Information Needs for Software Development Analytics

Raymond P.L. Buse
The University of Virginia, USA
buse@cs.virginia.edu

Abstract—Software development is a data rich activity with
many sophisticated metrics. Yet engineers often lack the tools
and techniques necessary to leverage these potentially powerful
information resources toward decision making. In this paper,
we present the data and analysis needs of professional software
engineers, which we identified among 110 developers and
managers in a survey. We asked about their decision making
process, their needs for artifacts and indicators, and scenarios
in which they would use analytics.

The survey responses lead us to propose several guidelines
for analytics tools in software development including: Engi-
neers do not necessarily have much expertise in data analysis;
thus tools should be easy to use, fast, and produce concise
output. Engineers have diverse analysis needs and consider most
indicators to be important; thus tools should at the same time
support many different types of artifacts and many indicators. In
addition, engineers want to drill down into data based on time,
organizational structure, and system architecture.

I. INTRODUCTION

Software engineering is a data rich activity. Many aspects
of development, from code repositories to testing frame-
works to bug databases, can be measured with a high degree
of automation, efficiency, and granularity. Projects can be
measured throughout their life-cycle: from specification to
maintenance. Numerous metrics and models for complex-
ity, maintainability, readability, failure propensity and many
other important aspects of software quality and development
process health (e.g., [1], [2]) have been proposed.

Despite this abundance of data and metrics, development
continues to be difficult to predict and risky to conduct.
It is not unusual for major software projects to fail or
be delayed [3]. Moreover, software defects cost the US
economy many billions of dollars each year [4]. A likely
contributing factor is that there continues to be a substantial
disconnect between the information and insights needed by
project managers to make good decisions and that which is
typically available to them.

When information needs are not met, either because tools
are unavailable, too difficult to use, too difficult to interpret,
or simply do not present useful or actionable information,
managers must primarily rely on past experience and in-
tuition for critical decision making. Such intuition-based
decisions can sometimes work out well, but often they
are unnecessarily suboptimal or even destructive [5]. As
software projects continue to grow in size and complexity,

Thomas Zimmermann
Microsoft Research
tzimmer@microsoft.com

decision making will likely only become more difficult.

Analytics describes application of analysis, data, and sys-
tematic reasoning to make decisions. Analytics is especially
useful for helping users move from only answering questions
of information like ‘“What happened?” to also answering
questions of insight like “How did it happen and why?”
Instead of just considering data or metrics directly, one can
gather more complete insights by layering different kinds of
analyses that allow for summarizing, filtering, modeling, and
experimenting; typically with the help of automated tools.

The key to applying analytics to a new domain is under-
standing the link between available data and the information
needed to make good decisions, as well as the analyses
that are appropriate to facilitate decision making. While
there has been significant research into information needs of
developers (e.g., [6], [7], [8]), the needs of project managers,
those who make the important decisions about the future of
projects, are not well understood.

In this paper, we present a quantitative and qualitative
study of the information needs of 110 developers and
managers at Microsoft. We discuss the decision scenarios
they face, the metrics and artifacts they find important, and
the analyses they would most like to employ. We distill from
our study a set of key guidelines that should be considered
when designing an analytics tool. We find for example that
managers must be able to “drill-down” from high level
summaries all the way to the artifacts being measured (e.g.,
change records). This is essential to permit both discovery
of the insights as well as a concrete basis for action.

The main contributions of this paper are:

o A study of the information needs of 110 professional
software engineers and managers in the context of
analytical decision making (Section IV).

o A set of guidelines for software analytics. We present
a characterization of analytics problems in software
development based on our study (Section VII).

We begin by discussing previous research related to
project management and measurement (Section II).

II. RELATED WORK

Software project management is a complex and broadly
defined position. Project managers monitor and guide the
work of designers, developers and testers of software

while sometimes participating in these activities themselves.
Where engineers focus on code, architecture, and perfor-
mance, managers focus on high level concerns: the direction
of the project, allocation of resources, the feature set, and the
user experience. Managers work to simultaneously satisfy
(potentially conflicting) constraints imposted by customers,
developers, testers, maintainers, and management.

The complexity of the job of a manager contributes to the
difficulty of designing and evaluating tools by the research
community. In particular, the information needs of managers
are not well understood. Boehm and Ross proposed a theory
of project management which included the “top 10 primary
sources of software project risk and the most effective
approaches for resolving them” [9]. While top ten lists like
this can be instructive, the problem is that the management
techniques presented (e.g., benchmarking, organization anal-
ysis, technical analysis, etc.) aren’t specific enough to be
directly applied. Many critical questions remain unanswered:
Which of these can be performed automatically? Which are
most important? How should the results be presented? What
decisions can they lead to? How does one evaluate success?

More recently, in an effort to begin answering some
of these questions, Wallace et al. conducted a survey of
507 project managers [10]. Cluster analysis was used in
an attempt to identify risk factors in projects. That study
found, for example, that “even low risk projects have a high
level of complexity.” Some other studies exist that identified
information needs for managers for specific decision-making
tasks. Jedlitschka [11] identified the needs of managers when
assessing alternative technologies. He empirically showed
the importance and impact on costs, quality, and schedule,
and limitations of the technology for a manager’s decision.
Vegas et al. [12] identified questions that decision makers
have when choosing among different testing techniques.
Punter [13] investigated what information software managers
would expect from a software engineering portal and found
that all the information he included in his study was expected
to be found by most of the respondents. Similarly, we
found in our study that most indicators are important for
engineers. Komi-Sirvio et al. noted that software managers
are often too busy with their day-to-day duties to spend much
time performing measurement activities [14]. Typically data-
driven tasks are relegated to secondary work. Rainer et
al. [15] found that software managers prefer information
from colleagues and do not consider empirical evidence as
comparably relevant. We believe that this should be changed
and results from our study actually suggest that managers
do recognize the importance of data for decision-making
(Section IV-B).

