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This companion source material contains the proofs for all
the theorems in the main paper. For completeness, it repeats
the definitions, theorems, and lemmas.

1. Definitions
Definition 1.1. Traces [1].
Equivalence classes of ≡Λ are traces over Λ. The term [ω]
denotes the trace that contains the sequence of transitions ω.

Definition 1.2. Prefix([ω]) [1].
Prefix([ω]) returns the set containing all prefixes of all se-
quences in the Mazurkiewicz trace defined by ω.

Definition 1.3. Local sufficient.
A nonempty set T ⊆ T of transitions enabled in a state s in
AG(Bv,c) is local sufficient in s if and only if for all sequences
ω of transitions from s in AG(Bv,c), there exists a sequence
ω′ from s inAG(Bv,c) such that ω ∈ Prefix([ω′]) and ω′1 ∈ T .

Definition 1.4. ext(s, t).
Given a state s = final(S) and a transition t ∈ enabled(s),
ext(s, t) returns the unique sequence of transitions β from s
such that

1. ∀i ∈ dom(β) : βi.tid = t.tid

2. t.tid 6∈ enabled(final(S.β))

1.1 Preemption-bounded search
Definition 1.5. Preemption bound [2].

Pb(t) = 0

Pb(S.t) =


Pb(S) + 1 if t.tid 6= last(S).tid and

last(S).tid ∈ enabled(final(S))

Pb(S) otherwise

Definition 1.6. Preemption-bound persistent sets.
A set T ⊆ T of transitions enabled in a state s = final(S)
is preemption-bound persistent in s iff for all nonempty
sequences α of transitions from s in AG(Pb,c) such that
∀i ∈ dom(α), αi 6∈ T and for all t ∈ T ,

1. Pb(S.t) ≤ Pb(S.α1)

2. if Pb(S.t) < Pb(S.α1), then t↔ last(α) and
t↔ next(final(S.α), last(α).tid)

3. if Pb(S.t) = Pb(S.α1), then ext(s, t)↔ last(α) and
ext(s, t)↔ next(final(S.α), last(α).tid)

Definition 1.7. PC for Explore(S) – Preemption bound.
∀u∀ω : if Pb(S.ω) ≤ c then Post(S.ω, len(S), u)

Definition 1.8. Post(S, k, u) – Preemption bound.
∀v : if i = max({i ∈ dom(S) | Si = next(final(S), u) and
Si.tid = v}) then

1. if i ≤ k then
if u ∈ enabled(pre(S, i)) then u ∈ backtrack(pre(S, i))
else backtrack(pre(S, i)) = enabled(pre(S, i))

2. if j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6=
Sj .tid and j < i}) and j < k then
if u ∈ enabled(pre(S, j)) then u ∈ backtrack(pre(S, j))
else backtrack(pre(S, j)) = enabled(pre(S, j))

1.2 Fair-bounded search
Definition 1.9. Fair bound (Fb).
Let Y(S, u) return Thread u’s yield count in final(S).

Fb(t) = 0

Fb(S.t) = max(Fb(S),

maxu∈enabled(final(S))(Y(S, t.tid)− Y(S, u)))

Definition 1.10. Fair-bound persistent sets.
A set T ⊆ T of transitions enabled in a state s = final(S)
is fair-bound persistent in s if and only if for all nonempty
sequences α of transitions from s in AG(Fb,c) such that
∀i ∈ dom(α) : αi 6∈ T and for all t ∈ T ,

1. Fb(S.t) ≤ c
2. if t is a release operation, then ∀u ∈ enabled(s) :

next(s, u) ∈ T
3. t↔ last(α)

Definition 1.11. PC for Explore(S) - Fair bound.
∀u∀ω : if Fb(S.ω) ≤ c and len(S.ω) ≤ MAX then
Post(S.ω, len(S), u)
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Definition 1.12. Post(S, k, u) - Fair bound.
∀v : if i = max({i ∈ dom(S) | Si = next(final(S), u) and
Si.tid = v}) and i ≤ k then

if u ∈ enabled(pre(S, i)) and Si is not a release then
u ∈ backtrack(pre(S, i))

else backtrack(pre(S, i)) = enabled(pre(S, i))

2. Proofs
Let AR(Bv,c) be the reduced state space explored by a selec-
tive search that explores a nonempty local sufficient set in
each state.

Theorem 1. Let s be a state in AR(Bv,c), and let l be a
local state reachable from s in AG(Bv,c) by a sequence ω
of transitions. Then, l is also reachable from s in AR(Bv,c).

Proof. The proof is by induction on the length of the longest
sequence of transitions that leads to l from s in AG(Bv,c).

Case 1.1. Base Case.
For len(ω) = 0 the result is immediate.

Case 1.2. Inductive case.
Let l be a local state such that the longest sequence of
transitions ω from s to l has length n + 1. Let u be a thread
such that l = local(final(S.ω), u). Let T be the nonempty
local sufficient set explored from s in AR(Bv,c).

