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Abstract
Eliminating concurrency errors is increasingly important as
systems rely more on parallelism for performance. Exhaus-
tively exploring the state-space of a program’s thread in-
terleavings finds concurrency errors and provides coverage
guarantees, but suffers from exponential state-space explo-
sion. Two prior approaches alleviate state-space explosion.
(1) Dynamic partial-order reduction (DPOR) provides full
coverage and explores only one interleaving of independent
transitions. (2) Bounded search provides bounded coverage
by enumerating interleavings that do not exceed a bound.
In particular, we focus on preemption-bounding. Combin-
ing partial-order reduction with preemption-bounding had
remained an open problem.

We show that preemption-bounded search explores the
same partial orders repeatedly and consequently explores
more executions than unbounded DPOR, even for small
bounds. We further show that if DPOR simply uses the pre-
emption bound to prune the state space as it explores new
partial orders, it misses parts of the state space reachable
in the bound and is therefore unsound. The bound essen-
tially induces dependences between otherwise independent
transitions in the DPOR state space. We introduce Bounded
Partial Order Reduction (BPOR), a modification of DPOR
that compensates for bound dependences. We identify prop-
erties that determine how well bounds combine with partial-
order reduction. We prove sound coverage and empirically
evaluate BPOR with preemption and fairness bounds. We
show that by eliminating redundancies, BPOR significantly
reduces testing time compared to bounded search. BPOR’s
faster incremental guarantees will help testers verify larger
concurrent programs.
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1. Introduction
Concurrency errors are notoriously difficult to debug be-
cause they often occur only under unexpected thread inter-
leavings. One approach to identify and reproduce concur-
rency errors is stateless model checking [8], which system-
atically drives the program along possible thread interleav-
ings. This approach is limited in practice, however, by state-
space explosion. The number of possible thread interleav-
ings grows exponentially with the size of the program and
number of threads. Two existing approaches alleviate state-
space explosion: partial-order reduction and bounded search.

Partial order methods provide full coverage by exploring
all unique reachable states, and they alleviate state space ex-
plosion by exploring only one interleaving of independent
events [6, 7]. Independent events commute – their inter-
leavings do not change program behavior. Dynamic partial-
order reduction (DPOR) observes the program’s actual de-
pendences at runtime, rather than a static conservative esti-
mate of dependences, to identify independent events [6]. In
practice, the reduced state space is much smaller than the
full state space. Searching this state space is sufficient to
verify safety properties such as absence of deadlocks and
adherence to local assertions [7]. The size of this reduced
space still grows exponentially, but with the number of de-
pendent events in the program, rather than the total num-
ber of events. Nevertheless, for larger programs DPOR often
runs for longer than developers are willing to wait.

Bounded search, in contrast, alleviates state-space ex-
plosion by pruning executions that exceed a bound [5, 12,
14]. For example, Musuvathi and Qadeer use preemption-
bounded search [12] to explore executions involving a small
number of preemptions. Their insight is that many concur-
rency bugs require a small number of preemptions to man-
ifest. Therefore, by focusing on a much smaller portion of



Thread u
t1    read x
t2    read y

Thread v
t3    write y

Transition Preemptive transitionState 

s0t1

s1

t3

s2

s's3

t2 t3

t2t3

t1

Reduced 
by DPOR

✗

✗
Exceeds 
bound

Figure 1. Preemption-bounded search with DPOR. Al-
though s′ is reachable within the bound, the search never
reaches it.

the state space, preemption-bounded search often finds bugs
faster than unbounded search does. At the same time, such a
search provides a useful coverage metric to the user — when
a search with k preemptions has finished, any remaining bug
requires at least k+1 preemptions, and as such is more com-
plex to find and less likely to happen in practice [12].

Our experiments show that preemption-bounded search
is useful only for very small bounds. For example, searches
that allow more than two preemptions for our benchmarks
explore so many redundant executions of the same partial or-
der that they explore many more executions than unbounded
DPOR. Thus, preemption-bounded search fails to improve
performance precisely on those programs where it holds
promise - for large programs where DPOR either runs longer
than developers are willing to wait, or does not terminate.

This result motivates combining preemption-bounded
search with DPOR. Figure 1 illustrates why combining these
two approaches has remained an open problem until now.
The figure shows the state space for a program with two
threads u and v and three instructions. Each transition in the
state space corresponds to a thread executing an instruction.
Starting from the initial state s0, the transitions t1 of thread
u and t3 of thread v are independent as they access different
memory locations. Thus, executing the transitions in either
order reaches the same state. However, transitions t2 and t3
are dependent, leading to two different final states, s3 and
s′. Note, both final states are reachable with no preemp-
tions, respectively through executions t1, t2, t3 and t3, t1, t2.
However, a naı̈ve combination of DPOR with preemption
bounding can miss exploring s′.

Consider combining DPOR with preemption-bounded
search with bound 0. Assume the search first explores ex-
ecution t1, t2, t3, as illustrated in the figure. The DPOR al-
gorithm achieves state-space reduction by carefully insert-
ing backtrack points only where necessary to explore both
orderings of dependent transitions. In the example, because
t3 and t2 are dependent, DPOR schedules t3 at s1, prior to
dependent transition t2, but not at s0 since t3 and t1 are inde-
pendent. However, executing t3 in thread v from s1 requires

preempting thread u since it is still enabled in s1. Since the
preemption-bound is 0, the algorithm will not explore this
execution – it exceeds the bound. This naı̈ve combination is
therefore unsound.

