes on

which the visualization is plotted to changing the data of the visualization. Let’s begin

with an example of a system that needs to manage two different types of changes.

Dynamic Data, Animated Recentering
In 2001, peer-to-peer file sharing was becoming an exciting topic. The Gnutella sys-

tem was one of the first large-scale networks, and I was in a group of students who

thought it would make a good subject of study. Gnutella was a little different from

other peer-to-peer systems. The earlier Napster had kept a detailed index of everything

on the network; BitTorrent would later skip indexing entirely. Gnutella passed search

requests between peers, bouncing around the questions and waiting for replies. When

I used a peer-to-peer search to track down a song, how many machines were really

getting checked? How large a network could my own client see?

We instrumented a Gnutella client for visualization, and then started representing the

network. We rapidly realized a couple of things: first, that new nodes were constantly

appearing on the network; and second, that knowing where they were located was

really interesting. The appearance of new nodes meant that we wanted to be able to

change the visualization stably. There would always be new data pouring into the sys-

tem, and it was important that users not be disoriented by changes taking place in the

340 Beautiful Visualization

visualization as new data came in. On the other hand, we did not want to pause, add

data, and redraw: we wanted a system where new data would simply add itself to the

diagram unobtrusively.

Because the Gnutella network used a peer-to-peer discovery protocol, it was often

interesting to focus on a single node and its neighbors. Is this node connected to a cen-

tral “supernode”? Is it conveying many requests? We wanted to be able to focus on

any single node and its neighbors, and to be able to easily estimate the number of hops

between nodes. This called for changing the viewpoint without changing the remainder

of the layout.

Our tool was entitled GnuTellaVision, or GTV (Yee et al. 2001). We addressed these

two needs with two different animation techniques. We based the visualization on a

radial layout, both to reflect the way that data was changing—growing outward as we

discovered more connections—and in order to facilitate estimation of the number of

hops between the central node and others. A radial layout has the virtues of a well-

defined center point and a series of layers that grow outward. As we discovered new

nodes, we added them to rings corresponding to the number of hops from the starting

node. When a new node arrived, we would simply move its neighbors over by a small

amount (most nodes in the visualization do not move much). As the visualization ran,

it updated with new data, animating constantly (Figure 19-4).

Figure 19-4.  GTV before (left) and after (right) several new nodes are discovered on the
network—as nodes yield more information, their size and color can also change

When a user wanted to examine a node, GTV recentered on the selection. In our first

design, it did so in the most straightforward way possible: we computed a new radial

layout and then moved nodes linearly from their previous locations to the new ones.

This was very confusing, because nodes would cross trajectories getting from their old

locations to the new ones. The first fix was to have nodes travel along polar coordinate

341chapter 19: animation for visualization: opportunities and drawbacks

paths, and always clockwise. Thus, the nodes remained in the same space as the

visualization was drawn, and moved smoothly to their new locations (Figure 19-5).

Because GTV is oriented toward examining nodes that may be new to the user, and is

constantly discovering novel information, it was important that this animation facili-

tate exploration by helping users track the node paths.

Figure 19-5.  Interpolation in rectangular coordinates (top) causes nodes to cross through each
others’ paths; interpolation in polar coordinates (bottom) makes for smooth motion

A radial layout has several degrees of freedom: nodes can appear in any order around

the radius, and any node can be at the top. When we did not constrain these degrees

of freedom, nodes would sometimes travel from the bottom of the screen to the top.

We wanted to ensure that nodes moved as little as possible, so we added a pair of con-

straints: nodes maintained, as much as they could, both the same relative orientation

and order. Maintaining relative orientation means that the relative position of the edge

from the old center to the new center is maintained. Maintaining relative order means

that nodes’ neighbors will remain in the same order around the rings. Both of these

are illustrated in Figure 19-6.

342 Beautiful Visualization

Figure 19-6.  Animated recentering: the purple highlighted node becomes the center, and other
sets of nodes maintain their relative positions and orders (the large blue node stays below, and
the set of small yellow nodes spreads along an outer ring)

Last, we adapted the ease-in, ease-out motion from cartooning in order to help users see

how the motion was about to happen.

