Demo Abstract: Augmenting Homes with Custom Devices Using
.NET Gadgeteer and HomeOS

James Scott
Microsoft Research,UK

jws@microsoft.com

Abstract

We describe how two of our recent research technolo-
gies, NET Gadgeteer and HomeOS, complement each other
in enabling research using custom devices in home deploy-
ments. .NET Gadgeteer enables rapid prototyping of custom
devices based on solderless assembly from a wide range of
publicly available hardware modules, and managed C# soft-
ware. HomeOS provides abstraction layers so that “apps”
can be written which leverage devices in the home (e.g. wire-
less sensors, webcams) using standard APIs. In combination,
HomeOS and .NET Gadgeteer make it easy to construct cus-
tom devices which interact with HomeOS apps. We show-
case an example custom device and application a plumbing
leak sensor and leak notification application.

1 Introduction

There is a plentiful and growing body of research into in-
troducing new technology in the home. Such studies often
require deployment of devices (sensors, actuators, physical
user interfaces) as well as application software. Over the
past few years at Microsoft Research, we have developed two
complementary publicly-available systems relevant to home
deployments: HomeOS and .NET Gadgeteer. We have in-
tegrated these systems to help enable home-deployment re-
search. We briefly describe both systems, and an example
.NET Gadgeteer device and associated HomeOS application
which can serve as a template for future research projects in
this area.

2 HomeOS

HomeOS is a platform which provides standard APIs for
software running on a hub device (e.g. a PC) to communicate
with and control devices in the home such as thermostats,
wireless cameras, etc. [1]. HomeOS “drivers” communicate
to devices using protocols that are specific to the device but
expose to applications high-level APIs that depend on the

Copyright is held by the author/owner(s).

Buildsys’12, November 6, 2012, Toronto, ON, Canada.
ACM 978-1-4503-1170-0

A.J. Bernheim Brush
Microsoft Research, USA

ajbrush@microsoft.com

Ratul Mahajan
Microsoft Research, USA

ratul@microsoft.com

type of the device and its functionality. For instance, the API
for a light includes “on” and “off” commands. Therefore,
HomeOS applications can be independent of device proto-
cols and vendors.

HomeOS currently runs in 12 homes in the Pacific North-
west region of the USA. It has support for many types of de-
vices such as light switches, dimmers, door/window sensors,
and cameras. We have also written eighteen applications
that use these devices in various ways. We have made the
HomeOS prototype available to academic institutions. Over
50 students across twenty research groups have developed
applications and drivers for HomeOS (see [2]). Applications
include energy profiling, remote monitoring, and end user
programming.

3 .NET Gadgeteer

.NET Gadgeteer [3] is an open source platform for rapidly
prototyping custom devices, providing solderless assembly
of hardware from a wide range of modules, programming
using managed code (C#) rather than low-level C code, and
support for physical prototyping. .NET Gadgeteer can be
used to build a very broad range of devices, thanks to a range
of hardware modules [4] including sensors (gyro, compass,
etc.), networking (WiFi, Bluetooth, etc.), user interface el-
ements (LCDs, joysticks, etc.), actuation (motor/servos, re-
lays, etc.) This hardware is sold by multiple manufactur-
ers (e.g. through amazon.com or mouser.com) and the open
source .NET Gadgeteer hardware specifications and core
platform software allow for interoperability across manufac-
turers.

4 Custom Devices for the Home

HomeOS and .NET Gadgeteer are highly complementary
when it comes to home deployments. To illustrate why, we
discuss what happens when each is used in isolation.

HomeOS can be used without .NET Gadgeteer, if the nec-
essary sensors, actuators and I/O units can be found “off the
shelf”, e.g. existing devices are available which use a sup-
ported interface such as z-wave or Insteon. However, in our
experience [5], which echoes that of others [6], such com-
mercial off-the-shelf (COTS) devices are often a problem for
research, for a number of reasons.