This paper proposes an efficient algorithm called Bounded
Partial Order Reduction (BPOR) to soundly combine DPOR
with preemption-bounded search. The key idea behind
BPOR is to conservatively add more backtrack points be-
yond what DPOR requires. If a backtrack point required
by DPOR requires a preemption, then BPOR conservatively
backtracks to a previous point in the execution where the
backtracked transition does not require a preemption. In the
example in Figure 1, when DPOR schedules t3 at s1, BPOR
additionally schedules t3 at s0. Subsequently, BPOR will
prune the execution that exceeds the bound at s1, but not at
s0, eventually exploring both final states.

In this paper, we prove that BPOR with the preemption-
bound is sound. In particular, given a preemption-bound,
when BPOR terminates it guarantees that it explored all
states reachable within the bound in the state space. As the
bound increases, BPOR gradually approaches the coverage
and time of full DPOR.

Although adding conservative backtrack points decreases
the amount of partial-order reduction, we empirically show
that BPOR vastly reduces the exploration of redundant exe-
cutions of the same partial order. We also identify properties
of bound functions that do not require conservative back-
track points. Unfortunately, the bounds studied in this paper
do not satisfy these properties.

In addition, we recast fair stateless model checking as
bounded search [14] and show how to combine BPOR with
fair-bounded search. Whereas DPOR cannot explore cyclic
state spaces, BPOR with fair-bounded search soundly ex-
plores the fair-bounded state space when the state space is
cyclic. Most of our test programs have cyclic state spaces
that result from the use of lock-free constructs such as spin
loops. Fair exploration [14] is essential to scale BPOR to
these benchmarks.

Our empirical evaluation shows that BPOR provides
bounded coverage far more quickly than preemption-bounded
search does. We also show that BPOR finds more bugs faster
than DPOR or preemption-bounded search alone.

Section 2 formalizes our representation of concurrent
programs, and reviews partial-order reduction and bounded
search. Section 3 compares DPOR with bounded search and
shows why naı̈vely combining them sacrifices bounded cov-
erage. The algorithms in Section 4 compensate for bound
dependences, computing a sufficient set of transitions to ex-
plore in each state. Section 5 introduces bounded partial-
order reduction (BPOR) and computes sufficient sets. For
brevity here within, we state the theorems and put the proofs
in companion materials available from the ACM Digital Li-
brary [3]. Coons’ dissertation contains a fuller treatment [2].



Section 6 evaluates BPOR performance on concurrent unit
tests and Section 7 concludes.

2. Background and related work
This section provides necessary background and describes
our formalism for concurrent programs, partial-order reduc-
tion, and bounded search.

2.1 Stateless model checking
We use stateless model checking to systematically explore
the state space of multithreaded programs [8]. In such an
exploration, a runtime scheduler systematically forces con-
current programs down different thread interleavings start-
ing from the same initial state.

There are two useful exploration modes for an implemen-
tation of stateless model checking. In synchronization mode,
the model checker interleaves threads only at synchroniza-
tion primitives such as locks, events, and volatile variables.
In this mode, the checker finds all concurrency errors that do
not require a data race to trigger, and it finds all data races.

In data-race mode, the checker additionally interleaves
threads at every shared memory location. This mode is use-
ful only if the programmer intentionally introduced data
races in the program. The model checker determines whether
these data races are indeed benign – that is, do not trigger
concurrency errors. Usually, data-race mode is more expen-
sive because it requires additional overhead to instrument
shared-memory accesses, and an (exponential) increase in
state space resulting from fine-grained interleaving. BPOR
is applicable to both modes.

2.2 Multithreaded programs and semantics
A concurrent program contains a fixed set Tid of thread
identifiers and a set T of transitions. A transition t ∈ T
is a tuple 〈tid, var, op〉 that represents an operation t.op
on variable(s) t.var performed by a thread t.tid ∈ Tid.
Example operations include fork, join, lock acquire, lock
release, and load/store operations.

In stateless model checking, a program state is conserva-
tively identified by the sequence of transitions executed to
reach that state from the initial state. Note that it is possi-
ble for different sequences of transitions to lead to the same
program “state” represented by the contents of the program
variables (including registers, stack, and heap). One such
possibility is when the two sequences differ only in the or-
der of independent transitions, such as two threads accessing
different memory locations. Partial-order reduction seeks to
eliminate such redundancies.

Accordingly, we define a state as the directed acyclic
graph 〈T,H〉 where T ⊆ T is a set of transitions and H
(for “happens-before”) is an irreflexive partial order on T .
H captures all the dependences between the transitions such
that reordering transitions not related by H behaviorally
leads to the same program state. In other words, two tran-
sition sequences containing the same set of transitions T

s

next(s, v)

 Transition  State

last(S)

next(s, u)

final(S)

Sequence of transitions

S

denabled(d)=∅ ...

Figure 2. Program representation: S is a sequence of tran-
sitions such that state s = final(S). Threads u, v ∈
enabled(s).

but different linearizations of the partial-order H lead to the
same program state 〈T,H〉. In this paper, we assume that all
transitions of a single thread are dependent on each other.
Accordingly, we will assume that for each thread u, H is a
total order on the set {t ∈ T | t.tid = u}.

