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C h a p t e r  N i n e t e e n

Animation for Visualization: 
Opportunities and Drawbacks

Danyel Fisher

Does animation help� build richer, �more vivid, and more understandable visualiza-

tions, or simply confuse things?

The use of Java, Flash, Silverlight, and JavaScript on the Web has made it easier to 

distribute animated, interactive visualizations. Many visualizers are beginning to think 

about how to make their visualizations more compelling with animation. There are 

many good guides on how to make static visualizations more effective, and many 

applications support interactivity well. But animated visualization is still a new area; 

there is little consensus on what makes for a good animation. 

The intuition behind animation seems clear enough: if a two-dimensional image is 

good, then a moving image should be better. Movement is familiar: we are accus-

tomed to both moving through the real world and seeing things in it move smoothly. 

All around us, items move, grow, and change color in ways that we understand deeply 

and richly. 

In a visualization, animation might help a viewer work through the logic behind an 

idea by showing the intermediate steps and transitions, or show how data collected 

over time changes. A moving image might offer a fresh perspective, or invite users 

to look deeper into the data presented. An animation might also smooth the change 

between two views, even if there is no temporal component to the data. 

As an example, let’s take a look at Jonathan Harris and Sep Kamvar’s We Feel Fine 

animated visualization (http://wefeelfine.org). In this visualization, blog entries men-

tioning feelings are represented as bubbles. As users move between views, the bubbles 

http://wefeelfine.org
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are reorganized into histograms and other patterns. For example, one screen shows 

the relative distribution of blog entries from men and women, while another shows 

the relative distribution of moods in the blog entries. While the bubbles fly around the 

screen freely, there are always a constant number on the screen. This constancy helps 

reinforce the idea of a sample population being organized in different ways. Animation 

is also used to evoke emotion: the bubbles quiver with energy, with those that represent 

“happy” moving differently than bubbles that represent “sad.”

Not all animations are successful, though. Far too many applications simply borrow 

the worst of PowerPoint, flying data points across the screen with no clear purpose; 

elements sweep and grow and rotate through meaningless spaces, and generally only 

cause confusion. 

I have had several occasions to build animated visualizations. In 2000, I worked with 

fellow grad students building GnuTellaVision, which visualized the growing Gnutella 

peer-to-peer network. Since then, I have been involved in a variety of projects that 

have shed light on animated visualization: for example, I worked on a project that 

explored animated scatterplots, and I was a close bystander on the DynaVis project, 

which looked at transitions between different visualizations. In this chapter, I will talk 

through some of these experiences and to try to develop some principles for animating 

visualizations.

Animation can be a powerful technique when used appropriately, but it can be very 

bad when used poorly. Some animations can enhance the visual appeal of the visu-

alization being presented, but may make exploration of the dataset more difficult; 

other animated visualizations facilitate exploration. This chapter attempts to work out 

a framework for designing effective animated visualizations. We’ll begin by looking 

at some background material, and then move on to a discussion of one of the most 

well-known animated visualizations, Hans Rosling’s GapMinder. One of the projects I 

worked on explored animated scatterplots like GapMinder; this makes a fine launch-

ing point to discuss both successes and failures with animation. As we’ll see, successful 

animations can display a variety of types of transformations. The DynaVis project helps 

illustrate how some of these transitions and transformations can work out. The chap-

ter concludes by laying out a number of design principles for visualizations. 

Principles of Animation
At its core, any animation entails showing a viewer a series of images in rapid suc-

cession. The viewer assembles these images, trying to build a coherent idea of what 

occurred between them. The perceptual system notes the changes between frames, so 

an animation can be understood as a series of visual changes between frames. When 

there are a small number of changes, it is quite simple to understand what has hap-

pened, and the viewer can trace the changes easily. When there are a large number of 

changes, it gets more complex.
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The Gestalt perceptual principle of common fate states that viewers will group large 

numbers of objects together, labeling them all as a group, if they are traveling in the 

same direction and at the same speed. Individual objects that take their own trajecto-

ries will be seen as isolates, and will visually stand out. If all the items move in differ-

ent directions, however, observers have far more difficulty following them. Perception 

researchers have shown that viewers have difficulty tracking more than four or five 

objects independently—the eye gives up, tracking only a few objects and labeling other 

movement as noise (Cavanagh and Alvarez 2005). 

Animation in Scientific Visualization
Attendees at the annual IEEE VisWeek conference—the research summit for visual-

ization—are divided into two groups: information visualizers and scientific visualizers. 

The two groups give different talks, sit in different rooms, and sometimes sit at differ-

ent tables at meals. Watching the talks, one quickly notices that roughly half of the 

papers in the scientific visualization room feature animation, while almost no papers 

in the information visualization room do. You could say that the difference between 

the groups is that scientific visualizers are people who understand what the x-, y-, and 

z-axes actually mean: they are very good at picturing the dimensions of an image and 

understand the meaning of depths and distances. The dynamic processes they often 

represent—wind blowing over an airplane wing, hurricanes sweeping across maps, 

blood flowing through veins—also involve an additional dimension: that of time. As it 

would be difficult to squeeze its representation into any of the other three dimensions, 

animating is an attractive method for displaying such processes. 