First, COTS devices are finite and inflexible. If one ex-
ists that is precisely what is required, then all is well. How-
ever, research deployments often involve new types of de-
vices and sensors, which are not available. Furthermore,



Figure 1. .NET Gadgeteer modules (left) and encased
prototype (right) for moisture sensor

even if a COTS device is available, even small changes to
the devices operation may be impossible, e.g. modifying the
polling period of a sensor, or providing a custom user in-
terface. Second, a deployment may often require a range
of COTS devices using a number of different standards for
communication and control. This leads to an overall system
quickly becoming a hodge-podge prone to failures and hard
to maintain. Third, COTS devices may not be designed for
failsafe operation and deep logging that is necessary for a
successful research experiment. For example, in a previous
study on predictive heating [5], we looked at COTS Passive
Infra-Red (PIR) motion sensors and none were quite right.
One such sensor only sent a message when motion started or
ended, so when a message was lost, there would be an indefi-
nitely long period of misbehavior due to the incorrect motion
state, and lack of access to raw motion events inhibited our
ability to verify ground truth occupancy.

On the other hand, .NET Gadgeteer can be used to build
custom devices for the home, without HomeOS. However,
we often find with home deployments that multiple custom
devices are required, and that there may need to be a “back-
end” software component that communicates with them all
(e.g. running on a PC). HomeOS provides a way to easily
integrate custom devices and the software backend, as well
as manage the configuration of unique devices in each house.
It also enables COTS devices to be easily used as part of a
deployment, thereby avoiding the overhead of building cus-
tom devices when possible.

5 Example HomeOS/.NET Gadgeteer Device

We have developed an example device with Gadgeteer
and an associated HomeOS application: a moisture sensor to
detect plumbing leaks before they cause significant damage.
While the sensor and application are simple, they provide a
template for rapid prototyping of custom home devices and
software.

Figure 1 illustrates the Gadgeteer-based prototype of a
moisture sensor which uses WiFi and a RESTFUL API to
communicate with HomeOS. One challenge with custom de-
vices in homes is associating them with the home network.
Showcasing the flexibility of Gadgeteer and HomeOS, we
have implemented numerous association techniques includ-
ing the ability to put a USB memory stick or SD card with
a credentials.txt file to provide credentials (using the USB
Host and SD card modules), and a USB serial interface so
that the device can be plugged (temporarily) straight into a
PC running HomeOS, which will send it WiFi credentials
automatically (using the USB Serial module). We use a mul-
ticolor LED module to provide color-code feedback and a
button module to provide a reset button.

Once the credentials have been transferred, HomeOS and
the Gadgeteer device communicate using standard TCP/IP
networking to perform device discovery, functionality dis-
covery and provide a sensor data feed that can be used by
HomeOS apps. We wrote a simple leak detection app which
alerts the user if a leak is detected.

6 References

[1] C.Dixon, R. Mahajaran, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu, and
P. Bahl. An Operating System for the Home. In Proc. of the NSDI’12:
9th USENIX Symp. on Networked Systems Design and Implementation,
pages 337-352, April 2012.

[2] HomeOS. http://research.microsoft.com/homeOS.

[3] N. Villar, J. Scott, S. Hodges, K. Hammil, and C. Miller. .NET Gad-
geteer: A Platform for Custom Devices. In Proc. of Pervasive 2012,
pages 216-233, June 2012.

[4] Gadgeteer. http://netmf.com/gadgeteer.

[5] J. Scott, A. J. Bernheim Brush, J. Krumm, B. Meyers, M. Hazas,
S. Hodges, and N. Villar. PreHeat: Controlling Home Heating Using
Occupancy Prediction. In Proc. of the 13th Int’l Conf. on Ubiquitous
Computing, pages 281-290, 2011.

[6] T.W. Hnat, V. Srinivasan, J. Lu, T. I. Sookoor, R. Dawson, J. Stankovic,
and K. Whitehouse. The hitchhiker’s guide to Successful Residential
Sensing Deployments. In Proc. of the 9th Int’l Conf. on Embedded
Networked Sensor Systems, pages 232-245, 2011.