Goal-oriented approaches use goals, objectives, strategies,
and other mechanisms to guide the choice of data to be
collected and analyzed. For example, the Goal/Question/-
Metric (GQM) paradigm [16] proposes a top-down approach
to define measurement: goals lead to questions, which are

then answered by metrics. Other well-known approaches
are GQM+ which adds business alignment to GQM [17],
Balanced Scorecard (BSC) [18], and Practical Software
Measurement [19]. We believe that software development
analytics complements existing goal-oriented approaches
well. The availability of dedicated analysis tools will give
managers more flexibility to follow the goal-oriented ap-
proaches in their decision making. The design of such tools
is informed by the study in this paper, which identified
frequent goals, questions, and metrics in decision making.
Also we want to emphasize that analytics is not just limited
to measurement; qualitative analysis is equally important and
can be the key to “solving the "Why’ puzzle” [20].

Basili ef al. [21] proposed the Experience Factory, which
is an organization to support a software development in
collecting experiences from their projects, packaging those
experiences (for example in models), and in validating and
reusing experiences in future projects. Software development
analytics builds on this idea and has similar goals. However,
rather than having a separate organization, we ultimately
want to empower software development teams to indepen-
dently gain and share insight from their data without relying
on a separate entity.

There are a number of existing tools designed to support
management. For example, PROM [22] and Hackystat [23]
are both capable of monitoring and reporting a great number
of software project statistics. Microsoft’s Team Foundation
Server [24], IBM’s Jazz developer environment [25], and
the open-source community Ohloh.Net for example, provide
dashboard views designed to keep developers up-to-date on
the status of various events like modifications, bugs, and
build results. While modern tools can present a large amount
of data from varied sources, most either focus on data
collection or on developer awareness; because they don’t
have a good model for the needs of real product managers,
real product managers do not often use them.

In a previous position paper we summarized some of our
early ideas on software development analytics [26]. With this
paper we make several novel contributions that are not in the
position paper: a study of the information needs of software
engineers and managers (Section IV and V), guidelines for
software analytics (Section VII).

III. SOFTWARE ANALYTICS

Analytics has revolutionized decision making across many
fields [27]. Web analytics, for example, leverages large
volumes of click-stream data to help website managers make
informed decisions about many aspects of their business
from advertising to content layout to investment. Today,
large websites not only thoroughly test all proposed changes
in the traditional sense, but they also undertake detailed
analytic experiments aimed to precisely quantify the net
benefit of any proposed change [20]. Analytics has had a

profound effect on businesses ranging from technology to
retail to finance.

In the context of software engineering we hypothesize that
analytics can help answer important questions managers ask
about their projects. The goal of analytics to assist decision
makers in extracting important information and insights that
would otherwise be hidden.

When using flat measurements only, it’s difficult for man-
agers to glean more than sparse insights. However, layering
many types of analyses can greatly increase the net yield
of useful information. For example, measuring the defect
rate of a project to be 10% doesn’t provide much insight.
However, if this measurement is 2% higher than a month
ago, or higher than other similar projects at this phase of
the release cycle, it might be cause for concern. To act on
that information it is the important to “Drill-down” further:
Why is the defect rate high? Which areas of the project are
most prone to defects? Did they appear over time or all at
once? Which authors are responsible? Do the defect rates
correlate with complexity? with some other metric? What
would happen if we increased test coverage?

The overarching goal of analytics is to help managers
move beyond information and toward insight. However,
such a transition isn’t easy. Insight necessarily requires
knowledge of the domain coupled with the ability to identify
patterns involving multiple indicators. Analytical techniques
can help managers quickly find important needles in massive
haystacks of data.

Software engineering has many qualities that suggest a
business process that lends itself well to analytics (see our
technical report [28] for a full discussion of the qualities):
data rich; labor intensive; dependence on timing, consistency
and control as well as distributed decision making; low
success rate; large variability.

There are also many potential advantages to the appli-
cation of analytics to software project management (again
see our technical report [28]). Analytics can help: monitor
a project; know what’s really working; improve efficiency;
manage risk; anticipate changes; evaluate past decisions.

Analytics helps describe a reasoning framework which
we’ve observed has the potential to fit well with software
engineering. However, to realize that potential it is obvious
that studies of the information needs of decision makers are
needed. In the next section we discuss our study of managers
and developers at Microsoft.

IV. ANALYTICS STUDY

In order to adapt analytical techniques to software engi-
neering, by prescribing process changes or building tools,
it is important to first understand the information needs of
managers, those who make decisions about the direction of
a project. In this section we present a study of a large group
of managers and, for comparison, developers who work at
Microsoft. We describe the administration of the study as

m Managers

Developers

Percentage
"Very Important”

Figure 1. Reported importance of factors to decision making amongst
developers and managers.

well as analyze the results. In Section VII we characterize
the results of the study in terms of an information needs
spectrum and describe corresponding analytical solutions.