By Definition 1.3 of local sufficient sets, there exists
a sequence ω′ of transitions from s in AG(Bv,c) such that
ω′1 ∈ T and ω ∈ Prefix([ω′]). Thus, by Definition 1.2 of
the prefix function, there exists a sequence β of transitions
from final(S.ω) such that ω.β ∈ [ω′]. Assume that none of
the transitions in ω are by u. Then, by definition of local
states,

local(final(S.ω), u) = local(final(S), u)

and the result is immediate.
Assume that a transition in ω is by u. Let i ∈ dom(ω)

be the maximum value of i such that ωi.tid = u. Because
ω.β ∈ [ω′], there must exist j ∈ dom(ω′) such that ω′j = ωi.
Let ω′ = α.t.γ such that t = ω′j . Because ω.β ∈ [ω′],

local(final(S.ω), u) = local(final(S.α.t), u)

Thus, ω′ leads to l. Because ω′1 is in T , it is explored from s
and the state final(S.ω′1) is reachable in AR(Bv,c). Because
ω is the longest sequence of transitions that leads to l in
AG(Bv,c), len(S.α.t) ≤ len(ω). Thus, from final(S.ω′1), l is
reachable via a sequence of transitions of length n. By the
inductive hypothesis, l is also reachable from s in AR(Bv,c).

2.1 Preemption-bounded search
Let AR(Pb,c) be the reduced state space for a selective search
that explores a preemption-bound persistent set in each state.

We provide two lemmas to manage the bound, and a theorem
stating that a nonempty preemption-bound persistent set is
local sufficient.

Lemma 2. Let α and β be nonempty sequences of transi-
tions from s = final(S) in AG(Pb,c) such that

1. β ↔ α

2. Pb(S.β1) ≤ Pb(S.α1)

3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. β ↔ next(final(S.α1 . . . αi), αi.tid), 1 ≤ i < len(α)

5. if Pb(S.β1) = Pb(S.α1), then
β1.tid 6∈ enabled(final(S.β))

Then, β.α is a sequence of transitions from s in AG(Pb,c).

Proof. By Assumption 1, β.α is a sequence of transitions
from s in AG. For each preemption in S.β.α, from left to
right, show that there exists a unique preemption in S.α.
Assume that β1 requires a preemption from final(S). By
Assumption 2, α1 also requires a preemption from final(S).
By Assumption 3, no transition in β after β1 requires a
preemption.

Assume that α1 requires a preemption from final(S.β).
Then,

β1.tid ∈ enabled(final(S.β))

and thus by Assumptions 2 and 5, Pb(S.β1) < Pb(S.α1).
Thus, α1 requires a preemption from final(S) and β1 does
not, so this preemption is unique. Assume that a transition
αi, 2 ≤ i ≤ len(α), requires a preemption in S.β.α.
By Assumption 4, αi also requires a preemption in S.α.
Thus, for each preemption in S.β.α there exists a unique
preemption in S.α and

Pb(S.β.α) ≤ Pb(S.α) ≤ c

Thus, β.α is a sequence of transitions from s in AG(Pb,c).

Lemma 3. Let T be a nonempty preemption-bound persis-
tent set in a state s = final(S) in AR(Pb,c) and let α.β.γ be
a sequence of transitions from s in AG(Pb,c) such that α and
β are nonempty and

1. ∀i ∈ dom(α) : αi 6∈ T
2. β1 ∈ T
3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. if Pb(S.β1) < Pb(S.α1) then len(β) = 1

5. if Pb(S.β1) = Pb(S.α1) and γ is empty, then β1.tid 6∈
enabled(final(S.β))

6. if Pb(S.β1) = Pb(S.α1) and γ is nonempty, then γ1.tid 6=
β1.tid

Then, β.α.γ is a sequence of transitions from s in AG(Pb,c).

Proof. By Assumptions 1-4 and by Requirements 2 and 3 of
Definition 1.6 of preemption-bound persistent sets, β ↔ α

2 2013/8/19



and

∀i ∈ dom(α) : β ↔ next(final(S.α1 . . . αi), αi.tid) (1)

Thus, β.α.γ is a sequence of transitions from s in AG. For
each preemption in S.β.α.γ, from left to right, show that
there exists a unique preemption in S.α.β.γ. Assume that
β1 requires a preemption from final(S). Then, by Require-
ment 1 of Definition 1.6 of preemption-bound persistent sets,
α1 also requires a preemption from final(S). By Assump-
tion 3, no transition in β after β1 requires a preemption.

Assume that α1 requires a preemption from final(S.β). If
Pb(S.β1) < Pb(S.α1), then α1 requires a preemption from
final(S) and β1 does not, so this preemption is unique. Oth-
erwise, by Requirement 1 of Definition 1.6 of preemption-
bound persistent sets, Pb(S.β1) = Pb(S.α1). Because α1

requires a preemption from final(S.β),

β1.tid ∈ enabled(final(S.β)) (2)

By Assumption 5, γ is nonempty, and by Assumption 6
γ1.tid 6= β1.tid. By Equation 2 and Requirement 3 of
Definition 1.6 of preemption-bound persistent sets,

β1.tid ∈ enabled(final(S.α.β))

Thus, γ1 requires a preemption from final(S.α.β). Assume
that a transition αi, 2 ≤ i ≤ len(α), requires a preemption
in S.β.α.γ. By Equation 1, αi also requires a preemption in
S.α.β.γ.

Assume that γ1 requires a preemption from final(S.β.α).
Then,

last(α).tid ∈ enabled(final(S.β.α))

By Equation 1,

last(α).tid ∈ enabled(final(S.α))

Because β ↔ α, β1.tid 6= last(α).tid. Thus, β1 requires
a preemption from final(S.α). Assume that a transition γi,
2 ≤ i ≤ len(γ), requires a preemption in S.β.α.γ. Because
β ↔ α, final(S.α.β.γ1) = final(S.β.α.γ1). Thus, by Def-
inition 1.5 of the preemption bound, γi also requires a pre-
emption in S.α.β.γ. Thus, for each preemption in S.β.α.γ
there exists a unique preemption in S.α.β.γ and

Pb(S.β.α.γ) ≤ Pb(S.α.β.γ) ≤ c

Thus, β.α.γ is a sequence of transitions from s in AG(Pb,c).