In contrast, data visualization is less straightforward. Information visualizers usually 

work with abstract data spaces, where the axes do not correspond to the real world 

(if they mean anything at all). Viewers need to get acclimated to the dimensions they 

can see, and learn how to interpret them. Consequently, there are comparatively few 

examples of animation published in the information visualization community. (We 

will discuss some of these later.)

Learning from Cartooning
Animation, of course, appears popularly in places outside of visualizations. Movies and 

cartoons depend on some of the same physical principles as computer animation, so 

several people have asked whether cartooning techniques might bring useful insights 

to the creation of animated visualizations. As early as 1946, the Belgian psycholo-

gist Albert Michotte noted the “perception of causality” (Michotte 1963). It is easy 

to believe that the movement in an animation shows intent: that this point is chasing 

another across the screen (rather than moving in an equivalent trajectory one second 

behind it), that this ball hit another (rather than “this dot stopped at point A, and this 

other dot moved from A to B”), and so on. Thus, we can ascribe agency and causality 

where none really exists.
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In cartoons, of course, we wish to communicate causality. Traditional cartoonists have 

described how they endow drawn shapes with the “illusion of life” (Johnston and 

Thomas 1987) in order to convey emotion, and several rounds of research papers 

(Lasseter 1987; Chang and Ungar 1993) have tried to see how to distill those ideas for 

computer animation and visualization. 

Traditional cartoonists use a barrage of techniques that are not completely true to 

life. Squash and stretch, for instance, distorts objects during movement to draw the eye 

toward the direction of motion: objects might stretch when they fly at their fastest, and 

squashing them conveys a notion of stopping, gathering energy, or changing direc-

tion. Moving items along arcs implies a more natural motion; motion along a straight 

line seems to have intent. Before objects begin moving, they anticipate their upcom-

ing motion; they conclude with a follow-through. Ease-in, ease-out is a technique of tim-

ing animations: animations start slowly to emphasize direction, accelerate through the 

middle, and slow down again at the end. Complex acts are staged to draw attention to 

individual parts one at a time.

Visualization researchers have adapted these techniques with differing degrees of 

enthusiasm and success—for example, the Information Visualizer framework (Card, 

Robertson, and Mackinlay 1991), an early 3D animated framework, integrated sev-

eral of these principles, including anticipation, arcs, and follow-through. On the other 

hand, some elements of this list seem distinctly inappropriate. For instance, squash-

ing or stretching a data point distorts it, changing the nature of the visualization; thus, 

we can no longer describe the visualization as maintaining the consistent rule “height 

maps to this, width maps to that” at each frame of the animation. In their research on 

slideshows, Zongker and Salesin (2003) warn that many animation techniques can be 

distracting or deceptive, suggesting causality where none might exist. Also, they are 

often meant to give an illusion of emotion, which may be quite inappropriate for data 

visualization. (An exception would be We Feel Fine, in which the motion is supposed 

to convey emotion and uses these techniques effectively to do so.)

The Downsides of Animation
Animation has been less successful for data visualization than for scientific visualiza-

tion. Two metastudies have looked at different types of animations—process anima-

tions and algorithm visualizations—and found that both classes have spotty track 

records when it comes to helping students learn more about complex processes. 

The psychologist Barbara Tversky found, somewhat to her dismay, that animation 

did not seem to be helpful for process visualization (i.e., visualizations that show how 

to use a tool or how a technique works). Her article, “Animation: Can It Facilitate?” 

(Tversky, Morrison, and Bétrancourt 2002), reviews nearly 100 studies of animation 

and visualization. In no study was animation found to outperform rich static diagrams. 

It did beat out textual representations, though, and simple representations that simply 

showed start and end state without transitions. 
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Algorithm animation is in many ways similar to process visualization: an algorithm 

can be illustrated by showing the steps that it takes. Some sort algorithms, for exam-

ple, are very amenable to animation: an array of values can be drawn as a sequence of 

bars, so the sort operations move bars around. These animations can easily show the 

differences between, say, a bubble sort and an insertion sort. Christopher Hundhausen, 

Sarah Douglas, and John Stasko (2002) tried to understand the effectiveness of algo-

rithm visualization in the classroom, but half of the controlled studies they examined 

found that animation did not help students understand algorithms. Interestingly, the 

strongest factor predicting success was the theory behind the animation. Visualization 

was most helpful when accompanied by constructivist theories—that is, when stu-

dents manipulated code or algorithms and watched a visualization that illustrated their 

own work, or when students were asked questions and tried to use the visualization to 

answer them. In contrast, animations were ineffective at transferring knowledge; pas-

sively watching an animation was not more effective than other forms of teaching.

GapMinder and Animated Scatterplots
One recent example of successful animated visualization comes from Hans Rosling’s 

GapMinder (http://www.gapminder.org). Rosling is a professor of Global Health from 

Sweden, and his talk at the February 2006 Technology, Entertainment, Design (TED) 

conference* riveted first a live audience, then many more online. He collected public 

health statistics from international sources and, in his brief talk, plotted them on a 

scatterplot. In the visualization, individual points represent countries, with x and y val-

ues representing statistics such as life expectancy and average number of children and 

each point’s area being proportionate to the population of the country it represents. 