A. Methodology

For the design of the survey, we followed Kitchenham and
Pfleeger’s guidelines for personal opinion surveys [29]. We
advertised a survey consisting of 28 questions over email to
a number of software engineers at Microsoft. We sampled
randomly from equal-sized pools of engineers and lead
engineers. A lead engineer at Microsoft directly manages
a development team. He or she has responsibilities includ-
ing defining scheduling commitments, establishing priorities
(especially in consideration of customers), and developing
effective metrics. The lead engineers we surveyed do not
spend all of their time working in a strictly management
capacity. On the contrary, they typically spend about 60%
of their time working on engineering and testing tasks, and
the other 40% managing. Clearly, there is not always a clear
distinction between managers and developers. However, for
simplicity, in this paper we refer to engineers as developers
and lead engineers as managers.

A total of 110 individuals participated in the survey, 57
managers and 53 developers. The participants work in a
diverse set of project domains; they include entertainment,
on-line services, business applications, and systems. Despite
this variety of participation, less than 4% of responders felt
the survey was not relevant to them. Over 20% thought the
survey was “very relevant” including 52% of managers.

B. Analytical Questions

What factors influence your decision making process?’

Analytics is about forming insights and making decisions
based on data. Nonetheless, data is not the only reasonable
basis for decision making. Managers and developers make
use of their own experience and intuition as well as the input
of others when making decisions related to their work. We
asked survey participants to rate the importance of a number

IThe questions in the paper are edited for brevity. The original questions
are more specific and listed in a technical report [28, Appendix 2].

Importance 0.64 Importance| 0.47 Importance 0.41

ifficulty 0.07 Bﬁcu\tv 0.12 -:Ei 0.37
*, Past % Present Future /
Information | What Happened? putatihanpenng What will happen?

now?

What is the best/

How and why did it What is the next

e NOy1Q BIOI

Insight happen? best action? CREERGET
happen?
4¥ More Important More Difficult —
Importance 0.7 Importance | 0.54 Importance 0.47
ﬁculty 0.16 u\lv 0.2 Itv 0.22
Figure 2. Analytical Questions (adapted from Davenport et al. [27]):

We distinguish between questions of information which can be directly
measured, from questions of insight which arise from a careful analytic
analysis and provide managers with a basis for action.

of such factors on a 4-point scale {Not Important; Somewhat
Important; Important; Very Important}. For the analysis of
the responses, we followed the advice by Kitchenham and
Pfleeger [29] and dichotomized the ordinal scale to avoid any
scale violations. More specifically, we report the percentage
of the response “Very Important” among all responses for
each factor (excluding responses that had no opinion) in
Figure 1.

Interesting to note is that managers rated Data and Met-
rics as the most important factor to their decision making.
Developers, on the other hand, rated their personal experi-
ence as most important; this, despite the fact that they have
about 6 years less experience to draw from on average. In
absolute terms, both pools agreed that data is an important
factor, however managers felt it is more important (T-test
p-value < 0.02). One possible implication is that managers
have learned to rely less on their experience over the course
of their career. In any case, the great interest in data as
compared to powerful factors like product vision, planning,
and management suggests that many in the software devel-
opment field, and particularly managers, would be open to
more analytical tools and techniques if they could be made
to fit their needs.

What questions are important or difficult to answer?

Analytics can help distinguish questions of information
which are available through a number of existing tools (e.g.,
how many bugs are in the bug database?), from questions
of insight which provide managers with an understanding
of a project’s dynamics and a basis on which to make
decisions (e.g., why is the project delayed?). Davenport et
al. [27] identify six question areas analytics can help answer
organized by time-frame and by information vs. insight. We

B Managers
Developers

Percentage
"Very Important”

Figure 3. Reported importance of measuring the given types of artifacts
amongst developers and managers.

asked survey participants to rate both the importance and
difficulty of answering questions in each domain on the same
4-point scale we used earlier. Again following the advice by
Kitchenham and Pfleeger [29], we report the percentage of
the response “Very Important” (for importance) and “Very
Difficult” (for difficult) among all responses (excluding no
opinion) in Figure 2.

Unsurprisingly, participants noted that questions of insight
are generally more difficult to answer than of information,
and furthermore that they become even more difficult if
they pertain to the future as compared to the past or
the present. Surprisingly, questions about the future were
rated as progressively less important (though still important
in absolute terms). In other words, both developers and
managers find it more important to understand the past than
try to predict the future; echoing George Santayana, “those
who cannot remember the past are condemned to repeat it.”

A potential explanation is that managers sometimes dis-
trust predictive models. Such models lack transparency, so
to make a decision based on one is to make a decision
without fully understanding why the decision needs to be
made. Transparency is important for critical decisions.

Furthermore, this finding was alluded to by a number of
responders in a free-form response field. Consider hypoth-
esis testing: for example, a manager might suspect that a
feature is prone to bugs because it lacks clear ownership. In
that case the manager might attempt to test that hypothesis
by inspecting some amount of relevant data. If the hypothesis
is supported, the manager might then insist that in the future
all features have well-defined ownership. In this way, the
analysis question relates primarily to the past and present,
but the effect is felt in the future. New analytical tools might
assist managers not only in formulating hypotheses, but also
in conducting more principled analyses and experiments.

C. Indicators and Artifacts

What artifacts are important to measure?