There exists a unique initial state 〈T0, H0〉 where T0 is
the empty set and H0 is the empty relation. A transition
t transfers the program from a state 〈T,H〉 to a successor
state, 〈T ′, H ′〉, where T ′ = T ∪ {t}, and H ′ is the partial
order H with any additional orderings required by t.

The local state for a thread u in a state s = 〈T,H〉,
denoted by local(s, u), is defined as the subgraph of s that
contains only those transitions that happen-before the most
recent transition by u. Essentially, these are the transitions
that are guaranteed to drive the thread to said local state.
Formally, if u has no transitions in T then local(s, u) =
〈∅, ∅〉. Otherwise, if t is the most recent transition by u, then
local(s, u) = 〈TL, HL〉, where

TL = {t′ ∈ T | (t′, t) ∈ H} ∪ {t}
HL = {(t′′, t′) ∈ H | t′′ ∈ TL and t′ ∈ TL}

Figure 2 illustrates the following terms. The term next(s, u) ∈
T denotes the transition that thread u will execute next from
state s. We assume that the next transition for each thread
from a given state is unique. A transition is enabled in s if it
can execute from s. A thread u is enabled in s if next(s, u)
is enabled in s. The function enabled(s) returns the set of all
threads enabled in s. A state s in which enabled(s) = ∅ is a
deadlock state.

The expression s t−→ s′ indicates that transition t leads
from state s to state s′. Using Flanagan and Godefroid’s
notation [6], a transition sequence S is a finite sequence of
transitions t1.t2 . . . tn such that there exist states s1, . . . sn+1

where s1 is the initial state s0, and s1
t1−→ . . .

tn−→ sn+1.
The function dom(S) returns the domain of S, the set

{1 . . . n}, and the length of S is len(S) = n. The term
final(S) refers to sn+1, the final state reached after execut-
ing all transitions in S. Transition Si is the ith transition in



S, i ∈ dom(S), and last(S) refers to Sn, the last transi-
tion in S. Greek symbols α, β, ω, γ represent any arbitrary-
length sequences of transitions. The term S.t denotes the se-
quence of transitions that results when transition t executes
from final(S), and S.α is the sequence that results when se-
quence of transitions α executes from final(S). An execu-
tion is a sequence of transitions where s0 = 〈T0, H0〉 and
enabled(sn+1) = ∅.

The rest of our definitions exactly follow Flanagan and
Godefroid [6]. The behavior of a concurrent system is a
transition system AG = (State,∆, s0) where State is the
set of all possible states, ∆ ⊆ State×State is the transition
relation defined by

(s, s′) ∈ ∆ iff ∃t ∈ T : s
t−→ s′

and s0 is the initial state of the system. Bounded search and
DPOR each explore only a subset of AG [5, 6, 12].

A Mazurkiewicz trace is an equivalence class of se-
quences of transitions that can be obtained from one an-
other by permuting adjacent independent transitions [11]. A
Mazurkiewicz trace, or trace for concision, is uniquely de-
fined by one of its members. We use [ω] to denote the trace
that contains ω.

Formally, using Godefroid’s definition of traces [7], the
concurrent alphabet for a system is the pair Λ = (T , D)
where T is the finite set of transitions in the system, and
D is the dependence relation. The relation IΛ = T 2 \ D
is independence in Λ. Let ε denote the empty word. The
relation ≡Λ is the least congruence in the monoid [T ∗; ., ε]
such that

(t, t′) ∈ IΛ =⇒ t.t′ ≡Λ t′.t

We define a trace as follows,

Definition 2.1. Traces [7].
Equivalence classes of ≡Λ are traces over Λ. The term [ω]
denotes the trace that contains the sequence of transitions ω.

Intuitively, a trace is a set of sequences of transitions where
each sequence in the trace can be derived from each other
sequence in the trace by permuting independent transitions.

2.3 Dependence relation
A dependence relation, D, identifies transitions whose in-
terleavings may lead to new states. The dependence relation
is critical for partial-order methods because it determines
which interleavings may be pruned. The following definition
characterizes “valid” dependence relations for the transitions
of a concurrent system.

Definition 2.2. Valid dependence relation [6, 10].
Let T be the set of transitions in a concurrent system and let
D ⊆ T × T be a binary, reflexive, and symmetric relation.
The relation D is a valid dependence relation for the system
iff for all t, t′ ∈ T , (t, t′) /∈ D (t and t′ are independent)

implies that the following properties hold for all states s of
the system:

1. if t ∈ enabled(s) and s t−→ s′, then t′ ∈ enabled(s) iff
t′ ∈ enabled(s′)

2. if t, t′ ∈ enabled(s), then there is a unique state s′ such

that s t.t′−−→ s′ and s t′.t−−→ s′

We implement the valid dependence relation in Defini-
tion 2.3 and use t ↔ t′ to denote that t is independent with
t′, and t = t′ to denote that t is dependent with t′. These
operators apply to sequences of transitions, as well.

Definition 2.3. Dependence relation.
Transitions t, t′ ∈ T are dependent, t= t′, iff

1. t.tid = t′.tid, or
2. t.var ∩ t′.var 6= ∅ ∧ (IsWrite(t.op) ∨ IsWrite(t′.op))

This relation differentiates read operations from write op-
erations because multiple read operations to the same vari-
able commute. We consider only constant dependence rela-
tions in this work and assume that the dependence relation is
not conditional [9]. Next, we use these definitions to provide
background for partial-order reduction and bounded search.