Rosling first shows single frames—the statistics of the countries in a single year—

before starting to trace their progress through time, animating between the images 

with yearly steps in between. 

Figure 19-1 shows three frames of a GapMinder-like animation. On the x-axis is the 

life expectancy at birth; on the y-axis is the infant mortality rate. The size of bubbles is 

proportionate to the population. Color-coding is per continent; the largest two dots are 

China and India.

Rosling’s animations are compelling: he narrates the dots’ movement, describing their 

relative progress. China puts public health programs in place and its dot floats upward, 

followed by other countries trying the same strategy. Another country’s economy 

booms, and its dot starts to move rapidly rightward. Rosling uses this animation to 

make powerful points about both our preconceptions about public health problems 

and the differences between the first and third world, and the animation helps viewers 

follow the points he is making.

*	Available online at http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html. 
Rosling presented similar discussions at TED 2007 and TED 2009.

http://www.gapminder.org
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html
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Figure 19-1.  A GapMinder-like visualization showing information about a set of 75 countries 
in 1975, 1985, 1995, and 2000; this chart plots life expectancy (x axis) against infant mortal-
ity (y axis)—countries at the top-left have a high infant mortality and a short life expectancy

Too many dots?
The perceptual psychology research mentioned earlier showed that people have 

trouble tracking more than four moving points at a time. In his presentation, Rosling 

is able to guide the audience, showing them where to look, and his narration helps 

them see which points to focus on. He describes the progress that a nation is making 

with the assistance of a long pointer stick; it is quite clear where to look. This reduces 

confusion. 

It also helps that many of the two-dimensional scatterplots he uses have unambigu-

ously “good” and “bad” directions: it is good for a country to move toward a higher 

GDP and a longer life expectancy (i.e., to go up and to the right), and bad to move in 

the opposite direction (down and to the left).  

With Rosling’s sure hand guiding the watcher’s gaze, the visualization is very effective.  

But if a temporal scatterplot were incorporated into a standard spreadsheet, would it 

be useful for people who were trying to learn about the data?
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Testing Animated Scatterplots
At Microsoft Research, we became curious about whether these techniques 

could work for people who were not familiar with the data. We reimplemented a 

GapMinder-like animation as a base case, plotting points at appropriate (x, y) locations 

and interpolating them smoothly by year. We then considered three alternative static 

visualizations that contained the same amount of information as the animation. First, 

of course, we could simply take individual frames (as in Figure 19-1). Even in our ear-

liest sketches, however, we realized this was a bad idea: it was too difficult to trace the 

movement of points between frames. The ability to follow the general trajectories of 

the various countries and to compare them is a critical part of GapMinder; we wanted 

users to have a notion of continuity, of points moving from one place to another, and 

the individual frames simply were not helpful.

We therefore implemented two additional views, using the same set of countries and 

the same axes as Figure 19-1, for the years 1975–2000. The first is a tracks view, which 

shows all the paths overlaid on one another (Figure 19-2). The second is a small mul-

tiples view, which draws each path independently on separate axes (Figure 19-3). In 

the tracks view, we cue time with translucency; in the small multiples view, we instead 

show time by changing the sizes of the dots.

Figure 19-2.  Tracks view in which each country is represented as a series of dots that become 
more opaque over time; years are connected with faded streaks
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Figure 19-3.  Small multiples view in which each country is in its own tiny coordinate system: 
dots grow larger to indicate the progression of time

We wanted to understand how well users performed with the animation, as com-

pared with these static representations. Users can set up their own scatterplots at the 

GapMinder website, but would they be able to learn anything new from their data? 

We chose 30 different combinations of (x, y) values based on public health and demo-

graphic data from the United Nations, and presented users with fairly simple questions 

such as “In this scatterplot, which country rises the most in GDP?” and “In this scatter-

plot, which continent has the most countries with diminishing marriage rates?” We 

recruited users who were familiar with scatterplots, and who dealt with data in their 

daily work. Some subjects got to “explore” the data, and sat in front of a computer 

answering questions on their own. Others got a “presentation,” in which a narrator 

showed them the visualization or played the animation. We measured both time and 

accuracy as they then answered the questions.

The study’s numerical results are detailed in Robertson et al. (2008). The major con-

clusions, however, can be stated quite simply: animation is both slower and less accu-

rate at conveying the information than the other modalities. 

Exploration with animation is slower
We found that when users explored the data on their own, they would often play 

through the animation dozens of times, checking to see which country would be the 

correct answer to the question. In contrast, those who viewed a presentation and 
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could not control the animation on their own answered far more rapidly: they were 

forced to choose an answer and go with it. Thus, animation in exploration was the 

slowest of the conditions, while animation in presentation was the fastest.

Interestingly, this might shed light on why the process animations by Tversky et al. 

found so little success. In our tests, users clearly wanted to be able to move both for-

ward and backward through time; perhaps this is true of process animations, too. 

More effort may be required to get the same information from an animation as 

opposed to a series of static images, because you have to replay the entire thing rather 

than just jumping directly to the parts you want to see.