Theorem 4. If T is a nonempty preemption-bound persistent
set in a state s in AR(Pb,c), then T is local sufficient in s.

Proof. Let s be a state in AR(Pb,c) and let l be a local state
reachable from s in AG(Pb,c) via a nonempty sequence ω of
transitions.

Case 4.1. ∀i ∈ dom(ω) : ωi 6∈ T .
Let t be any transition in T . By Requirement 1 of Defi-
nition 1.6 of preemption-bound persistent sets, Pb(S.t) ≤
Pb(S.ω1). Let β = t if Pb(S.t) < Pb(S.ω1), and let
β = ext(s, t) otherwise. Consider the sequence ω′ = β.ω.
By Requirements 2 and 3 of Definition 1.6 of preemption-
bound persistent sets, β ↔ ω and ∀i ∈ dom(ω) : β ↔
next(final(S.ω1 . . . ωi), ωi.tid). Thus, by Lemma 2 β.ω is a
sequence of transitions from s in AG(Pb,c) and by Defini-
tion 1.1 of a trace, ω.β ∈ [ω′]. By Definition 1.2 of the prefix
function, ω ∈ Prefix([ω′]). Thus, T is local sufficient in s.

Case 4.2. ∃i ∈ dom(ω) : ωi ∈ T .
Let ω = α.β.γ such that

1. ∀i ∈ dom(α) : αi 6∈ T
2. β1 ∈ T
3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. if Pb(S.β1) < Pb(S.α1) then len(β) = 1

5. if Pb(S.β1) = Pb(S.α1) and γ is nonempty, then
γ1.tid 6= β1.tid

Assume that α is empty. Then, T is local sufficient in s
because ω1 ∈ T and l is reachable via ω. Assume that
α is nonempty. By Requirement 1 of Definition 1.6 of
preemption-bound persistent sets, Pb(S.β1) ≤ Pb(S.α1).

Case 4.2a. γ is nonempty, or γ is empty and
β1.tid 6∈ enabled(final(S.β)), or Pb(S.β1) < Pb(S.α1).
Consider the sequence ω′ = β.α.γ, i.e., ω with β moved to
the beginning. By Requirements 2 and 3 of Definition 1.6
of preemption-bound persistent sets, β ↔ α and ∀i ∈
dom(α) : β ↔ next(final(S.α1 . . . αi), αi.tid). Thus, by
Lemma 3 ω′ is a sequence of transitions from s in AG(Pb,c)
and by Definition 1.1 of a trace ω′ ∈ [ω]. By Definition 1.2 of
the prefix function ω ∈ Prefix([ω′]), so T is local sufficient
in s.

Case 4.2b. γ is empty, β1.tid ∈ enabled(final(S.β)), and
Pb(S.β1) = Pb(S.α1).
Let β′ = ext(s, β1). Consider the sequence ω′ = β′.α.
By Requirement 3 of Definition 1.6 of preemption-bound
persistent sets, β′ ↔ α and ∀i ∈ dom(α) : β′ ↔
next(final(S.α1 . . . αi), αi.tid). Thus, by Lemma 2 β′.ω is
a sequence of transitions from s in AG(Pb,c) and by Defini-
tion 1.1 of a trace ω.β′ ∈ [ω′]. By Definition 1.2 of the prefix
function ω ∈ Prefix([ω′]), so T is local sufficient in s.

Lemma 5. Whenever a state s = final(S) is backtracked
by Algorithm 1, the set T of transitions explored from s is
preemption-bound persistent in s, provided that postcondi-
tion PC holds for every recursive call Explore(S.t) for all
t ∈ T .
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Algorithm 1 BPOR with bound function Bv and bound c

1: Initially, Explore(ε) from s0

2: procedure Explore(S) begin
3: Let s = final(S)

# Add backtrack points
4: for all (u ∈ Tid) do
5: for all (v ∈ Tid | v 6= u) do

# Find most recent dependent transition
6: if (∃i = max({i ∈ dom(S) | Si =

next(s, u) and Si.tid = v})) then
7: Backtrack(S, i, u)

# Continue the search by exploring successor states
8: Initialize(S)
9: Let visited = ∅

10: while (∃u ∈ (enabled(s) ∩ backtrack(s) \ visited))
do

11: add u to visited
12: if (Bv(S.next(s, u)) ≤ c) then
13: Explore(S.next(s, u))

Algorithm 2 BPOR for preemption-bounded search

1: procedure Initialize(S) begin
2: if (last(S).tid ∈ enabled(final(S))) then
3: add last(S).tid to backtrack(final(S))
4: else
5: add any u ∈ enabled(final(S)) to

backtrack(final(S))
6: procedure Backtrack(S, i, u) begin
7: AddBacktrackPoint(S, i, u)
8: if (j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6=

Sj .tid and j < i})) then
9: AddBacktrackPoint(S, j, u)

10: procedure AddBacktrackPoint(S, i, u) begin
11: if (u ∈ enabled(pre(S, i))) then
12: Add u to backtrack(pre(S, i))
13: else
14: backtrack(pre(S, i)) = enabled(pre(S, i))

Proof. Let T = next(s, u) | u ∈ backtrack(s). Show that if
T violates any requirement in Definition 1.6 of preemption-
bound persistent sets, then we have a contradiction.