2.4 Partial-order reduction
A search using partial-order reduction provides full cover-
age: it explores all relevant, reachable states [7]. A state is
relevant if it must be explored to provide the required safety
guarantee. We focus on local state reachability, which guar-
antees absence of deadlocks and user-specified local asser-
tion failures.

A state is a partial order on a program’s dependent transi-
tions. A sequence of transitions is a total order on those tran-
sitions. Many total orders may correspond to a single par-
tial order. Whenever possible, partial-order methods explore
only one total order per partial order. The dependence rela-
tion in Definition 2.3 identifies transitions whose interleav-
ings do not affect the partial order on transitions. We define
two classes of partial-order reduction algorithms, persistent
sets and sleep sets, then describe DPOR.

2.4.1 Persistent sets
A persistent set in a state s is a sufficient set of transitions to
explore from s while maintaining local state reachability for
acyclic state spaces [9]. A selective search using persistent
sets explores a persistent set of transitions from each state s
where enabled(s) 6= ∅ and prunes enabled transitions that
are not persistent in s. Godefroid defines a persistent set as
follows.

Definition 2.4. Persistent sets [9].
A set T ⊆ T of transitions enabled in a state s is persistent
in s iff for all nonempty sequences α of transitions from s
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Figure 3. Persistent sets and sleep sets. Transitions in gray may be pruned.

in AG such that ∀i ∈ dom(α) : αi 6∈ T and for all t ∈ T ,
t↔ last(α).

Intuitively, any transitions reachable via transitions not in
T are independent with respect to all transitions in T . Fig-
ure 3(a) illustrates a transition t in the persistent set T in a
state s, and a sequence of transitions α, none of which are in
T . The interleaving in gray need not be explored because it
is equivalent to the interleaving in black.

2.4.2 Sleep sets
Sleep sets prohibit visited transitions from executing again
until the search explores a dependent transition. Assume that
the search explores transition t from state s, backtracks t,
then explores t′ from s instead. Unless the search explores
a transition that is dependent with t, no states are reachable
via t′ that were not already reachable via t from s. Thus, t
“sleeps” unless a dependent transition is explored.

Figure 3(b) illustrates sleep sets. After the search explores
t1 and all states reachable via t1 from s, it places t1 in
the sleep set for s. No new states become reachable via t1
until the search performs a transition that is dependent with
t1. Thus, t1 propagates to the sleep set in state s′, because
t1 ↔ t2. When the search explores t3, however, it cannot
propagate t1 to the sleep set in s′′ because t1 = t3. New
states may be reachable via t1 from s′′, so the search must
explore t1 from s′′.

Many algorithms reduce the state space with persistent
sets and sleep sets [7, 16, 17]. Most of these algorithms
use static analysis to determine which transitions may be
dependent with one another. As a result, these algorithms
must be conservative. Unless two transitions must always
be independent, the search must assume that they may be
dependent. In the next section, we review using dynamic
information to reduce the search space.

2.4.3 Dynamic partial-order reduction
Dynamic Partial-Order Reduction (DPOR) computes per-
sistent sets on-the-fly [6]. Unlike static conservative depen-
dence detection [4, 8, 18], DPOR detects dependences accu-
rately at runtime. DPOR performs a depth-first search of the
state space and keeps track of the most recent access to each
variable. When a conflicting access occurs, DPOR inserts
a backtrack point to reverse the order of the dependent ac-
cesses in a future execution. Flanagan and Godefroid prove
that DPOR explores a persistent set of transitions from each
state and show that it significantly reduces the search space
for a few sample programs [6].

The DPOR algorithm is very effective – it maintains cov-
erage guarantees while significantly reducing search time.
DPOR does not provide any incremental guarantees, how-
ever. If the search space is large and the test does not termi-
nate sufficiently quickly, then the tester has no guarantees.
Additionally, DPOR works only with acyclic state spaces.
We wrote unit tests for a set of concurrent data structures us-
ing publicly-available source code for the .NET 4.0 frame-
work and found that all of the concurrent data structures in-
ternally use spin loops that result in cyclic state spaces and
therefore cannot benefit from DPOR.

We would like bounded search to provide incremental
guarantees, and to prune cyclic state spaces so that DPOR
can explore them. Combining DPOR with bounded search
is not straightforward, however. We address this problem
to make DPOR more widely applicable. Next, we introduce
bounded search, including several bound functions.

2.5 Bounded search
Bounded search explores only executions that do not exceed
a bound [5, 12, 14]. The bound may be any property of a
sequence of transitions. A bound evaluation function Bv(S)
computes the bounded value for a sequence of transitions S.
A bound evaluation function Bv and bound c are inputs to
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Figure 4. Preemption-bounded search explores executions
that contain fewer preemptions first. The u and v labels are
threads. Lighter-colored states require fewer preemptions.
Numbers indicate bound values.

bounded search. Bounded search may not visit all relevant
reachable states; it visits only those that are reachable within
the bound. If a search explores all relevant states reachable
within the bound, then it provides bounded coverage.

Prior work bounds the depth [8], number of context
switches [12], number of preemptive context switches [12],
and the number of delays that an otherwise deterministic
scheduler is allowed [5]. We focus on preemption-bounded
search because it is more useful than the depth bound [12],
and it has been more widely tested in practice than the
other bounds. We also recast fair stateless model checking
as bounded search [14].