This section demonstrated some useful principles that are worth articulating:

Compatibility

Choose a visualization that is compatible with animation. In GTV, the radial lay-

out can be modified easily; new nodes can be located on the graph to minimize

changes, and—like many tree representations—it is possible to recenter on differ-

ent nodes.

343chapter 19: animation for visualization: opportunities and drawbacks

Coordinate motion

Motion should occur in a meaningful coordinate space of the visualization. We

want to help the users stay oriented within the visualization during the anima-

tion, so they can better predict and follow motion. In GTV, for instance, transform-

ing through rectangular coordinates would be unpredictable and confusing; the

radial coordinates, in contrast, mean that users can track the transition and the

visualization retains its meaning.

Meaningful motion

Although animation is about moving items, unnecessary motion can be very con-

fusing. In general, it is better to have fewer things move than more in a given

transition. Constraining the degrees of freedom of the GTV animation allows the

visualization to change as little as possible by keeping things in roughly the same

position.

A Taxonomy of Animations
There are many sorts of change that might occur within a visualization. In the discus-

sion of GapMinder, we talked about changes to data; in the example of GTV, we exam-

ined changes to both the data and the view. There are more types of transitions that

one might wish to make in a visualization, though. The following is a list adapted from

one assembled by Heer and Robertson (2007). Each type of transition is independent;

it should be possible to change just the one element without changing any of the oth-

ers. Many of these are applicable to both presentation and exploration of data:

Change the view

Pan over or zoom in on a fixed image, such as a map or a large data space.

Change the charting surface

On a plot, change the axes (e.g., change from linear to log scale). On a map,

change from, for example, a Mercator projection to a globe.

Filter the data

Remove data points from the current view following a particular selection

criterion.

Reorder the data

Change the order of points (e.g., alphabetize a series of columns).

Change the representation

Change from a bar chart to a pie chart; change the layout of a graph; change the

colors of nodes.

344 Beautiful Visualization

Change the data

Move data forward through a time step, modify the data, or change the values

portrayed (e.g., a bar chart might change from Profits to Losses). As discussed ear-

lier, moving data through a time step is likely to be more useful for presentations.

These six types of transitions can describe most animations that might be made with

data visualizations. Process visualizations would have a somewhat different taxonomy,

as would scientific visualizations that convey flow (such as air over wings). Next, given

this set of transitions, we will discuss some examples of how these animations might

be managed.

Staging Animations with DynaVis
Two people exploring a dataset together on a single computer have a fundamental

problem: only one of them gets the mouse. While it is perfectly intuitive for one of

them to click “filter,” the other user might not be able to track what has just hap-

pened. This sits at an interesting place between exploration and presentation: one of

the major goals of the animation is to enable the second user to follow the leader by

knowing what change the leader has just invoked; however, the leader may not know

specifically what point he is about to make. Animation is plausibly a way to transition

between multiple visualizations, allowing a second person—or an audience—to keep

up. For the last several years, we have been experimenting with ways to show transi-

tions of data and representations of well-known charts, such as scatterplots, bar charts,

and even pie charts.

DynaVis, a framework for animated visualization, was our starting point. A summer

internship visit by Jeff Heer, now a professor at Stanford, gave us a chance to work

through a long list of possibilities. This discussion is outlined in more detail in his

paper (Heer and Robertson 2007).

In DynaVis, each bar, dot, or line is represented as an object in 3D space, so we can

move smoothly through all the transitions described in the preceding section. Many

transformations are fairly clear: to filter a point from a scatterplot, for instance, the

point just needs to fade away. There are several cases that are much more interesting

to work through, though: those in which the type of representation needs to change,

and those in which more than one change needs to happen at a time. When the repre-

sentation is being changed, we try to follow several basic principles. Here are the first

two:

Do one thing at a time

Ensure that the visualization does not entail making multiple simultaneous

changes. This might mean staging the visualization, to ensure that each successive

step is completed before the next one is started.

345chapter 19: animation for visualization: opportunities and drawbacks

Preserve valid mappings

At any given time during a step, ensure that the visualization is a meaningful

one that represents a mapping from data to visualization. It would be invalid, for

example, to rename the bars of a bar chart: the fundamental mapping is that each

bar represents one x-axis value.