In the context of software engineering, there exists a
wide variety of artifacts suitable for analysis. For a given
indicator, complexity for example, one can evaluate it on
individual function, a class, all code associated with a given
feature, written by a certain author, touched by a test suite,
or even for an entire product provided these mappings can be
established. We asked those who participated in our survey

Description

Reports of crashes or other problems.
Reports opened, closed, etc.
Understandability of code.

Density of similar or identical code fragments.
Dependencies Modularity of code.

Structure of code.

User benchmarks.

Maps engineers to the tasks they are best at.
Predicted defect density.

Bug fixes / refactoring / feature additions.

Arc and Block coverage of test cases.

Amount and completeness of documentation.

Density of branching structure.

Name
Failure Information
Bug Reports
Readability
Code Clones
Dependencies
Architecture
Telemetry
Expertise
Failure Models
Change Type
Test Coverage
Documentation

Complexity

Engineers currently contributing. Engineering Activity
Amount of code changed between builds. Churn
Distribution of changes by author. Ownership

Time between software written and integrated. Velocity

0%

Figure 4.
decisions relevant to their engineering process.

to rate the importance of a number of artifacts on a 4-point
scale, Figure 3 shows how they responded on average. Again
we report the percentage of the response “Very Important”
among all responses (excluding no opinion).

Overall, it is clear that many artifacts provide unique and
valuable information. Analyzing the individual features of
a project, however, was deemed most important by both
developers and managers. This makes sense considering
that many important decisions relate directly to features
(e.g., release planning). Other important artifacts include
components, entire products, and bug reports; each of these
high-level artifacts are most important to managers. On the
other hand, lower level constructs like classes, functions, and
test cases are most important to developers.

We conclude that not only are each of these artifacts
important, but they are important simultaneously. While a
manager may wish to measure say, code churn for the
project, it is just as important to “drill down” and determine
which individual classes, functions, or teams are connected
to that churn in order to take action as needed.

What indicators do you currently use?
What would you like to use?

In addition to artifacts, we asked study participants about
a number of popular indicators (metrics); we asked whether
each indicator was available and whether they currently use
it, or if they would use it if it was made available. In Figure 4
we show, for each indicator, the fraction of respondents who
reported they use or would use the indicator.

Percent who currently use, or would use.

m Developers use
Developers would use
W Managers use

®m Managers would use
|

25% 50% 75% 100%

Percent of managers and developers who reported that they either use or would use (if available) each of the given indicators in making

Failure information was ranked most important and bug
reports second most overall. While failure information refers
to crash reports or other information from end users, bug
reports are most often created by developers and testers
within the development team. Both developers and managers
make extensive use of both types of information. However,
the next several metrics in order of importance are much less
common. Readability, code clones, and dependencies are
infrequently used, but 90% of survey participants responded
that they would use such indicators if they were available.
Furthermore, except for test coverage, change type, and
engineering activity, all of the indicators could be used by
twice as many developers and managers if they were made
available.

Comparing the responses of developers to managers,
several indicators suggest important differences in concerns.
Managers, for example, are more likely to use indicators
related to failures, telemetry, and testing which reveals
a stronger focus on customers. Developers, on the other
hand, are more interested in code metrics like velocity,
churn, readability, and complexity. However, as was the
case with artifacts, few indicators would seem to be wholly
unimportant to either group; every indicator would be used
by at least half of the respondents if available.

While strong interest clearly exists, the difficulty of incor-
porating such metrics in practice remains. We conjecture that
at least part of this difficultly is rooted in disconnect between
available tools and real-world decision making. In an effort

to understand and ultimately bridge this disconnect, in the
next section we develop taxonomy of decision scenarios:
circumstances under which these and other indicators might
be used in a real development setting.

V. DECISION SCENARIOS FOR ANALYTICS

The landscape of artifacts and indicators in software
engineering is well known, but the concrete decisions they
might support are not. We conjecture that understanding
how managers and developers can make use of information
is critical to understanding what information should be
delivered to them.

What decisions could analytics help with?

Because no preexisting classification exists, we asked each
participant to describe up to three scenarios illustrating the
actual or potential effect of analytics on their decisions;
highlighting the questions analytics could answer and de-
cisions it could support. Survey participants described a
total of 102 total scenarios. For each scenario we identified
which subset of the past, present, or future it related to. We
enumerated each type of artifact and indicator mentioned,
and we categorized the types of decisions each analytical
question was said to assist with. Some common themes
emerged:

Targeting Testing. Allocating testing resources is one of
the most powerful tools at the disposal of project managers
for responding to a variety of conditions. Testing is the go-to
solution when it comes to essentially all software correctness
issues; it’s straightforward to deploy, measurable, and gener-
ally effective. Several managers commented on information
needs for test allocation:

“Targeting testing of a product needs information on the
code that changed from build to build and as a result of
bug fixes so we could more easily map out what features
and what other code requires re-examination.”

Much research exists into software testing, especially
into automated tool support (e.g., [30], [31]). Comparatively
little is known, however, about how testing effort should be
deployed over the life-cycle of a large project. It is not clear
whether re-targeting testing based on indicators like code
churn is truly effective. In a future where project data is
detailed, complete, and ubiquitous an opportunity exists for
testing effort to become highly-targeted.

Targeting Refactoring. Refactoring refers to the mod-
ification of code that does not impact external functional
behavior; rather, the goal is to improve attributes relating to
readability, maintainability, extensibility, and other impor-
tant non-functional software attributes. Refactoring can be
thought of as investment [32]: spending resources now to
avoid larger costs in the future. Often indicators related to
architectural complexity and code clones are often cited as
relevant to targeting refactoring effort [33].