Testers find preemption-bounded search useful for sev-
eral reasons. First, it provides an incremental coverage met-
ric when searching the entire state space in a reasonable time
period is infeasible. Second, preemption-bounded search
finds bugs effectively – many bugs manifest with few pre-
emptions [12]. Testers find fair-bounded search very useful
because most realistic state spaces contain cycles [14].

2.5.1 Preemption-bounded search
Preemption-bounded search limits the number of preemp-
tive context switches that occur in an execution [12]. The
preemption bound is defined recursively as follows.

Definition 2.5. Preemption bound [13].

Pb(t) = 0

Pb(S.t) =


Pb(S) + 1 if t.tid 6= last(S).tid and

last(S).tid ∈ enabled(final(S))

Pb(S) otherwise

Figure 4 illustrates preemption-bounded search, in which the
executing thread – the thread that performed the previous
transition – never requires a preemption. If the executing
thread is blocked, then no thread requires a preemption. The
preemption bound increases slowly when the same thread
executes repeatedly, so the search may explore deep into the
state space with a small bound.
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Figure 5. Fair-bounded search explores executions that con-
tain fewer trips through cycles in the state space first. The u
and v labels are threads. Lighter-colored states explore fewer
trips. Numbers indicate bound values.

2.5.2 Fair-bounded search
Fair-bounded search limits the number of cycles in a cyclic
state space. We adapt a fairness criterion from prior work to
identify cycles in the state space given two assumptions [14]:

1. Threads always yield the processor when not making
progress

2. Threads never yield the processor when making progress

Fair-bounded search tracks the number of yield operations
that each thread u has performed after each sequence of tran-
sitions S, Y(S, u), and ensures that this value never differs
among enabled threads by more than the bound. Formally,
we define the fair bound recursively as follows.

Definition 2.6. Fair bound (Fb).
Let Y(S, u) return Thread u’s yield count in final(S).

Fb(t) = 0

Fb(S.t) = max(Fb(S),

maxu∈enabled(final(S))(Y(S, t.tid)− Y(S, u)))

Figure 5 illustrates fair-bounded search for a cyclic state
space. Although detecting cycles is impossible in stateless
search, prior work argues that counting yield operations is
a good approximation [14]. Essentially, a thread executing
a bounded number of yield operations is considered to be
stuck in a cycle in the state space and thus unable to make
progress. The tester sets the bound such that the search ne-
glects spurious yield operations that would otherwise cause
the search to miss relevant states. We selected this fairness
criterion primarily for its simplicity, but other fairness crite-
ria can be expressed as bounds, as well. Unlike prior work,
this bound does not provide strong fairness [1, 14].

Both the preemption and the fairness bound prune por-
tions of the state space and may fail to detect bugs in pro-
grams. DPOR, in contrast, explores all relevant states and
detects all bugs that violate the correctness guarantee. If
the state space is so large that the program does not ter-
minate sufficiently quickly, however, then DPOR does not
provide any guarantees. If the state space is cyclic, then



DPOR cannot search it. Ideally, combining these techniques
would provide incremental coverage guarantees for a re-
duced state space. The next section compares these tech-
niques and shows why combining them is not trivial.

3. Partial-order reduction with bounds
Combining partial-order methods with bounded search should
provide incremental coverage guarantees while reducing re-
dundant work. We compare DPOR with bounded search for
small unit tests based on each technique’s state space cover-
age over time. We implement DPOR in CHESS, a publicly
available model checker for concurrent programs that per-
forms bounded search. We run these tests on a 2.2 GHz Intel
Core 2 Duo processor with 4 GB of RAM. We show that
bounded search provides little benefit without partial-order
reduction, except when the bound is very small.

Figure 6 compares DPOR to bounded search. The x-
axis shows the percent of local states that the search visits
or, if the search never explores the entire state space, then
the total number of local states that the search visits. The
y-axis shows the time in seconds that the search requires.
Each data point represents an invocation of CHESS with a
particular value for the bound, which we iteratively increase.
The single dot at 100% of local states for MRSE and FFT

represents an invocation of CHESS with unbounded DPOR.
We provide the dotted line for easier comparison. DPOR
does not complete within our 3 hour limit on Exception

and DPOR cannot explore the cyclic state space in Fair.
By default, CHESS preempts only prior to synchroniza-

tion variable accesses, and uses a data-race detector to iden-
tify accesses to shared variables that it may have missed as
a result [12]. When a test does contain a data-race, CHESS
therefore does not explore portions of the state space reach-
able by re-ordering the data-racy accesses. As a result, in
our tests we force CHESS to preempt at all shared vari-
able accesses because otherwise the state spaces that CHESS
searches and that BPOR searches are not comparable. All of
our test programs contain data races, so CHESS provides
insufficient coverage on these programs if it preempts only
at synchronization variable accesses. An important advan-
tage of BPOR is that it allows preemption-bounded search to
scale without sacrificing coverage for data-racy programs.

These results show the limitations of bounded search and
DPOR. For MRSE and FFT, DPOR explores the entire state
space in less time than bounded search requires to explore
the small subset of the state space reachable with a bound
of one or two. Bounded search could thus benefit greatly
from partial-order reduction. We enforced a three-hour time
limit per test. With this limit, the Exception test does not
terminate within 3 hours with DPOR, so DPOR provides
no guarantees. Fair contains a cyclic state space and thus
DPOR never terminates in Figure 6(d).