Figure 19-7 shows a first attempt at a transition from bar chart to pie chart. There are

some positive aspects to the transition. For example, the bars do not move all at once,

so the eye can follow movement fairly easily, and the bars maintain their identities and

their values across the animation. While there are some issues with occlusion as the

bars fly past each other, they move through a smooth trajectory so that it is reasonable

to predict where they will end up. Finally, the animation is well staged: all the wedges

are placed before they grow together into a full pie.

This visualization has a critical flaw, though. The length of the bar becomes the length

of the pie wedge, so longer bars became longer wedges. However, longer bars will ulti-

mately have to become fatter wedges in the final pie chart. That means that bars are

becoming both fat and long, or both skinny and short. This, in turn, means that the

visualization does not employ a constant rule (such as “number of pixels is proportion-

ate to data value”).

That leads us to the next principle:

Maintain the invariant

While the previous rule referred to the relationship between data elements and

the marks on the display, this rule refers to the relationship of the data values to

the visualization. If the data values are not changing, the system should maintain

those invariant values throughout the visualization. For example, if each bar’s

height is proportionate to the respective data point’s value, the bars should remain

the same height during the animation.

Figure 19-8 illustrates both of these principles in a more successful bar chart to pie

chart animation. This chart shows a 1:1 correspondence between the drawn entity—

the bar, the curved line, or the pie slice—and the underlying data. This assignment

never changes: the bar furthest on the left (“A”) becomes the leftmost pie slice (also

“A”). The invariant is maintained by the lengths of the bars, which remain proportion-

ate to the data values. While we do not illustrate it here, we follow similar principles

in changing a bar chart into a line chart: the top-left corner of the bar represents the

value, so as the bar shrinks into a line, that data point will remain rooted at the top-

left corner of the bar.

346 Beautiful Visualization

Figure 19-7.  Less successful bar chart to pie chart animation: long bars become long, fat
wedges on the pie; short bars become short, skinny wedges; then all wedges grow to full length

347chapter 19: animation for visualization: opportunities and drawbacks

Figure 19-8.  Better bar chart to pie chart animation: the lengths of the bars are maintained as
they are brought into the ring; the ring then fills to become a pie

348 Beautiful Visualization

Another interesting case brings back the cartoon notion of staging. In GnuTellaVision

we were able to recenter in a single motion, but in DynaVis it often makes more sense

to break a transformation into two steps. For instance, in each of these examples, we

ensure that we change only one thing at a time:

•	 To filter a dataset in a bar chart, we first remove bars we will not use, and then

close ranks around them. To unfilter, we open space for the bars that will be

added, and then grow the bars up.

•	 To grow or shrink a bar, such as when data changes, we may need to change the

axes. Imagine growing a bar chart from the values (1,2,3,4,5) to (1,2,10,4,5)—

the y-axis should certainly grow to accommodate the new value. If we grow the

bar first, it will extend off the screen; therefore, we must change the axis before

changing the bar.

•	 When sorting a selection of bars, sorting them at once could cause all bars to pass

through the center at once. This is confusing: it is hard to figure out which bar is

which. By staggering the bars slightly, so that they start moving a small amount of

time apart, we found that the sort operation was much clearer.

Staging is not always appropriate, though. In Heer and Robertson’s report on the proj-

ect (2007), they found that some staged animations are more challenging to follow. In

particular, when resizing segments of a donut or pie chart, it was difficult to monitor

the changes as the pie turned to accommodate the new sizes. DynaVis attempted to

stage this transition by extracting segments to either an external or an internal ring,

adjusting their sizes, and then collapsing them back into place. While this made the

changes much more visible, it also added a layer of potentially confusing action.

Heer and Robertson collected both qualitative results—how much users liked the

animations—and quantitative ones—finding out which animations allowed users to

answer questions most accurately. They found that users were able to answer ques-

tions about changes in values over time more easily with the animations than with-

out; furthermore, the animations that were staged but required only one transition did

substantially better than the animations that required many transitions.

Even with these caveats, though, it is clear that these sorts of dynamics could poten-

tially help users understand transitions much more easily: compared to a presenter

flipping through a series of charts, forcing the audience to reorient after each slide,

a DynaVis-like framework might allow users to remain oriented thoughout the

presentation.