Case 5.1. T violates Requirement 1.
Proceed by contradiction. Assume that there exist transitions
t ∈ T and t′ 6∈ T such that t and t′ are both enabled in s and
Pb(S.t′) < Pb(S.t). By Definition 1.5 of the preemption
bound

t′.tid = last(S).tid

Thus, by Line 3 of Algorithm 2, t′.tid ∈ backtrack(s) and
thus t′ ∈ T , and we have a contradiction.

Case 5.2. T violates Requirement 2.
Proceed by contradiction. Assume that there exists a nonempty
sequence α of transitions from s in AG(Pb,c) and a transition
t ∈ T such that, if we let u = last(α).tid:

1. ∀i ∈ dom(α) : αi 6∈ T
2. Pb(S.t) < Pb(S.α1)

3. t is dependent with last(α) or with next(final(S.α), u)

Let n = len(α) and let ω = α1 . . . αn−1, i.e., α with its last
transition removed. Let there be no prefixes of α that also
meet the criteria above, and thus

4. t↔ ω and ∀i ∈ dom(ω) :
t↔ next(final(S.ω1 . . . ωi), ωi.tid)

Assume that t.tid = u. Because t↔ ω,

t = next(final(S), u) = next(final(S.ω), u) = last(α)

Thus, last(α) ∈ T and we have a contradiction.
Assume that t.tid 6= u. Let ω′ = ω if t is dependent with

last(α), and let ω′ = α if t ↔ α and t is dependent with
next(final(S.α), u). Consider the postcondition

Post(S.t.ω′, len(S) + 1, u)

for the recursive call Explore(S.t). By Lemma 2, t.ω′ is a
sequence of transitions from s in AG(Pb,c). Because t↔ ω′,
t is the most recent transition by t.tid that is dependent with
next(final(S.t.ω′), u). Thus, by Definition 1.8 of Post, either
u ∈ backtrack(s), or backtrack(s) = enabled(s) and thus
α1 ∈ T . In either case, we have a contradiction.

Case 5.3. T violates Requirement 3.
Proceed by contradiction. Assume that there exists a nonempty
sequence α of transitions from s in AG(Pb,c) and a tran-
sition t ∈ T such that, if we let u = last(α).tid and let
β = ext(s, t):

1. Pb(S.t) = Pb(S.α1)

2. ∀i ∈ dom(α) : αi 6∈ T
3. a transition in β is dependent with last(α) or with

next(final(S.α), u)

Let n = len(α), and let ω = α1 . . . αn−1, i.e., α with its last
transition removed. Let there be no prefixes of α that also
meet the criteria above, and thus

4. β ↔ ω and ∀i ∈ dom(ω) : β ↔ next(final(S.ω1 . . . ωi), ωi.tid)

Assume that β1.tid = u. Because β ↔ ω,

β1 = next(final(S), u) = next(final(S.ω), u) = last(α)

Thus, last(α) ∈ T and we have a contradiction.
Assume that β1.tid 6= u. Let βk be the last transition in

β that is dependent with last(α) or with next(final(S.α), u).
Let ω′ = ω if βk is dependent with last(α), and let ω′ = α
if β ↔ α and βk is dependent with next(final(S.α), u).
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By Lemma 2, β.ω′ is a sequence of transitions from s in
AG(Pb,c). Consider the postcondition

Post(S.β.ω′, len(S) + 1, u)

for the recursive call Explore(S.β1). Because β ↔ ω′,
βk is the most recent transition by β1.tid that is dependent
with next(final(S.β.ω′), u). Because Pb(S.β1) = Pb(S.α1),
by Definition 1.5 of the preemption bound either β1.tid 6=
last(S).tid, or S is empty. Because all transitions in β are by
the same thread, β1 is the most recent such location to βk.
Thus, by Requirement 2 of Definition 1.8 of postcondition
Post, either u ∈ backtrack(s), or backtrack(s) = enabled(s)
and thus α1 ∈ T . In either case, we have a contradiction.

Thus, if postcondition PC holds in each state s that Algo-
rithm 1 explores with the Backtrack procedure from Algo-
rithm 2, then the set of transitions Algorithm 1 explores from
s is preemption-bound persistent in s.

Next, we prove that postcondition PC holds in each state s
that Algorithm 1 explores. First, we prove a lemma that sim-
plifies the inductive step. Lemma 6 differs from the similar
lemma used in depth-bounded and context-bounded search
because it must account for the more complex postcondition
that preemption-bounded search requires.

Lemma 6. Let s = final(S) be a state in AR(Pb,c), let ω and
ω′ be nonempty sequences of transitions from s in AG(Pb,c)
such that Pb(S.ω′1) ≤ Pb(S.ω1), and let u be a thread such
that

1. ∃β : ω.β ∈ [ω′] and β ↔ next(final(S.ω), u), or
2. ∃β : ω′.β ∈ [ω] and β ↔ next(final(S.ω), u)

Then, Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u).

Proof. Because β ↔ next(final(S.ω), u),

next(final(S.ω), u) = next(final(S.ω′), u)

Assume that in Definition 1.8 of postcondition Post, i ≤ k
for Post(S.ω, len(S), u). Then, i and j have the same values
in Post(S.ω′, len(S), u) that they have in Post(S.ω, len(S), u)
because β ↔ next(final(S.ω), u).