Animation is less accurate
Despite the extra time the users spent with the animation, the users who were shown 

the static visualizations were always more accurate at answering the questions. That is, 

the animation appeared to detract from the users’ ability to correctly answer questions. 

Their accuracy was not correlated with speed: the extra time they spent in exploration 

did not seem to drive better outcomes. 

This seems like bad news for animation: it was slower and less accurate at communi-

cating the information. On the other hand, we found the animation to be more engag-

ing and emotionally powerful: one pilot subject saw life expectancy in a war-torn 

country plummet by 30 years and gasped audibly. Generally, users preferred to work 

with the animation, finding it more enjoyable and exciting than the other modes. They 

also found it more frustrating, though: “Where did that dot go?” asked one angrily, as 

a data point that had been steadily rising suddenly dropped.

These findings suggest that Rosling’s talk is doing something different from what 

our users experienced. Critically, Rosling knows what the answer is: he has worked 

through the data, knows the rhetorical point he wishes to make, and is bringing the 

viewers along. He runs much of his presentation on the same set of axes, so the view-

ers don’t get disoriented. His data is reasonably simple: few of the countries he high-

lights make major reversals in their trends, and when he animates many countries at 

once, they stay in a fairly close pack, traveling in the same direction. He chooses his 

axes so the countries move in consistent directions, allowing users to track origins and 

goals easily. He takes advantage of the Gestalt principle of common fate to group them, 

and he narrates their transitions for maximum clarity. 

In contrast, our users had to contend with short sessions, had to track countries that 

suffered abrupt reversals, and did not have a narrator to explain what they were about 

to see; rather than learning the answer from the narrator, they had to discover it 

themselves. This suggests to us that what we were asking our users to do was very dif-

ferent from what Rosling is doing—so different, in fact, that it deserves its own section.
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Presentation Is Not Exploration
An analyst sitting before a spreadsheet does not know what the data will show, and 

needs to play with it from a couple of different angles, looking for correlations, connec-

tions, and ideas that might be concealed in the data. The process is one of foraging—it 

rewards rapidly reviewing a given chart or view to see whether there is something 

interesting to investigate, followed by moving on with a new filter or a different image.

In contrast, presenters are experts in their own data. They have already cleaned errors 

from the dataset, perhaps removing a couple of outliers or highlighting data points that 

support the core ideas they want to communicate. They have picked axes and a time 

range that illustrate their point well, and they can guide the viewers’ perception of the 

data. Most importantly, they are less likely to need to scrub back and forth, as we saw 

users doing with our animation, in order to check whether they have overlooked a 

previous point. In these conditions, animation makes a lot of sense: it allows the pre-

senter to explain a point vividly and dramatically.

The experience of exploration is different from the experience of presentation. It is 

easy to forget this, because many of our tools mix the two together. That is, many 

packages offer ways to make a chart look glossy and ready for presentation, and those 

tools are not clearly separated from the tools for making the chart legible and ready 

for analysis. In Microsoft Excel, for example, the same menu that controls whether my 

axis has a log scale also helps me decide whether to finish my bar chart with a glossy 

color. The former of these choices is critical to exploration; the latter is primarily use-

ful for presentation. After I finish analyzing data in Excel, I can copy the chart directly 

into PowerPoint and show the result. As a result of this seamlessness, few people who 

use this popular software have seriously discussed the important distinctions between 

presentation and exploration. 

Table 19-1 summarizes major differences between the needs of exploration and 

presentation.

Table 19-1.  Differentiating exploration from presentation

Exploration Presentation

Characteristics Data is surprising. 

Data may have outliers.

Data is likely to move unpredictably.

Viewer controls interaction.

Data is well known to the 
presenter.

Data has been cleaned.

Viewer is passive.
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Table 19-1.  Differentiating exploration from presentation

Exploration Presentation

Goals/procedures Analyze multiple dimensions at 
once.

Change mappings many times.

Look for trends and holes.

Present fewer dimensions 
to make a point. 

Walk through dimensions 
clearly.

Highlight critical points.

Group points together to 
show trends and motion.

These two perspectives are not completely disjoint, of course. Many interactive web 

applications allow users to explore a few dimensions, while still not exposing raw data. 

The tension between presentation and exploration suggests that designers need to con-

sider the purpose of their visualizations. There are design trade-offs, not only for ani-

mation, but more generally. 

Types of Animation
Some forms of animation are most suited to presentation, while others work well for 

exploration. In this section, we’ll discuss a hierarchy of different types of transfor-

mations, ranging from changing the view on a visualization to changing the axes on 

which the visualization is plotted to changing the data of the visualization. Let’s begin 

with an example of a system that needs to manage two different types of changes.

Dynamic Data, Animated Recentering
In 2001, peer-to-peer file sharing was becoming an exciting topic. The Gnutella sys-

tem was one of the first large-scale networks, and I was in a group of students who 

thought it would make a good subject of study. Gnutella was a little different from 

other peer-to-peer systems. The earlier Napster had kept a detailed index of everything 

on the network; BitTorrent would later skip indexing entirely. Gnutella passed search 

requests between peers, bouncing around the questions and waiting for replies. When 

I used a peer-to-peer search to track down a song, how many machines were really 

getting checked? How large a network could my own client see? 