Bounded search makes large state spaces tractable, but it
wastes too much time exploring redundant states. DPOR ex-
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Figure 6. Coverage vs. time for DPOR and preemption-
bounded (Pb) and fair-bounded (Fb) search. DPOR ex-
plores the entire state space faster than preemption-bounded
search explores only a subset for MRSE and FFT. Fair never
terminates with DPOR because its state space is cyclic.
Exception exceeds our three-hour time limit with DPOR.



plores the entire state space in less time than bounded search
requires to explore a small subset of that state space, pro-
vided that the state space is acyclic and relatively small. The
time DPOR requires scales exponentially with the number of
successive dependent accesses. As this number grows, the
state space quickly becomes intractable. Without a bound,
if the state space is intractably large, then DPOR runs for
hours, days, or longer without providing any guarantees.
Likewise, if the state space is cyclic, DPOR provides no
guarantees.

Practical bounded search requires DPOR’s aggressive
state space reduction. Unfortunately, as Figure 1 illustrates,
sequences of transitions that lead to the same local state may
have different bounded values, so the search cannot guaran-
tee that it has taken the cheapest path to each state. DPOR
may prune transitions that make new states reachable within
the bound, sacrificing bounded coverage.

This unsoundness arises because the bound introduces
dependences between instructions that are otherwise inde-
pendent. If a transition t exceeds the bound in a state s then
the search cannot explore t from s and t is, in some sense,
“disabled” in s. Any transition that alters t’s bounded value
in s is dependent with it, by Definition 2.2 of valid depen-
dence relations.

The dependences that the bound introduces are differ-
ent from dependences in the program under test, however.
Bound dependences are artificial. Programmers do not gen-
erally care whether their programs are capable of exceed-
ing the bound or not – they care whether or not executions
within the bound meet the safety criteria. If we treat bound
dependences equivalently to dependences in the program un-
der test, then the search must explore each state with all pos-
sible bounded values, which is an enormous waste of time.

Instead, we must differentiate bound dependences from
dependences in the program under test. Bounded search need
not explore both orders of bound dependent transitions –
it must explore only the cheapest order. A transition that
exceeds the bound is not disabled in the same way that
a transition waiting for another thread to release a lock is
disabled. Still, the search must compensate for these bound
dependences when there exists a cheaper path to a given
state. In the next section, we show how to compensate for
these dependences to combine DPOR with bounded search
while maintaining bounded coverage.

4. Bound persistent sets
To compensate for the dependences that bounded search cre-
ates, we introduce bound persistent sets, which reduce the
size of the state space while guaranteeing bounded cover-
age. First, we establish sufficient conditions to guarantee ab-
sence of local assertion failures among executions that do
not exceed the bound. For concision, we put all the proofs in
companion materials in the ACM Digital Library [3]. Coons’
dissertation contains a fuller treatment [2].

Algorithm 1 Bounded selective search

1: Initially, Explore(∅)
2: procedure Explore(S) begin
3: T = Sufficient set(final(S))
4: for all (t ∈ T ) do
5: if (Bv(S.t) ≤ c) then
6: Explore(S.t)

4.1 Sufficient sets
A set of transitions is sufficient in a state s if any relevant
state reachable via an enabled transition from s is also reach-
able from s via at least one of the transitions in the sufficient
set. A search can thus explore only the transitions in the
sufficient set from s because all relevant states still remain
reachable. The set containing all enabled threads is trivially
sufficient in s, but smaller sufficient sets enable more state
space reduction.

Selective search explores only a sufficient set of transi-
tions from each state [7]. Algorithm 1 performs bounded se-
lective search. Line 3 returns a nonempty sufficient set in
each state final(S), and Lines 4-6 recursively explore only
the transitions in that sufficient set that do not exceed the
bound. Requirements for this sufficient set vary with the
bound evaluation function and with the desired safety guar-
antee. We identify constraints on a sufficient set such that
Algorithm 1 guarantees absence of local assertion failures
among sequences of transitions that do not exceed the bound.
We use AG(Bv,c) to refer to a generic bounded state space
with bound function Bv and bound c.

Definition 4.1. Prefix([ω]) [7].
Prefix([ω]) returns the set containing all prefixes of all se-
quences in the Mazurkiewicz trace defined by ω.

Definition 4.2. Local sufficient.
A nonempty set T ⊆ T of transitions enabled in a state s in
AG(Bv,c) is local sufficient in s if and only if for all sequences
ω of transitions from s in AG(Bv,c), there exists a sequence
ω′ from s inAG(Bv,c) such that ω ∈ Prefix([ω′]) and ω′1 ∈ T .

Let AR(Bv,c) be the reduced state space that Algorithm 1
explores if Line 3 returns a nonempty local sufficient set in
each state.

Theorem 1. Let s be a state in AR(Bv,c), and let l be a
local state reachable from s in AG(Bv,c) by a sequence ω
of transitions. Then, l is also reachable from s in AR(Bv,c).

Intuitively, there must exist a sequence ω′ such that ω ∈
Prefix([ω′]) and ω′1 ∈ T . Thus, there exists a sequence β
such that ω.β ∈ [ω′]. Any two sequences of transitions that
lead to the same global state reach all of the same local
states, so ω′ must lead to l as well.