Assume that i > k for Post(S.ω, len(S), u). Because
Pb(S.ω′1) ≤ Pb(S.ω1), by Definition 1.5 of the preemption
bound either S is empty or ω1.tid 6= last(S).tid. Thus,
j ≥ k for Post(S.ω, len(S), u), so Definition 1.8 of Post
does not require any backtrack points. In either case,

Post(S.ω′, len(S), u) =⇒ Post(S.ω, len(S), u) (3)

Because Requirement 1 of Definition 1.8 of Post requires
that i ≤ k and Requirement 2 of Definition 1.8 of Post
requires that j < k

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω′, len(S), u)

Thus, by Equation 3,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u)

Theorem 7. Whenever a state s = final(S) is back-
tracked during the search performed by Algorithm 1 in an
acyclic state space, the postcondition Post for Explore(S)
is satisfied, and the set T of transitions explored from s is
preemption-bound persistent in s.

Proof. The proof is by induction on the order in which states
are backtracked.

Base case.
Because the search is acyclic, is performed in depth-first or-
der, and the preemption bound provides a zero-cost transi-
tion in each state, the first backtracked state must be a dead-
lock state in which no transition is enabled. Thus, the post-
condition for the first backtracked state is

∀u : Post(S, len(S), u)

and is directly established by Lines 4-7 in Algorithm 1.

Inductive case.
Assume that each recursive call to Explore(S.t) satisfies its
postcondition. By Lemma 5, T is preemption-bound persis-
tent in s. Show that Explore(S) satisfies its postcondition
for any sequence ω of transitions from s in AG(Pb,c) and for
any thread u.

Case 7.1. ∀i ∈ dom(ω) : ωi 6∈ T and u ∈ backtrack(s).
Because u ∈ backtrack(s), next(s, u) ∈ T . By Defini-
tion 1.5 of preemption-bound persistent sets, next(s, u) ↔
ω, and thus

next(final(S.ω), u) = next(s, u)

Thus, next(final(S.ω), u) ↔ ω, and Post(S.ω, len(S), u)
iff Post(S, len(S), u). The latter is directly established by
Lines 4-7 in Algorithm 1.

Case 7.2. ∀i ∈ dom(ω) : ωi 6∈ T and u 6∈ backtrack(s).
Because u 6∈ backtrack(s), next(s, u) 6∈ T . Let t be any
transition in T , and thus t.tid 6= u. Let β = t if Pb(S.t) <
Pb(S.ω1), and let β = ext(s, t) otherwise. Consider the
sequence ω′ = β.ω. By Definition 1.6 of preemption-bound
persistent sets,

1. Pb(S.t) ≤ Pb(S.ω1)

2. β ↔ ω

3. ∀i ∈ dom(ω) : β ↔ next(final(S.ω1 . . . ωi), ωi.tid)

By Lemma 2, ω′ is a sequence of transitions from s in
AG(Pb,c). Because β ↔ ω, ω.β ∈ [ω′]. By the inductive
hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)
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Assume that next(final(S.ω′), u) is dependent with a tran-
sition in β. Because β ↔ ω, the most recent dependent
transition to next(final(S.ω′), u) by β1.tid must be in β. If
β1 is the most recent dependent transition, then by Require-
ment 1 of Definition 1.8 of Post either u ∈ backtrack(s),
or backtrack(s) = enabled(s) and thus ω1 ∈ T . If the
most recent dependent transition is another transition in β,
then Pb(S.t) = Pb(S.ω1) because otherwise β would con-
tain only a single transition, and thus either S is empty or
last(S).tid 6= β1.tid. Thus, j must be len(S) in Defini-
tion 1.8, and thus either u ∈ backtrack(s), or backtrack(s) =
enabled(s) and thus ω1 ∈ T . In either case, we have a con-
tradiction.

Assume that β ↔ next(final(S.ω′), u). Because β1.tid 6=
u, next(final(S.ω), u) = next(final(S.ω′), u) and

β ↔ next(final(S.ω), u)

Thus, by Lemma 6 where ω.β ∈ [ω′],

Post(S.ω, len(S), u)

Case 7.3. ∃i ∈ dom(ω) : ωi ∈ T .
Let ω = α.β.γ such that

1. ∀i ∈ dom(α) : αi 6∈ T
2. β1 ∈ T
3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. if Pb(S.β1) < Pb(S.α1) then len(β) = 1

5. if Pb(S.β1) = Pb(S.α1) and γ is nonempty, then
γ1.tid 6= β1.tid

Assume that α is empty. Then, ω1 ∈ T and by the inductive
hypothesis,

Post(S.ω, len(S) + 1, u)

Because Requirement 1 of Definition 1.8 of Post requires
that i ≤ k and Requirement 2 of Definition 1.8 of Post
requires that j < k,

Post(S.ω, len(S), u)

as required.
Assume that α is nonempty. By Requirement 1 of Defi-

nition 1.6 of preemption-bound persistent sets, Pb(S.β1) ≤
Pb(S.α1).