We instrumented a Gnutella client for visualization, and then started representing the 

network. We rapidly realized a couple of things: first, that new nodes were constantly 

appearing on the network; and second, that knowing where they were located was 

really interesting. The appearance of new nodes meant that we wanted to be able to 

change the visualization stably. There would always be new data pouring into the sys-

tem, and it was important that users not be disoriented by changes taking place in the 
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visualization as new data came in. On the other hand, we did not want to pause, add 

data, and redraw: we wanted a system where new data would simply add itself to the 

diagram unobtrusively.

Because the Gnutella network used a peer-to-peer discovery protocol, it was often 

interesting to focus on a single node and its neighbors. Is this node connected to a cen-

tral “supernode”? Is it conveying many requests? We wanted to be able to focus on 

any single node and its neighbors, and to be able to easily estimate the number of hops 

between nodes. This called for changing the viewpoint without changing the remainder 

of the layout. 

Our tool was entitled GnuTellaVision, or GTV (Yee et al. 2001). We addressed these 

two needs with two different animation techniques. We based the visualization on a 

radial layout, both to reflect the way that data was changing—growing outward as we 

discovered more connections—and in order to facilitate estimation of the number of 

hops between the central node and others. A radial layout has the virtues of a well-

defined center point and a series of layers that grow outward. As we discovered new 

nodes, we added them to rings corresponding to the number of hops from the starting 

node. When a new node arrived, we would simply move its neighbors over by a small 

amount (most nodes in the visualization do not move much). As the visualization ran, 

it updated with new data, animating constantly (Figure 19-4).

Figure 19-4.  GTV before (left) and after (right) several new nodes are discovered on the 
network—as nodes yield more information, their size and color can also change

When a user wanted to examine a node, GTV recentered on the selection. In our first 

design, it did so in the most straightforward way possible: we computed a new radial 

layout and then moved nodes linearly from their previous locations to the new ones. 

This was very confusing, because nodes would cross trajectories getting from their old 

locations to the new ones. The first fix was to have nodes travel along polar coordinate 
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paths, and always clockwise. Thus, the nodes remained in the same space as the 

visualization was drawn, and moved smoothly to their new locations (Figure 19-5). 

Because GTV is oriented toward examining nodes that may be new to the user, and is 

constantly discovering novel information, it was important that this animation facili-

tate exploration by helping users track the node paths.

Figure 19-5.  Interpolation in rectangular coordinates (top) causes nodes to cross through each 
others’ paths; interpolation in polar coordinates (bottom) makes for smooth motion

A radial layout has several degrees of freedom: nodes can appear in any order around 

the radius, and any node can be at the top. When we did not constrain these degrees 

of freedom, nodes would sometimes travel from the bottom of the screen to the top. 

We wanted to ensure that nodes moved as little as possible, so we added a pair of con-

straints: nodes maintained, as much as they could, both the same relative orientation 

and order. Maintaining relative orientation means that the relative position of the edge 

from the old center to the new center is maintained. Maintaining relative order means 

that nodes’ neighbors will remain in the same order around the rings. Both of these 

are illustrated in Figure 19-6.
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Figure 19-6.  Animated recentering: the purple highlighted node becomes the center, and other 
sets of nodes maintain their relative positions and orders (the large blue node stays below, and 
the set of small yellow nodes spreads along an outer ring)

Last, we adapted the ease-in, ease-out motion from cartooning in order to help users see 

how the motion was about to happen.

This section demonstrated some useful principles that are worth articulating: 

Compatibility 

Choose a visualization that is compatible with animation. In GTV, the radial lay-

out can be modified easily; new nodes can be located on the graph to minimize 

changes, and—like many tree representations—it is possible to recenter on differ-

ent nodes. 
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Coordinate motion 

Motion should occur in a meaningful coordinate space of the visualization. We 

want to help the users stay oriented within the visualization during the anima-

tion, so they can better predict and follow motion. In GTV, for instance, transform-

ing through rectangular coordinates would be unpredictable and confusing; the 

radial coordinates, in contrast, mean that users can track the transition and the 

visualization retains its meaning.  

Meaningful motion 

Although animation is about moving items, unnecessary motion can be very con-

fusing. In general, it is better to have fewer things move than more in a given 

transition. Constraining the degrees of freedom of the GTV animation allows the 

visualization to change as little as possible by keeping things in roughly the same 

position.

A Taxonomy of Animations
There are many sorts of change that might occur within a visualization. In the discus-

sion of GapMinder, we talked about changes to data; in the example of GTV, we exam-

ined changes to both the data and the view. There are more types of transitions that 

one might wish to make in a visualization, though. The following is a list adapted from 

one assembled by Heer and Robertson (2007). Each type of transition is independent; 

it should be possible to change just the one element without changing any of the oth-

ers. Many of these are applicable to both presentation and exploration of data:

Change the view

Pan over or zoom in on a fixed image, such as a map or a large data space.

Change the charting surface

On a plot, change the axes (e.g., change from linear to log scale). On a map, 

change from, for example, a Mercator projection to a globe.

Filter the data

Remove data points from the current view following a particular selection 

criterion. 