Principles of Animation
There have been several attempts to formulate principles for animation. Tversky,

Morrison, and Bétrancourt (2002) offer two general guidelines at the end of their

article: that visualizations should maintain congruence and apprehension. The former

349chapter 19: animation for visualization: opportunities and drawbacks

suggests that the marks on the screen must relate to the underlying data at all times.

The latter suggests that the visualization should be easy to understand. The principles

we have articulated fit into these categories. (Other, related guidelines have been sug-

gested in Heer and Robertson’s [2007] discussion of the DynaVis research, by Zongker

and Salesin [2003] in their discussion of animation for slideshow presentations, and,

with regard to graph drawing, by Freidrich and Eades [2002].)

The principles that we have discussed in this chapter are:

Staging

It is disorienting to have too many things happen at once. If it is possible to

change just one thing, do so. On the other hand, sometimes multiple changes

need to happen at once; if so, they can be staged.

Compatibility

A visualization that will be disrupted by animation will be difficult for users to

track. For example, it is not disruptive to add another bar to a bar chart (the

whole set can slide over), and it may not be disruptive to add another series to

a bar chart. However, a squarified treemap is laid out greedily by size; growing a

single rectangle will require every rectangle to move to a new location and will

look confusing.

Necessary motion

In particular, avoid unnecessary motion. This implies that we want to ensure that

motion is significant—i.e., we should animate only what changes. In general, the

image should always be understandable. As the DynaVis user tests showed, excess

motion—even significant motion—can be confusing.

Meaningful motion

The coordinate spaces and types of motion should remain meaningful. This

also entails two points discussed earlier: preserve valid mappings and maintain the

invariant.

Verifying that you’ve adhered to these principles can help you figure out whether an

animation is headed in the right direction.

Conclusion: Animate or Not?
In this chapter, we have discussed the difference between presentation and explora-

tion of data. We have also discussed the various layers of a visualization that might be

altered, and some principles for making a visualization-safe animation.

So now you’re staring at a visualization you’re working on, and trying to decide

whether to animate it or not. The question that this chapter has repeatedly asked is:

what function does the animation serve? If it is meant to allow a user to smoothly

350 Beautiful Visualization

transition between views, then it is likely to be helpful. On the other hand, if the user

is meant to compare the “before” to the “after,” the animation is less likely to be of

use.

Users want to understand why a change is happening, and what is changing. If every-

thing on the screen is going to move around, perhaps it would be better to simply

switch atomically to a new image; this might spare the user the difficulty of trying to

track the differences. Finally, animations mean that it can be more difficult to print out

visualizations. Individual frames should be meaningful, so that users can capture and

share those images. Animation imposes a burden of complexity on the user, and that

complexity should pay off.

Further Reading
Here are a few animated data visualization projects that have some relevance to this

discussion, which you may want to explore further:

•	 Many researchers begin playing with zooming and panning as basic operations in

a visualization with Pad++, a zoomable architecture for laying out data in large

spaces (Bederson and Hollan 1994).

•	 Scatterdice (Elmqvist, Dragicevic, and Fekete 2008) explores a way to transition

between scatterplots by rotating through the third dimension.

•	 Visualizations of tree data structures include ConeTrees (Card, Robertson, and

Mackinlay 1991), CandidTree (Lee et al. 2007), and Polyarchy (Robertson et al.

2002). Researchers have explored animation with treemaps by zooming (dis-

torting) the treemap (Blanch and Lecolinet 2007) and moving through 3D space

(Bladh, Carr, and Kljun 2005).

•	 Graph layout is often animated as the layout progresses; in the last 10 years, the

graph-drawing community has turned to considering ways to update graphs in

response to underlying data. In addition to the work cited earlier (Friedrich and

Eades 2002), we note GraphAEL (Erten et al. 2003).

Acknowledgments
I am grateful to Professor Jeffrey Heer of Stanford University, both for his valuable

conversations on these topics when we shared an office and for his predigested ver-

sions of these concepts, produced in his 2007 Infovis paper (Heer and Robertson 2007)

and his Stanford course notes. Jeff also contributed a chapter to Beautiful Data, the sis-

ter volume to this book, discussing his work with sense.us. My thanks also for feedback

and ideas for this paper from my colleagues, Steven Drucker, Roland Fernandez, Petra

Isenberg, and George Robertson.