Case 7.3a. γ is nonempty, or γ is empty and
β1.tid 6∈ enabled(final(S.β)), or Pb(S.β1) < Pb(S.α1).
Consider the sequence ω′ = β.α.γ, i.e., ω with β moved to
the beginning. By Requirements 2 and 3 of Definition 1.6
of preemption-bound persistent sets, β ↔ α and ∀i ∈
dom(α) : β ↔ next(final(S.α1 . . . αi), αi.tid). Thus, by
Definition 1.1 of a trace, ω′ ∈ [ω]. By Lemma 3, ω′ is a
sequence of transitions from s in AG(Pb,c). By the inductive
hypothesis for the recursive call Explore(S.β1),

Post(S.ω′, len(S) + 1, u)

and thus by Lemma 6 where β is empty and ω′ ∈ [ω],

Post(S.ω, len(S), u)

Case 7.3b. γ is empty, β1.tid ∈ enabled(final(S.β)),
Pb(S.β1) = Pb(S.α1), and u ∈ backtrack(s).
Because γ is empty, ω = α.β. Consider the sequence ω′ =
β. By Requirement 3 of Definition 1.6 of preemption-bound
persistent sets, β ↔ α and thus

ω′.α ∈ [ω]

Because u ∈ backtrack(s), next(s, u) ∈ T and next(s, u)↔
α. If β1.tid = u, then next(final(S.ω), u) is a transition
in ext(s, β1) and by Requirement 3 of Definition 1.6 of
preemption-bound persistent sets next(final(S.ω), u) ↔ α.
If β1.tid 6= u, then next(s, u) = next(final(S.ω), u). In
either case,

next(final(S.ω), u)↔ α

Because Pb(S.β1) = Pb(S.α1) and all transitions in β are
by the same thread and thus do not require a preemption,
ω′ is a sequence of transitions from s in AG(Pb,c). By the
inductive hypothesis for the recursive call Explore(S.β1),

Post(S.ω′, len(S) + 1, u)

and thus by Lemma 6 where β = α and ω′.α ∈ ω,

Post(S.ω, len(S), u)

Case 7.3c. γ is empty, β1.tid ∈ enabled(final(S.β)),
Pb(S.β1) = Pb(S.α1), and u 6∈ backtrack(s).
Because γ is empty, ω = α.β. Let β′ be the unique,
nonempty sequence of transitions from final(S.β) such that
β.β′ = ext(s, β1). Consider the sequence ω′ = β.β′.α.
By Requirement 3 of Definition 1.6 of preemption-bound
persistent sets, β.β′ ↔ α and ∀i ∈ dom(α) : β.β′ ↔
next(final(S.α1 . . . αi), αi.tid). Thus, by Lemma 2, ω′ is
a sequence of transitions from s in AG(Pb,c). Because
β.β′ ↔ α,

ω.β′ ∈ [ω′]

By the inductive hypothesis for Explore(S.β1),

Post(S.ω′, len(S) + 1, u)

Assume that next(final(S.ω′), u) is dependent with a tran-
sition in β′. Then, because β.β′ ↔ α, the most recent de-
pendent transition to next(final(S.ω′), u) by β1.tid is in β′.
Thus, by Definition 1.8 of Post, either u ∈ backtrack(s) or
backtrack(s) = enabled(s) and thus ω1 ∈ T . In either case,
we have a contradiction.

Assume that β′ ↔ next(final(S.ω′), u). Because β1 ∈ T
and u 6∈ backtrack(s), β1.tid 6= u. Thus, it must be the case
that next(final(S.ω), u) = next(final(S.ω′), u), and

β′ ↔ next(final(S.ω), u)

Thus, by Lemma 6 where β = β′ and ω.β′ ∈ [ω′],

Post(S.ω, len(S), u)
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2.2 Fair-bounded search
Let AR(Fb,c) be the reduced state space explored by a selec-
tive search that explores a fair-bound persistent set in each
state. We provide two lemmas to manage the bound, and a
theorem stating that a nonempty fair-bound persistent set is
local sufficient.

Lemma 8. Let α be a nonempty sequence of transitions from
s = final(S) in AG(Fb,c) and let t be a transition enabled in
s such that

1. Fb(S.t) ≤ c
2. t is not a release operation
3. t↔ α

Then, t.α is a sequence of transitions from s in AG(Fb,c).

Proof. Because t↔ α, t.α is a sequence of transitions from
s in AG. Because t is not a release operation,

∀i ∈ dom(α) :

enabled(final(S.t.α1 . . . αi)) ⊆ enabled(final(S.α1 . . . αi))

Thus, by Definition 1.9 of the fair bound, the transitions in α
cost no more in S.t.α than they do in S.α. By Assumption 1,
t is within the bound from s. Thus, by Definition 1.9 of the
fair bound,

Fb(S.t.α) ≤ c

and t.α is a sequence of transitions from s in AG(Fb,c).

Lemma 9. Let T be a nonempty fair-bound persistent set in
a state s = final(S) in AR(Fb,c) and let α.t.γ be a sequence
of transitions from s in AG(Fb,c) such that α is nonempty,
∀i ∈ dom(α) : αi 6∈ T , and t ∈ T . Then, t.α.γ is a sequence
of transitions from s in AG(Fb,c).