Reorder the data

Change the order of points (e.g., alphabetize a series of columns).

Change the representation

Change from a bar chart to a pie chart; change the layout of a graph; change the 

colors of nodes.
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Change the data

Move data forward through a time step, modify the data, or change the values 

portrayed (e.g., a bar chart might change from Profits to Losses). As discussed ear-

lier, moving data through a time step is likely to be more useful for presentations.

These six types of transitions can describe most animations that might be made with 

data visualizations. Process visualizations would have a somewhat different taxonomy, 

as would scientific visualizations that convey flow (such as air over wings). Next, given 

this set of transitions, we will discuss some examples of how these animations might 

be managed.

Staging Animations with DynaVis
Two people exploring a dataset together on a single computer have a fundamental 

problem: only one of them gets the mouse. While it is perfectly intuitive for one of 

them to click “filter,” the other user might not be able to track what has just hap-

pened. This sits at an interesting place between exploration and presentation: one of 

the major goals of the animation is to enable the second user to follow the leader by 

knowing what change the leader has just invoked; however, the leader may not know 

specifically what point he is about to make. Animation is plausibly a way to transition 

between multiple visualizations, allowing a second person—or an audience—to keep 

up. For the last several years, we have been experimenting with ways to show transi-

tions of data and representations of well-known charts, such as scatterplots, bar charts, 

and even pie charts. 

DynaVis, a framework for animated visualization, was our starting point. A summer 

internship visit by Jeff Heer, now a professor at Stanford, gave us a chance to work 

through a long list of possibilities. This discussion is outlined in more detail in his 

paper (Heer and Robertson 2007). 

In DynaVis, each bar, dot, or line is represented as an object in 3D space, so we can 

move smoothly through all the transitions described in the preceding section. Many 

transformations are fairly clear: to filter a point from a scatterplot, for instance, the 

point just needs to fade away. There are several cases that are much more interesting 

to work through, though: those in which the type of representation needs to change, 

and those in which more than one change needs to happen at a time. When the repre-

sentation is being changed, we try to follow several basic principles. Here are the first 

two:

Do one thing at a time

Ensure that the visualization does not entail making multiple simultaneous 

changes. This might mean staging the visualization, to ensure that each successive 

step is completed before the next one is started. 
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Preserve valid mappings

At any given time during a step, ensure that the visualization is a meaningful 

one that represents a mapping from data to visualization. It would be invalid, for 

example, to rename the bars of a bar chart: the fundamental mapping is that each 

bar represents one x-axis value.

Figure 19-7 shows a first attempt at a transition from bar chart to pie chart. There are 

some positive aspects to the transition. For example, the bars do not move all at once, 

so the eye can follow movement fairly easily, and the bars maintain their identities and 

their values across the animation. While there are some issues with occlusion as the 

bars fly past each other, they move through a smooth trajectory so that it is reasonable 

to predict where they will end up. Finally, the animation is well staged: all the wedges 

are placed before they grow together into a full pie.

This visualization has a critical flaw, though. The length of the bar becomes the length 

of the pie wedge, so longer bars became longer wedges. However, longer bars will ulti-

mately have to become fatter wedges in the final pie chart. That means that bars are 

becoming both fat and long, or both skinny and short. This, in turn, means that the 

visualization does not employ a constant rule (such as “number of pixels is proportion-

ate to data value”).

That leads us to the next principle:

Maintain the invariant

While the previous rule referred to the relationship between data elements and 

the marks on the display, this rule refers to the relationship of the data values to 

the visualization. If the data values are not changing, the system should maintain 

those invariant values throughout the visualization. For example, if each bar’s 

height is proportionate to the respective data point’s value, the bars should remain 

the same height during the animation. 

Figure 19-8 illustrates both of these principles in a more successful bar chart to pie 

chart animation. This chart shows a 1:1 correspondence between the drawn entity—

the bar, the curved line, or the pie slice—and the underlying data. This assignment 

never changes: the bar furthest on the left (“A”) becomes the leftmost pie slice (also 

“A”). The invariant is maintained by the lengths of the bars, which remain proportion-

ate to the data values. While we do not illustrate it here, we follow similar principles 

in changing a bar chart into a line chart: the top-left corner of the bar represents the 

value, so as the bar shrinks into a line, that data point will remain rooted at the top-

left corner of the bar.
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Figure 19-7.  Less successful bar chart to pie chart animation: long bars become long, fat 
wedges on the pie; short bars become short, skinny wedges; then all wedges grow to full length
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Figure 19-8.  Better bar chart to pie chart animation: the lengths of the bars are maintained as 
they are brought into the ring; the ring then fills to become a pie
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Another interesting case brings back the cartoon notion of staging. In GnuTellaVision 

we were able to recenter in a single motion, but in DynaVis it often makes more sense 

to break a transformation into two steps. For instance, in each of these examples, we 

ensure that we change only one thing at a time:

•	 To filter a dataset in a bar chart, we first remove bars we will not use, and then 

close ranks around them. To unfilter, we open space for the bars that will be 

added, and then grow the bars up.