Thus, if Algorithm 1 returns a local sufficient set of tran-
sitions in each state at Line 3, then Algorithm 1 explores



all local states reachable within the bound. In unbounded
search, persistent sets are local sufficient, provided that the
state space is acyclic [7]. Persistent sets may not be local suf-
ficient in bounded search, however. In the next section, we
identify properties of bound functions that determine how
conservative their local sufficient sets must be.

4.2 Properties of bound functions
Two properties of bound functions enable bounded partial-
order reduction. We first define each property for a generic
bound function Bv.

Definition 4.3. Stable bound functions.
Bound function Bv is stable if and only if for all sequences
ω and ω′ in AG(Bv,c)

ω ∈ [ω′] =⇒ Bv(ω) = Bv(ω′)

Intuitively, in a stable bound function, any two sequences
of transitions that lead to the same global state cost the
same amount. This property is desirable because indepen-
dent transitions remain commutative with stable bound func-
tions. Partial-order reduction leverages this commutativity to
reduce the state space.

When the bound function is not stable, two sequences of
transitions that lead to the same global state may have differ-
ent costs. If a portion of the state space is unreachable within
the bound via the path that the search explores first, then it
must also explore the cheaper path. This redundant execution
sacrifices partial-order reduction. The search prunes the state
space most efficiently if it explores the cheapest sequence of
transitions first.

Definition 4.4. Extensible bound functions.
Bound function Bv is extensible if and only if for all se-
quences of transitions S inAG(Bv,c), for all transitions t such
that t.tid ∈ enabled(final(S)) and for all sequences of tran-
sitions α from final(S) such that t↔ α,

Bv(S.t.α) = max(Bv(S.t),Bv(S.α))

Extensible bound functions require that independent transi-
tions not affect one another’s cost. If the bound is not exten-
sible, then exploring independent transitions may make local
states that were previously reachable within the bound un-
reachable. Thus, to ensure local state reachability within the
bound, the search must explore otherwise independent tran-
sitions. These independent transitions sacrifice partial-order
reduction because they lead to many redundant states.

One trivial bound is both stable and extensible – the
bound function that always returns zero. This bound function
is equivalent to unbounded search and permits full partial-
order reduction. Bounds from prior work [5, 12, 14] bound
the total order on a program’s transitions and are thus neither
stable nor extensible – they introduce artificial dependences
that partial-order reduction must accommodate.

4.3 Bound sufficient sets
We introduce bound sufficient sets to compensate for depen-
dences imposed by the bound and thus guarantee bounded
coverage. We show that unfortunately the preemption and
fair bounds are neither stable nor extensible. However, we
can and do define sufficient sets for preemption-bounded and
fair-bounded search and prove that these sets are sufficient
to explore the bounded state space soundly, but they reduce
partial order reduction in some cases.

4.3.1 Preemption-bounded (Pb) search
Preemption-bounded search limits the number of preemp-
tive context switches in each execution [14]. The preemp-
tion bound is neither stable nor extensible. Each transition
t’s cost depends upon whether or not the prior transition t′ is
enabled, even if t↔ t′. To compensate for this dependence,
a preemption-bound persistent set T requires that each tran-
sition t ∈ T be independent with the next transition by each
thread that is not in T , even if that transition is disabled.

Preemption-bounded search with DPOR reduces the state
space most effectively if it visits new states via the cheapest
path first. When the executing thread is enabled in a state s,
its next transition is cheaper than all other enabled transitions
in s. Exploring the executing thread first is thus a good
heuristic for reaching new states as cheaply as possible.

If the executing thread executes until it blocks, then any
transition can execute for free. We exploit this property to
perform limited partial-order reduction even when transi-
tions increment the bound. We use the term “release opera-
tion” below to refer to any transition that may enable another
thread, including lock release operations, fork operations,
and event set operations. We introduce preemption-bound
persistent sets to permit limited partial-order reduction with
local state reachability for preemption-bounded search.

Definition 4.5. ext(s, t).
Given a state s = final(S) and a transition t ∈ enabled(s),
ext(s, t) returns the unique sequence of transitions β from s
such that

1. ∀i ∈ dom(β) : βi.tid = t.tid

2. t.tid 6∈ enabled(final(S.β))

Intuitively, ext(s, t) returns the sequence of transitions that
results if t.tid executes from s until it blocks.

Definition 4.6. Preemption-bound persistent sets.
A set T ⊆ T of transitions enabled in a state s = final(S)
is preemption-bound persistent in s iff for all nonempty
sequences α of transitions from s in AG(Pb,c) such that
∀i ∈ dom(α), αi 6∈ T and for all t ∈ T ,

1. Pb(S.t) ≤ Pb(S.α1)

2. if Pb(S.t) < Pb(S.α1), then t↔ last(α) and
t↔ next(final(S.α), last(α).tid)



3. if Pb(S.t) = Pb(S.α1), then ext(s, t)↔ last(α) and
ext(s, t)↔ next(final(S.α), last(α).tid)

Assume that in each state of the reduced state spaceAR(Pb,c),
Algorithm 1 returns a preemption-bound persistent set. We
provide two lemmas to manage the bound, and a theorem
stating that a nonempty preemption-bound persistent set is
local sufficient.