Proof. By Requirement 3 of Definition 1.10 of fair-bound
persistent sets, t ↔ α. Thus, t.α.γ is a sequence of tran-
sitions from s in AG. By Requirements 1 and 2 of Defini-
tion 1.10 of fair-bound persistent sets, Fb(S.t) ≤ c and t is
not a release operation. Thus, by Lemma 8,

Fb(S.t.α) ≤ Fb(S.α)

Assume that γ1 exceeds the bound from final(S.t.α), yet
t does not exceed the bound from final(S.α) and γ1 does
not exceed the bound from final(S.α.t). Then, t must be
a release operation that enables a transition t′ such that
t′.tid has a lower yield count than γ1.tid has in final(S.t.α),
because otherwise γ1 would also exceed the bound from
final(S.α). Because t is not a release operation, we have a
contradiction. Thus,

Fb(S.t.α.γ1) ≤ c

Because t ↔ α, final(S.t.α.γ1) = final(S.α.t.γ1) and thus
each transition in γ executes from exactly the same state in

Algorithm 3 BPOR procedures for fair-bounded search

1: procedure Initialize(S) begin
2: if (len(S) > MAX) then
3: report livelock and exit
4: Backtrack(S, len(S), u) where u is a lowest cost en-

abled thread in final(S)
5: procedure Backtrack(S, i, u) begin
6: if (u ∈ enabled(pre(S, i)) and next(pre(S, i), u) is

not a release operation) then
7: add u to backtrack(pre(S, i))
8: else
9: backtrack(pre(S, i)) = enabled(pre(S, i))

S.t.α.γ as it does in S.α.t.γ. Thus, by Definition 1.9 of the
fair bound,

Fb(S.t.α.γ) ≤ c

Thus, t.α.γ is a sequence of transitions from s in AG(Fb,c).

Theorem 10. If T is a nonempty fair-bound persistent set in
a state s in AR(Fb,c), then T is local sufficient in s.

Proof. Let s be a state in AR(Fb,c) and let l be a local state
reachable from s in AG(Fb,c) via a nonempty sequence ω of
transitions.

Case 10.1. ∀i ∈ dom(ω) : ωi 6∈ T .
Let t be any transition in T . Consider the sequence ω′ = t.ω.
By Requirement 3 of Definition 1.10 of fair-bound persistent
sets, t ↔ ω. Thus, ω.t ∈ [ω′], and ω ∈ Prefix([ω′]).
By Requirements 1 and 2 of Definition 1.10 of fair-bound
persistent sets, Fb(S.t) ≤ c and t is not a release operation.
Thus, by Lemma 8, t.ω is a sequence of transitions from s
in AG(Fb,c) and T is local sufficient in s.

Case 10.2. ∃i ∈ dom(ω) : ωi ∈ T .
Let ω = α.t.γ such that ∀i ∈ dom(α) : αi 6∈ T and
t ∈ T . Assume that α is empty. Then, T is local sufficient in
s because ω1 ∈ T and l is reachable via ω.

Assume that α is nonempty. Consider the sequence ω′ =
t.α.γ, i.e., ω with t moved to the first position. By Re-
quirement 3 of Definition 1.10 of fair-bound persistent sets,
t ↔ α. Thus, ω′ ∈ [ω] and ω ∈ Prefix([ω′]). By Lemma 9,
t.α.γ is a sequence of transitions from s in AG(Fb,c), and T
is local sufficient in s.

Lemma 11. Whenever Algorithm 1 backtracks a state s =
final(S), the set T of transitions explored from s is fair-
bound persistent in s, provided that postcondition PC holds
for every recursive call Explore(S.t) for all t ∈ T .
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Proof. Let T = next(s, u) | u ∈ backtrack(s). Show that if
T violates any requirement in Definition 1.10 of fair-bound
persistent sets, then we have a contradiction.

Case 11.1. T violates Requirement 1.
Proceed by contradiction. Assume that for some t ∈ T ,
Fb(S.t) > c. By Line 12 in Algorithm 1, the search explores
only transitions that do not exceed the bound from s. Thus,
we have a contradiction.

Case 11.2. T violates Requirement 2.
Proceed by contradiction. Assume that there exists a transi-
tion t ∈ T such that t is a release operation and a thread
u ∈ enabled(s) such that next(s, u) 6∈ T . Because t is
a release operation Line 9 in Algorithm 3 must add it to
backtrack(s). Because u ∈ enabled(s), Line 9 also adds u
to backtrack(s) and thus next(s, u) ∈ T and we have a con-
tradiction.

Case 11.3. T violates Requirement 3.
Proceed by contradiction. Assume that there exists a nonempty
sequence α of transitions from s in AG(Fb,c) such that
∀i ∈ dom(α) : αi 6∈ T , and a transition t ∈ T such that

1. Fb(S.t) ≤ c
2. t is not a release operation
3. t is dependent with last(α)

Let n = len(α) and let ω = α1 . . . αn−1, i.e., α with its last
transition removed. Let there be no prefixes of α that also
meet the criteria above, and thus

3. t↔ ω

Let u = last(α).tid. Assume that t.tid = u. Because t↔ ω,

t = next(final(S), u) = next(final(S.ω), u) = last(α)

Thus, last(α) ∈ T and we have a contradiction.
Assume that t.tid 6= u. Consider the postcondition

Post(S.t.ω, len(S) + 1, u)

for the recursive call Explore(S.t). By Lemma 8, t.ω is a
sequence of transitions from s in AG(Fb,c). Because t ↔ ω,
t is the most recent transition by t.tid that is dependent
with next(final(S.t.ω), u). Thus, by Definition 1.12 of Post,
u ∈ backtrack(s) and thus a transition in α must be in T so
we have a contradiction.

Thus, if postcondition PC holds in each state s explored
by Algorithm 1 with the Backtrack procedure from Algo-
rithm 3, then the set of transitions explored from s is fair-
bound persistent in s. Next, we prove that postcondition PC
holds in each state s explored by Algorithm 1. First, we
prove a lemma to simplify the inductive step.