•	 To grow or shrink a bar, such as when data changes, we may need to change the 

axes. Imagine growing a bar chart from the values (1,2,3,4,5) to (1,2,10,4,5)—

the y-axis should certainly grow to accommodate the new value. If we grow the 

bar first, it will extend off the screen; therefore, we must change the axis before 

changing the bar. 

•	 When sorting a selection of bars, sorting them at once could cause all bars to pass 

through the center at once. This is confusing: it is hard to figure out which bar is 

which. By staggering the bars slightly, so that they start moving a small amount of 

time apart, we found that the sort operation was much clearer.

Staging is not always appropriate, though. In Heer and Robertson’s report on the proj-

ect (2007), they found that some staged animations are more challenging to follow. In 

particular, when resizing segments of a donut or pie chart, it was difficult to monitor 

the changes as the pie turned to accommodate the new sizes. DynaVis attempted to 

stage this transition by extracting segments to either an external or an internal ring, 

adjusting their sizes, and then collapsing them back into place. While this made the 

changes much more visible, it also added a layer of potentially confusing action.

Heer and Robertson collected both qualitative results—how much users liked the 

animations—and quantitative ones—finding out which animations allowed users to 

answer questions most accurately. They found that users were able to answer ques-

tions about changes in values over time more easily with the animations than with-

out; furthermore, the animations that were staged but required only one transition did 

substantially better than the animations that required many transitions.

Even with these caveats, though, it is clear that these sorts of dynamics could poten-

tially help users understand transitions much more easily: compared to a presenter 

flipping through a series of charts, forcing the audience to reorient after each slide, 

a DynaVis-like framework might allow users to remain oriented thoughout the 

presentation.

Principles of Animation
There have been several attempts to formulate principles for animation. Tversky, 

Morrison, and Bétrancourt (2002) offer two general guidelines at the end of their 

article: that visualizations should maintain congruence and apprehension. The former 
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suggests that the marks on the screen must relate to the underlying data at all times. 

The latter suggests that the visualization should be easy to understand. The principles 

we have articulated fit into these categories. (Other, related guidelines have been sug-

gested in Heer and Robertson’s [2007] discussion of the DynaVis research, by Zongker 

and Salesin [2003] in their discussion of animation for slideshow presentations, and, 

with regard to graph drawing, by Freidrich and Eades [2002].)

The principles that we have discussed in this chapter are:

Staging

It is disorienting to have too many things happen at once. If it is possible to 

change just one thing, do so. On the other hand, sometimes multiple changes 

need to happen at once; if so, they can be staged. 

Compatibility

A visualization that will be disrupted by animation will be difficult for users to 

track. For example, it is not disruptive to add another bar to a bar chart (the 

whole set can slide over), and it may not be disruptive to add another series to 

a bar chart. However, a squarified treemap is laid out greedily by size; growing a 

single rectangle will require every rectangle to move to a new location and will 

look confusing. 

Necessary motion

In particular, avoid unnecessary motion. This implies that we want to ensure that 

motion is significant—i.e., we should animate only what changes. In general, the 

image should always be understandable. As the DynaVis user tests showed, excess 

motion—even significant motion—can be confusing.

Meaningful motion

The coordinate spaces and types of motion should remain meaningful. This 

also entails two points discussed earlier: preserve valid mappings and maintain the 

invariant.

Verifying that you’ve adhered to these principles can help you figure out whether an 

animation is headed in the right direction. 

Conclusion: Animate or Not?
In this chapter, we have discussed the difference between presentation and explora-

tion of data. We have also discussed the various layers of a visualization that might be 

altered, and some principles for making a visualization-safe animation.  

So now you’re staring at a visualization you’re working on, and trying to decide 

whether to animate it or not. The question that this chapter has repeatedly asked is: 

what function does the animation serve? If it is meant to allow a user to smoothly 
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transition between views, then it is likely to be helpful.  On the other hand, if the user 

is meant to compare the “before” to the “after,” the animation is less likely to be of 

use.

Users want to understand why a change is happening, and what is changing. If every-

thing on the screen is going to move around, perhaps it would be better to simply 

switch atomically to a new image; this might spare the user the difficulty of trying to 

track the differences. Finally, animations mean that it can be more difficult to print out 

visualizations. Individual frames should be meaningful, so that users can capture and 

share those images. Animation imposes a burden of complexity on the user, and that 

complexity should pay off.  

Further Reading
Here are a few animated data visualization projects that have some relevance to this 

discussion, which you may want to explore further: 

•	 Many researchers begin playing with zooming and panning as basic operations in 

a visualization with Pad++, a zoomable architecture for laying out data in large 

spaces (Bederson and Hollan 1994).  

•	 Scatterdice (Elmqvist, Dragicevic, and Fekete 2008) explores a way to transition 

between scatterplots by rotating through the third dimension.

•	 Visualizations of tree data structures include ConeTrees (Card, Robertson, and 

Mackinlay 1991), CandidTree (Lee et al. 2007), and Polyarchy (Robertson et al. 

2002). Researchers have explored animation with treemaps by zooming (dis-

torting) the treemap (Blanch and Lecolinet 2007) and moving through 3D space 

(Bladh, Carr, and Kljun 2005).