“The number of bug reports for a certain feature area
helps us decide whether that feature area is mature for
a refactoring.”

“Telemetry allows us to prioritize investment for code
cleanup and bug fixing in a way that has substantial
customer impact.”

Release Planning. Commercial software projects are
under constant pressure to be released quickly. Managers
told us that among the most important reasons to monitor
a project is to plan such releases and to anticipate risks.
Planning consists of determining what features should be in-
cluded in upcoming releases and when those releases should
actually occur [34]. Relevant factors include testing and
development progress for each feature, feature dependencies,
outstanding defects, as well as external factors like market
conditions. Yet, effective release planning involves more
than just understanding the progress of a project, it also
demands that developers understand their customers.

Understanding Customers. In any business endeavor,
understanding customers is important; software development
is no exception. Many technologies exist for collecting data
from customers: from crash reports [35] to telemetry to
surveys [36], [37], [38]. Several scenarios described the im-
portance of leveraging information about customer behavior
when making decisions about the direction of a project.

“Analytics help us understand how a user is using
our product. Are they performing tasks we expect?
Performing tasks we didn’t anticipate? We can determine
effectiveness of features, as well.”

Making customer data actionable implies directly relating
it to development effort. Not only must we know which
features are valuable or problematic, it must also be possible
to identify these features in the source code, to track their
progress, and to employ customer feedback to guide specific
aspects of development and maintenance.

Judging Stability. Stability is a key concept in software
development. Many modern software projects are long-lived
and maintenance (defined as change subsequent to release)
will often consume as much as 90% of the total life-cycle
budget of a project [39], [40]. Yet, not all parts of a project
change together or in the same way. Many managers and
developers indicated that monitoring the stability of various
parts of a project is important. Understanding stability can
help managers anticipate future change and can ultimately
lead to key decisions about the fate of a system or one of it’s
components; form the observation that it’s time to release to
the decision that it must be abandoned.

Targeting Training. Despite its technical nature, software
development remains primarily a human endeavor. Many
aspects of a project can benefit from explicitly considering
it as a human artifact, the result of a potentially large-scale

collaboration of individuals or teams. Throughout a project’s
life-cycle some developers leave a project and new ones
are added. Managing the intellectual capitol associated with
labor turnover is a key concern [41], yet monitoring this
resource can be very difficult.

Targeting Inspection. Finally, it is not uncommon for or-
ganizations to make use of code reviews or inspections [42].
Yet such inspections are invariably expensive, involving
several developers and often a great deal of time. While
under some development regimes changes to certain system
components must always be inspected (e.g., mission critical
sections), several survey participants discussed how it is
often difficult to decide when inspection is needed in the
rest of the project.

“For our checkin process, if I had decent metrics for
software readability, dependency changes, component-
level changes, etc., I could help drive decisions on what
levels of code review we would force. I'd also like to
make comparisons between the results of the analytics
and the actual number of issues found during code
review (in order to tune the analytics).”

Analytics techniques and tools hold out the promise of
identifying such situations. For one development team, for
example, the occurrence of code clones may indicate the
need for inspections, while for another reports of security
defects may be the most important consideration. Such
techniques could even be used to evaluate the success of
different types of inspection strategies.

Frequency of Decision Scenarios

Figure 5 shows the percentage of scenarios mentioning
each decision type. Many managers and developers de-
scribed how various combinations of metrics and artifacts
could be useful for targeting testing effort. Developers were
also in particular agreement over the relevance of analytics to
targeting refactoring, while managers mentioned a somewhat
wider variety of decision types.

Approximately 89% of the scenarios described concern
either the past or present, a finding which underscores
our earlier observation that participants believe questions
pertaining to the past are the most important to answer. The
artifacts most often mentioned were features, code artifacts,
and change records. Managers discussed features more often
than any other artifact: approximately 35% of the scenarios
they described implied a mapping between features and code
(about twice as often as developers). Similarly, developers
described scenarios pertaining to measuring code about
twice as often as managers. As for indicators, managers
most frequently mentioned bugs, telemetry, test coverage,
regressions and churn. Developers mentioned complexity
and dependencies more often. This confirms similar findings
on the importance of features presented in Section I'V-C.

60.0%

8 B Managers
= 50.0%

% 40.0% Developers
& 30.0%

S 20.0%

g 10.0%

]

(-9

0.0%

Decision Type

Figure 5. Percent of scenarios described in study that pertain to each type
of decision.

VI. THREATS TO VALIDITY

We now consider briefly whether the results of our study
are likely to be valid and generally applicable.

A potential threat to generality is that this study was
conducted exclusively with engineers at Microsoft. We be-
lieve this threat is mitigated by a number of factors. First,
our study is broad in the sense that the participants’ work
spans many product areas including systems, mobile devices,
web applications, and games. Some Microsoft projects are
large (as many as 2,000+ engineers) and others are sig-
nificantly smaller. Specific development methodologies also
vary throughout the company. Second, our study is large
(involving 110 participants) and diverse (participants worked
for companies other than Microsoft in the past for five years
on average).