Lemma 12. Let s = final(S) be a state in AR(Fb,c), let
ω and ω′ be nonempty sequences of transitions from s in
AG(Fb,c), and let u be a thread such that

1. ∃β : ω.β ∈ [ω′] and β ↔ next(final(S.ω), u), or
2. ∃β : ω′.β ∈ [ω] and β ↔ next(final(S.ω), u)

Then, Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u).

Proof. Because β ↔ next(final(S.ω), u),

next(final(S.ω), u) = next(final(S.ω′), u)

Assume that in Definition 1.12 of Post(S.ω, len(S), u) for
some thread v, i > k. Then, Post does not require any
backtrack points for v.

Assume that for some thread v in Definition 1.12 of
Post(S.ω, len(S), u), i ≤ k. Then, i is the same for thread
v in Post(S.ω′, len(S), u) because β ↔ next(final(S.ω), u).
Because i ≤ len(S), the yield counts for all threads are the
same in pre(S, i), as well. Thus, by Definition 1.12 of Post,

Post(S.ω, len(S), u) iff Post(S.ω′, len(S), u) (4)

Because Definition 1.12 of Post requires that i be less than
or equal to k,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω′, len(S), u)

Thus, by Equation 4,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u)

Theorem 13. Whenever a state s = final(S) is backtracked
during the search performed by Algorithm 1, the postcondi-
tion Post for Explore(S) is satisfied, and the set T of transi-
tions explored from s is fair-bound persistent in s.

Proof. The proof is by induction on the order in which states
are backtracked.

Base case.
If the stack depth exceeds MAX, then the search terminates
and reports a livelock. Thus, the state space that the search
may explore without reporting a livelock is a subset of the
cyclic state space. Assume that the test does not contain a
livelock. Because the search is performed in depth-first or-
der, and the fair bound always provides a zero-cost transi-
tion, the first backtracked state must be a deadlock state in
which no transition is enabled. Thus, the postcondition for
the first backtracked state is

∀u : Post(S, len(S), u)

and is directly established by Lines 4-7 in Algorithm 1.

Inductive case.
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Assume that each call to Explore(S.t) satisfies its postcon-
dition. By Lemma 11, T is fair-bound persistent in s. Show
that Explore(S) satisfies its postcondition for any sequence
ω of transitions from s in AG(Fb,c) and for any thread u. If
ω is empty then the postcondition is directly established by
Lines 4-7 in Algorithm 1, so assume that ω is nonempty.

Case 13.1. ∀i ∈ dom(ω) : ωi 6∈ T and u ∈ backtrack(s).
Because u ∈ backtrack(s), next(s, u) ∈ T . Thus, by Re-
quirement 3 of Definition 1.10 of fair-bound persistent sets,
next(s, u)↔ ω, and thus

next(final(S.ω), u) = next(s, u)

Thus, next(final(S.ω), u)↔ ω, and thus Post(S.ω, len(S), u)
iff Post(S, len(S), u). The latter is directly established by
Lines 4-7 in Algorithm 1.

Case 13.2. ∀i ∈ dom(ω) : ωi 6∈ T and u 6∈ backtrack(s).
Let t be any transition in T . Consider the sequence ω′ = t.ω.
By Definition 1.10 of fair-bound persistent sets, Fb(S.t) ≤ c
and t ↔ ω. Because ω is nonempty and ω1 6∈ T , by
Requirement 2 of Definition 1.10 of fair-bound persistent
sets, t is not a release operation. Thus, by Lemma 8, ω′ is a
sequence of transitions from s in AG(Fb,c). Because t↔ ω,

ω.t ∈ [ω′]

By the inductive hypothesis for Explore(S.t),

Post(S.ω′, len(S) + 1, u)

If t is dependent with next(final(S.ω′), u), then because
t ↔ ω, ω′1 must be the most recent dependent transition
to next(final(S.ω′), u) by t.tid. Thus, by Definition 1.12 of
Post, either u ∈ backtrack(s) or backtrack(s) = enabled(s),
in which case ω1 ∈ T . In either case, we have a contra-
diction. Thus, t ↔ next(final(S.ω′), u) and additionally,
t ↔ next(final(S.ω), u). Thus, by Lemma 12 where β = t
and ω.t ∈ [ω′],

Post(S.ω, len(S), u)

Case 13.3. ∃i ∈ dom(ω) : ωi ∈ T .
Let ω = α.t.γ such that

1. ∀i ∈ dom(α) : αi 6∈ T
2. t ∈ T

Assume that α is empty. Then, ω1 ∈ T , and by the inductive
hypothesis

Post(S.ω, len(S) + 1, u)

Thus, because Definition 1.12 of Post requires that i ≤ k,

Post(S.ω, len(S), u)

as required.

Assume that α is nonempty. Consider the sequence ω′ =
t.α.γ, i.e., ω with t moved to the beginning. By Defini-
tion 1.10 of fair-bound persistent sets, Fb(S.t) ≤ c and
t↔ α. Thus, by Definition 1.1 of a trace,

ω′ ∈ [ω]

By Lemma 9, ω′ is a sequence of transitions from s in
AG(Fb,c). By the inductive hypothesis for the recursive call
Explore(S.t),

Post(S.ω′, len(S) + 1, u)

and thus by Lemma 12 where β is empty and ω′ ∈ [ω],

Post(S.ω, len(S), u)
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