•	 Graph layout is often animated as the layout progresses; in the last 10 years, the 

graph-drawing community has turned to considering ways to update graphs in 

response to underlying data. In addition to the work cited earlier (Friedrich and 

Eades 2002), we note GraphAEL (Erten et al. 2003).

Acknowledgments
I am grateful to Professor Jeffrey Heer of Stanford University, both for his valuable 

conversations on these topics when we shared an office and for his predigested ver-

sions of these concepts, produced in his 2007 Infovis paper (Heer and Robertson 2007) 

and his Stanford course notes. Jeff also contributed a chapter to Beautiful Data, the sis-

ter volume to this book, discussing his work with sense.us. My thanks also for feedback 

and ideas for this paper from my colleagues, Steven Drucker, Roland Fernandez, Petra 

Isenberg, and George Robertson.



351chapter 19: animation for visualization: opportunities and drawbacks

References
Bederson, B.B., and J.D. Hollan. 1994. “Pad++: A zooming graphical interface for 

exploring alternate interface physics.” In Proceedings of the 7th Annual ACM Symposium on 

User Interface Software and Technology. New York: ACM Press.

Bladh, Thomas, David A. Carr, and Matjaz Kljun. 2005. “The effect of animated tran-

sitions on user navigation in 3D tree-maps.” In Proceedings of the Ninth International 

Conference on Information Visualization. Washington, DC: IEEE Computer Society.

Blanch, Renaud, and Eric Lecolinet. 2007. “Browsing zoomable treemaps: Structure-

aware multi-scale navigation techniques.” IEEE Transactions on Visualization and 

Computer Graphics 13, no. 6: 1248–1253.

Card, Stuart K., George G. Robertson, and Jock D. Mackinlay. 1991. “The information 

visualizer, an information workspace.” In Proceedings of the SIGCHI Conference on Human 

Factors in Computing Systems. New York: ACM Press.

Cavanagh, Patrick, and George Alvarez. 2005. “Tracking multiple targets with multifocal 

attention.” TICS 9: 349–354.

Chang, Bay-Wei, and David Ungar. 1993. “Animation: From cartoons to the user 

interface.” In Proceedings of the 6th Annual ACM Symposium on User Interface Software and 

Technology. New York: ACM Press.

Elmqvist, N., P. Dragicevic, and J.-D. Fekete. 2008. “Rolling the dice: Multidimensional 

visual exploration using scatterplot matrix navigation.” IEEE Transactions on 

Visualization and Computer Graphics 14, no. 6: 1141–1148.

Erten, C., P.J. Harding, S.G. Kobourov, K. Wampler, and G. Yee. 2003. “GraphAEL: 

Graph animations with evolving layouts.” In Proceedings of the 11th International 

Symposium on Graph Drawing. Springer-Verlag.

Fisher, Danyel A. 2007. “Hotmap: Looking at geographic attention.” IEEE Transactions 

on Visualization and Computer Graphics 13, no. 6: 1184–1191.

Friedrich, C., and P. Eades. 2002. “Graph drawing in motion.” Journal of Graph 

Algorithms and Applications 6, no. 3: 353–370.

Heer, Jeffrey, and George G. Robertson. 2007. “Animated transitions in statistical data 

graphics.” IEEE Transactions on Visualization and Computer Graphics 13, no. 6: 1240–1247.

Hundhausen, Christopher D., Sarah A. Douglas, and John T. Stasko. 2002. “A meta-

study of algorithm visualization effectiveness.” Journal of Visual Languages & Computing 

13, no. 3: 259–290.

Johnson, Ollie, and Frank Thomas. 1987. The Illusion of Life. New York: Disney Editions. 



352 Beautiful Visualization

Lasseter, John. 1987. “Principles of traditional animation applied to 3D computer ani-

mation.” In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive 

Techniques. New York: ACM Press.

Lee, Bongshin, George G. Robertson, Mary Czerwinski, and Cynthia Sims Parr. 2007. 

“CandidTree: Visualizing structural uncertainty in similar hierarchies.” Information 

Visualization 6: 233–246.

Michotte, A. 1963. The Perception of Causality. Oxford: Basic Books.

Robertson, George, Kim Cameron, Mary Czerwinski, and Daniel Robbins. 2002. 

“Polyarchy visualization: Visualizing multiple intersecting hierarchies.” In Proceedings of 

the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press.

Robertson, George, Roland Fernandez, Danyel Fisher, Bongshin Lee, and John 

Stasko. 2008. “Effectiveness of animation in trend visualization.” IEEE Transactions on 

Visualization and Computer Graphics 14, no. 6: 1325–1332.

Tversky, Barbara, Julie B. Morrison, and Mireille Bétrancourt. 2002. “Animation: Can 

it facilitate?” International Journal of Human-Computer Studies 57: 247–262.

Yee, Ka-Ping, Danyel Fisher, Rachna Dhamija, and Marti A. Hearst. 2001. “Animated 

exploration of dynamic graphs with radial layout.” In Proceedings of the IEEE Symposium 

on Information Visualization. Washington, DC: IEEE Computer Society.

Zongker, Douglas E., and David H. Salesin. 2003. “On creating animated presenta-

tions.” In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer 

Animation. New York: ACM Press.