Another consideration is survey bias. To mitigate this
threat, our survey was conducted on a random sample of
engineers and all responses were kept anonymous. Further-
more, we confirmed many of the survey findings during
later face-to-face meetings with managers (as discussed
in our technical report [28]). Other considerations include
the Hawthorne effect; survey responders may modify their
responses simply because they are aware they are being
studied. For example, they may be more eager to agree about
the potential utility of new tools even though they would
be unlikely to use them in practice. We mitigate this threat
somewhat by asking responders to describe concrete usage
scenarios (Section V).

VII. SOFTWARE ANALYTICS GUIDELINES

A large majority of survey participants agreed or strongly
agreed with the statement “The difficulty of interpreting data
is a significant barrier to the use of analytics today.” This
implies a need for a new class of tools that specifically
target the information needs of managers. Another intriguing
possibility is the addition of an analytic professional to the
software development team, which we proposed in an earlier
position paper [26].

Past

Present

Future

Alerts

Reports unusual changes in artifacts

when they happen.

Helps users respond quickly to events.
= Anomaly detection.

Forecasting
Predicts events based on current
trends. Helps users make pro-active
decisions.

= Extrapolation.

Exploration | Trends
Find importan Quantifies how an artifact is changing.
d p? ,ta t Useful for understanding the direction
conditions. | ¢, project.
= Regression analysis.
Analysis Summarization

Explain conditions.

Succinctly characterizes key aspects of

artifacts or groups of artifacts.

Quickly maps artifacts to development

activities or other project dimensions.
= Topic analysis.

Overlays
Compares artifacts or development
histories interactively.
Helps establish guidelines.
= Correlation.

Goals
Discovers how artifacts are changing
with respect to goals.
Provides assistance for planning.
® Root-cause analysis.

Experimentation | Modeling
Compare alternative Chara(_:terizes normal development
. behavior.
conditions.

Facilitates learning from previous work.

= Machine learning.

Benchmarking
Compares artifacts to established best
practices.
Helps with evaluation.
= Significance testing.

Simulation
Tests decisions before making them.
Helps when choosing between
decision alternatives.

= What-if? analysis.

Figure 6.

A spectrum of analyses suitable for comprising the core of an analytics tool for development activities. We describe each technique and the

insights it primarily pertains to. Additionally we bullet a related technique for each.

A. Tool Guidelines

Here we employ the insights gathered from our survey
to characterize a set of important characteristics for any
analytics tool. Analytics tools should ...

o Be easy to use. Managers don’t necessarily have exper-

tise in analysis.

« Be fast and produce concise or summary output. Man-
agers have significant time constraints.

e Measure many artifacts using many indicators. Many
are important, and combining them can yield more
complete insights.

« Be current and interactive. Managers want to view the
most current data available, at many levels of detail,
not static reports.

e Map indicators to features and dates to milestones.

o Focus on characterizing the past and present over
predicting the future.

e Recognize that managers and developers have different
needs and focus on information relevant to the target
audience.

B. Common Analysis Types

Additionally, we identify a set of analysis types that fit
well with information needs described by our study. In
Figure 6 we organize these analyses by what time frame
they pertains to (i.e., Past, Present, Future) and their general
category of technique (i.e., Exploration, Analysis, and Ex-
perimentation). For each analysis, we briefly describe what
it does and what insights it can help with. We also give an
example of a related technique which might underlie such an
analysis. These analyses can be instantiated with any number
of metrics; whichever are most appropriate for the target
scenario, and can be layered.

Trends. The nominal value of an indicator is often less
important than how it is changing or “trending.” Many

decision scenarios describe intervening when negative trends
are detected. An analytics tool should have the capacity to
differentiate significant trends from spurious ones.

Alerts. During the course of a project’s life-cycle, it’s not
unusual for certain events to occur suddenly which should
be addressed a quickly as possible; influxes of crash reports,
sudden and rapid changes in key indicators, large changes
to sensitive system components are all rare but important to
address when discovered. The size and complexity of many
projects make it important that managers have automated
support for detecting these events.

Forecasting. As significant trends and correlations are
identified, it can often be useful to project them into the
future. Such a tool can help engineers predict when tasks will
reach important thresholds (e.g., number of known defects
is no longer decreasing). A good analytics tool should help
the user understand potential sources of error and confidence
bounds for any such projections.

Summarization. Software engineering artifacts can be
numerous and complex. Manually inspecting hundreds of
change records to discover what they have in common isn’t
practical. Summarization techniques like topic analysis can
be employed to automate these tasks and help managers and
developers focus on gathering high-level insights.

Overlays. The idea of overlays is to present multiple
views of a dataset simultaneously, typically with a strong
component of interactivity. Overlaying architecture with
code clones, for example, might reveal hidden insights about
why and how the clones originate. Overlays can also be used
across development histories (e.g., overlaying bug reports
from last year’s release could help a manager decide if bug
triage is as effective then it used to be).

Goals. Analytics tools often explicitly represent important
goals. By encoding project milestones and other broad
concerns, managers and team members can explore how the
actions they take may influence their goals.

Modeling. Managers must maintain awareness of how
development is functioning and where it can be improved.
In this context, modeling refers to the task of building a
representation of the project history or of the development
team itself for the purpose of comparison or assessment.

Benchmarking. Managers often expressed the importance
of comparing to best practices. The idea of benchmarking
is to characterize such practices so that can be referenced
automatically. An analytics tool can help find any significant
divergence from benchmarks.

Simulation. Managers often perform contingency plan-
ning (often cast as “What-if?” decisions), for example:
“What if we release in three months?” “What if we abandon
feature X?” Simulation can be used to show the eventual real
effects of alternative conditions and courses of action.