351chapter 19: animation for visualization: opportunities and drawbacks

References
Bederson, B.B., and J.D. Hollan. 1994. “Pad++: A zooming graphical interface for

exploring alternate interface physics.” In Proceedings of the 7th Annual ACM Symposium on

User Interface Software and Technology. New York: ACM Press.

Bladh, Thomas, David A. Carr, and Matjaz Kljun. 2005. “The effect of animated tran-

sitions on user navigation in 3D tree-maps.” In Proceedings of the Ninth International

Conference on Information Visualization. Washington, DC: IEEE Computer Society.

Blanch, Renaud, and Eric Lecolinet. 2007. “Browsing zoomable treemaps: Structure-

aware multi-scale navigation techniques.” IEEE Transactions on Visualization and

Computer Graphics 13, no. 6: 1248–1253.

Card, Stuart K., George G. Robertson, and Jock D. Mackinlay. 1991. “The information

visualizer, an information workspace.” In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. New York: ACM Press.

Cavanagh, Patrick, and George Alvarez. 2005. “Tracking multiple targets with multifocal

attention.” TICS 9: 349–354.

Chang, Bay-Wei, and David Ungar. 1993. “Animation: From cartoons to the user

interface.” In Proceedings of the 6th Annual ACM Symposium on User Interface Software and

Technology. New York: ACM Press.

Elmqvist, N., P. Dragicevic, and J.-D. Fekete. 2008. “Rolling the dice: Multidimensional

visual exploration using scatterplot matrix navigation.” IEEE Transactions on

Visualization and Computer Graphics 14, no. 6: 1141–1148.

Erten, C., P.J. Harding, S.G. Kobourov, K. Wampler, and G. Yee. 2003. “GraphAEL:

Graph animations with evolving layouts.” In Proceedings of the 11th International

Symposium on Graph Drawing. Springer-Verlag.

Fisher, Danyel A. 2007. “Hotmap: Looking at geographic attention.” IEEE Transactions

on Visualization and Computer Graphics 13, no. 6: 1184–1191.

Friedrich, C., and P. Eades. 2002. “Graph drawing in motion.” Journal of Graph

Algorithms and Applications 6, no. 3: 353–370.

Heer, Jeffrey, and George G. Robertson. 2007. “Animated transitions in statistical data

graphics.” IEEE Transactions on Visualization and Computer Graphics 13, no. 6: 1240–1247.

Hundhausen, Christopher D., Sarah A. Douglas, and John T. Stasko. 2002. “A meta-

study of algorithm visualization effectiveness.” Journal of Visual Languages & Computing

13, no. 3: 259–290.

Johnson, Ollie, and Frank Thomas. 1987. The Illusion of Life. New York: Disney Editions.

352 Beautiful Visualization

Lasseter, John. 1987. “Principles of traditional animation applied to 3D computer ani-

mation.” In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive

Techniques. New York: ACM Press.

Lee, Bongshin, George G. Robertson, Mary Czerwinski, and Cynthia Sims Parr. 2007.

“CandidTree: Visualizing structural uncertainty in similar hierarchies.” Information

Visualization 6: 233–246.

Michotte, A. 1963. The Perception of Causality. Oxford: Basic Books.

Robertson, George, Kim Cameron, Mary Czerwinski, and Daniel Robbins. 2002.

“Polyarchy visualization: Visualizing multiple intersecting hierarchies.” In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press.

Robertson, George, Roland Fernandez, Danyel Fisher, Bongshin Lee, and John

Stasko. 2008. “Effectiveness of animation in trend visualization.” IEEE Transactions on

Visualization and Computer Graphics 14, no. 6: 1325–1332.

Tversky, Barbara, Julie B. Morrison, and Mireille Bétrancourt. 2002. “Animation: Can

it facilitate?” International Journal of Human-Computer Studies 57: 247–262.

Yee, Ka-Ping, Danyel Fisher, Rachna Dhamija, and Marti A. Hearst. 2001. “Animated

exploration of dynamic graphs with radial layout.” In Proceedings of the IEEE Symposium

on Information Visualization. Washington, DC: IEEE Computer Society.

Zongker, Douglas E., and David H. Salesin. 2003. “On creating animated presenta-

tions.” In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation. New York: ACM Press.