C. Implications for Research

We now emphasize several implications for research based
on the findings from the survey.

e Diverse information needs. Both engineers and man-
agers revealed a wide spectrum of information needs
in the survey. Needs also change over the lifetime and
maturity of the project.

e Many stakeholders. Different stakeholders may have
very different needs. For example, a manager wants
to see different data than a developer or tester. A direct
consequence is that tools should support different views
for managers, developers, testers, etc. Probably no tool
fits all.

e One tool is not enough. Stakeholders need multiple
tools. Analytics is more than just measurement and
often multiple methods are needed to fully understand
data.

Often teams have unique questions which are impossible
to anticipate and require experience with data analysis. In
a previous position paper [26], we argued for a dedicated
software analyst who is responsible to support data-driven
decision making within a project—similar like a build man-
ager is responsible for a successful build process.

VIII. CONCLUSION

We believe that analytics holds out great promise for
enhancing the ability of software engineers and their man-
agers to make informed decisions. Analytics is a data-driven
decision making paradigm that emphasizes the layering of
multiple types of analyses on top of existing information
resources, typically with the help of automated tools. In
this paper we explained why software engineering is a good

candidate for this approach. For example, software projects
are highly measurable, but often unpredictable.

Realizing analytics for software development demands un-
derstanding the information needs of development managers;
what their needs are, what decisions they influence, and how
those needs map to analyses. Toward that end, we presented
a study of the information needs of managers and developers.
We then distilled from the study a set of guidelines for
constructing analytics tools.

We hope this paper serves as a first step toward important
new tools which will support software development. We also
hope that inspired by our work other researchers will do
additional studies to better understand information needs in
software development analytics. To facilitate replication, we
provide the full text of the survey and the design of a proof-
of-concept tool in a technical report [28, Appendix 2].

Future work in the area of software development analytics
should fall into the following categories.

e Data collection. We need to rethink how we collect
data. So far, mining software repositories has had a
data-focused approach (i.e., take some data and come
up with great tools and insights). However, it will be
important to also think in a user-focused way: start with
the user and decide what data we need to collect to
provide her with solutions to her problems.

e Data quality. To make decisions based on data, the
quality of the data has to be high [43], [44], [45].
But it is important to notice that not all data needs
to be perfect. The collection of high-quality data costs
money; if data is not used for decisions, its quality
matters less—why collect it in the first place.

e Data privacy. Data can be very dangerous when used
inappropriately. It is important to put in place mecha-
nisms that ensure only proper uses of data are possible.

o Understanding user needs. This paper is a first step
towards understanding the data needs of software engi-
neers and managers. A next step will be to understand
how data is used in their communication. Often people
justify decisions to their peers, managers, and reports.

o User experience. The user experience of any tool for
software development analytics will be critical, e.g.,
what are the best ways to surface and interact with
software development data and analysis.

o Education. Finally, as today’s society and businesses
become more data-driven [46], it will be important
to prepare software engineers for data analysis and
educate them how to use basic analysis techniques.

We are at the crossroads to become more data-driven in
software development. With Web services and the Cloud the
amount of data will explode, but also the opportunities gain
insight. To make the right decisions during this transition it
is important for us to better understand data and analytics
needs. This paper is a first step in this direction.

Acknowledgments: We thank Sunghun Kim, Daniel Liebling,
Robin Moeur, Brendan Murphy, Nachi Nagappan, Dongmei Zhang,
and the many managers and developers at Microsoft who volun-
teered their time to participate in our study, meet with us, and
provide their valuable insights and feedback.

[1]
[2]
[3]

[4]

[5]

[6]

[7]
[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

REFERENCES

R. P. L. Buse and W. R. Weimer, “A metric for software readability,”
in ISSTA 08, 2008, pp. 121-130.

T. J. McCabe, “A complexity measure,” I[EEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308-320, 1976.

T. Addison and S. Vallabh, “Controlling software project risks: an
empirical study of methods used by experienced project managers,”
in SAICSIT °02, 2002, pp. 128-140.

National Institute of Standards and Technology, “The economic
impacts of inadequate infrastructure for software testing,” Research
Triangle Institute, Tech. Rep. 02-3, May 2002. [Online]. Available:
http://www.nist.gov/director/prog-ofc/report02-3.pdf

L. Strigini, “Limiting the dangers of intuitive decision making,” I[EEE
Software, vol. 13, pp. 101-103, 1996.

J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson, “Fastdash:
a visual dashboard for fostering awareness in software teams,” in CHI
'07, 2007, pp. 1313-1322.

A.J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in ICSE’07, 2007, pp. 344-353.

J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in SIGSOFT ’06/FSE-14, 2006,
pp. 23-34.

B. Boehm and R. Ross, “Theory-w software project management
principles and examples,” IEEE TSE, vol. 15, no. 7, pp. 902 -916,
jul 1989.

L. Wallace, M. Keil, and A. Rai, “Understanding software project
risk: a cluster analysis,” Inf. Manage., vol. 42, no. 1, pp. 115-125,
2004.

A. Jedlitschka, “Evaluating a model of software managers’ informa-
tion needs — an experiment,” in ESEM’10, September 2010.

S. Vegas, N. J. Juzgado, and V. R. Basili, “Packaging experiences
for improving testing technique selection,” Journal of Systems and
Software, vol. 79, no. 11, pp. 1606-1618, 2006.

T. Punter, “What information do software engineering practitioners
need?” in Proc. of ESEIW Workshop on Empirical Studies in Software
Engineering, 2003, pp. 85-95.

S. Komi-Sirvi, P. Parviainen, and J. Ronkainen, “Measurement
automation: Methodological background and practical solutions-a
multiple case study,” in METRICS’01: IEEE International Symposium
on Software Metrics, 2001, p. 306.

A. Rainer, T. Hall, and N. Baddoo, “Persuading developers to ’buy
into’ software process improvement: Local opinion and empirical
evidence,” in ISESE’03, 2003, pp. 326-335.

V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal, question, metric
paradigm,” in Encyclopedia of Software Engineering Volume 1,]. J.
Marciniak, Ed. John Wiley & Sons, 1994, pp. 528-532.

V. R. Basili, M. Lindvall, M. Regardie, C. Seaman, J. Heidrich,
J. Miinch, D. Rombach, and A. Trendowicz, “Linking software
development and business strategy through measurement,” /EEE
Computer, vol. 43, pp. 57-65, 2010.

R. Kaplan and D. Norton, “The balanced scorecard—measures that
drive performance,” Harvard Business Review, p. 71, January/Febru-
ary 1992.

U. D. of Defense and U. Army, “Practical software and systems mea-
surement: A foundation for objective project management, v.4.0c,”
March 2003, www.psmsc.com.

A. Kaushik, Web Analytics 2.0. Wiley Publishing, 2010.

V. R. Basili, “The experience factory and its relationship to other
improvement paradigms,” in ESEC’93, 1993, pp. 68-83.

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

A. Sillitti, A. Janes, G. Succi, and T. Vernazza, “Collecting, integrat-
ing and analyzing software metrics and personal software process
data,” in EUROMICRO, 2003, p. 336.

P. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and T. Ya-
mashita, “Improving software development management through
software project telemetry,” IEEE Software, vol. 22, no. 4, pp. 76
— 85, july-aug. 2005.

Microsoft Corporation, “Team foundation server,” http://msdn.
microsoft.com/en-us/vstudio/default.aspx.

IBM Corporation, “Jazz,” http://www.ibm.com/software/rational/
jazzl.

R. P. Buse and T. Zimmermann, “Analytics for software develop-
ment,” in Proceedings of the FSE/SDP Workshop on the Future of
Software Engineering Research, November 2010.

T. Davenport, J. Harris, and R. Morison, Analytics at Work. Boston,
MA: Harvard Business School Publishing Corporation, 2010.

R. P. L. Buse and T. Zimmermann, “Information needs for software
development analytics,” Microsoft Research, Tech. Rep. MSR-TR-
2011-8, 2010, available at http://research.microsoft.com/apps/pubs/
default.aspx?id=144543.

B. Kitchenham and S. Pfleeger, “Personal opinion surveys,” in Guide
to Advanced Empirical Software Engineering. Springer, 2007.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“Exe: Automatically generating inputs of death,” ACM Trans. Inf.
Syst. Secur., vol. 12, pp. 10:1-10:38, December 2008.

P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated
random testing,” SIGPLAN Not., vol. 40, pp. 213-223, June 2005.
M. Kim, D. Cai, and S. Kim, “An empirical investigation into the
role of refactorings during software evolution,” in /CSE ’11, 2011.
T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Trans. Software Eng., vol. 30, no. 2, pp. 126-139, 2004.

G. Ruhe, Product Release Planning: Methods, Tools and Applica-
tions. Auerbach Publications, 2010.

K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in the
(very) large: ten years of implementation and experience,” in SOSP
'09: Proc. Symp. Operating Systems Principles, 2009, pp. 103-116.
T. Briggs, “How does usage data improve the office user ex-
perience?” http://blogs.technet.com/b/office2010/archive/2010/02/09/
how-does-usage-data-improve- the-office-user-experience.aspx, Feb
2010.

P. Koss-Nobel, “Data driven engineering: Tracking usage to make
decisions,” http://blogs.technet.com/b/office2010/archive/2009/11/
03/data-driven-engineering-tracking-usage- to-make-decisions.aspx,
Nov 2009.

S. Lipstein, “Designing with customers in
http://blogs.technet.com/b/office2010/archive/2009/10/06/
designing-with-customers-in-mind.aspx, Oct 2009.

T. M. Pigoski, Practical Software Maintenance: Best Practices for
Managing Your Software Investment. John Wiley & Sons, Inc., 1996.
R. C. Seacord, D. Plakosh, and G. A. Lewis, Modernizing Legacy
Systems: Software Technologies, Engineering Process and Business
Practices. MA, USA: Addison-Wesley Longman, 2003.

A. Mockus, “Succession: Measuring transfer of code and developer
productivity,” in ICSE’09, 2009, pp. 67-77.

J. Cohen, Ed., Best Kept Secrets of Peer Code Review. Austin, TX:
Smart Bear Inc., 2006.

C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced? bias in bug-fix datasets,” in
ESEC/FSE’09, 2009.

A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bern-
stein, “The missing links: Bugs and bug-fix commits,” in
SIGSOFT’10/FSE-18. ACM, 2010.

T. H. D. Nguyen, B. Adams, and A. E. Hassan, “A case study of bias
in bug-fix datasets,” in WCRE 10, 2010.

T. May, The New Know: Innovation Powered by Analytics.
2009.

mind,”

Wiley,