Lemma 2. Let α and β be nonempty sequences of transi-
tions from s = final(S) in AG(Pb,c) such that

1. β ↔ α

2. Pb(S.β1) ≤ Pb(S.α1)

3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. β ↔ next(final(S.α1 . . . αi), αi.tid), 1 ≤ i < len(α)

5. if Pb(S.β1) = Pb(S.α1), then
β1.tid 6∈ enabled(final(S.β))

Then, β.α is a sequence of transitions from s in AG(Pb,c).

Intuitively, β does not contain any context switches and β ↔
α, so placing β prior to α does not modify the program’s
behavior or increase the cost of the transitions in α. If β
contains a release operation, then it still cannot increase the
cost of any transition in α because β is independent with
the next transition by each thread in α. Thus, β can never
enable or disable the executing thread in α, and cannot affect
whether any transitions in α require a preemption.

Lemma 3. Let T be a nonempty preemption-bound persis-
tent set in a state s = final(S) in AR(Pb,c) and let α.β.γ be
a sequence of transitions from s in AG(Pb,c) such that α and
β are nonempty and

1. ∀i ∈ dom(α) : αi 6∈ T
2. β1 ∈ T
3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. if Pb(S.β1) < Pb(S.α1) then len(β) = 1

5. if Pb(S.β1) = Pb(S.α1) and γ is empty, then β1.tid 6∈
enabled(final(S.β))

6. if Pb(S.β1) = Pb(S.α1) and γ is nonempty, then γ1.tid 6=
β1.tid

Then, β.α.γ is a sequence of transitions from s in AG(Pb,c).

The intuitions for Lemma 3 are similar to the intuitions for
Lemma 2. To account for preemptions γ1 may incur, we
require that γ1.tid 6= β1.tid.

Theorem 4. If T is a nonempty preemption-bound persistent
set in a state s in AR(Pb,c), then T is local sufficient in s.

The proof of Theorem 4 follows the correctness proof for
persistent sets, but leverages Lemmas 2 and 3 to show
that relevant sequences of transitions do not exceed the
bound [2, 3]. By Theorems 4 and 1, if Algorithm 1 explores
a nonempty preemption-bound persistent set in each state,
then it reaches all local states reachable in AG(Pb,c). Next,
we define local sufficient sets for fair-bounded search.

4.3.2 Fair-bounded (Fb) search
Fair-bounded search limits the maximum difference between
the executing thread’s yield count in each state s and the
yield count of other enabled threads in s. This bound prunes
executions in which a thread yields the processor repeatedly,
and thus prunes cycles from cyclic state spaces under the
assumption that threads that are not making progress always
yield the processor [14].

The fair bound is neither stable nor extensible due to
release operations. A release operation may enable threads
with a lower yield count, and thus increase the cost of an in-
dependent, enabled transition. To provide local state reacha-
bility for fair-bounded search, we introduce fair-bound per-
sistent sets. Fair-bound persistent sets compensate for de-
pendences that the fair bound introduces by conservatively
scheduling all threads prior to release operations.

Definition 4.7. Fair-bound persistent sets.
A set T ⊆ T of transitions enabled in a state s = final(S)
is fair-bound persistent in s if and only if for all nonempty
sequences α of transitions from s in AG(Fb,c) such that
∀i ∈ dom(α) : αi 6∈ T and for all t ∈ T ,

1. Fb(S.t) ≤ c
2. if t is a release operation, then ∀u ∈ enabled(s) :

next(s, u) ∈ T
3. t↔ last(α)

Requirement 1 requires that transitions in the fair-bound per-
sistent set not exceed the bound. Requirement 2 requires that
all enabled threads be scheduled prior to release operations.
This requirement is conservative – a less restrictive require-
ment might permit more partial-order reduction while still
providing coverage guarantees. We choose this requirement
to compensate for the dependences that release operations
introduce in fair-bounded search because it is simple and
intuitive yet still provides partial-order reduction. Require-
ment 3 requires that transitions reachable via transitions not
in the fair-bound persistent set be independent with transi-
tions in the fair-bound persistent set.

Let AR(Fb,c) be the reduced state space explored by Al-
gorithm 1 with bound function Fb and bound c. Assume that
in each state, Algorithm 1 returns a fair-bound persistent set.
We provide two lemmas to manage the bound, and a lemma
stating that a nonempty fair-bound persistent set in a state s
is local sufficient in s.

Lemma 5. Let α be a nonempty sequence of transitions from
s = final(S) in AG(Fb,c) and let t be a transition enabled in
s such that

1. Fb(S.t) ≤ c
2. t is not a release operation
3. t↔ α

Then, t.α is a sequence of transitions from s in AG(Fb,c).



Algorithm 2 BPOR with bound function Bv and bound c

1: Initially, Explore(ε) from s0

2: procedure Explore(S) begin
3: Let s = final(S)

# Add backtrack points
4: for all (u ∈ Tid) do
5: for all (v ∈ Tid | v 6= u) do

# Find most recent dependent transition
6: if (∃i = max({i ∈ dom(S) | Si =

next(s, u) and Si.tid = v})) then
7: Backtrack(S, i, u)

# Continue the search by exploring successor states
8: Initialize(S)
9: Let visited = ∅

10: while (∃u ∈ (enabled(s) ∩ backtrack(s) \ visited))
do

11: add u to visited
12: if (Bv(S.next(s, u)) ≤ c) then
13: Explore(S.next(s, u))

Intuitively, t can increase the cost of a transition in α only
if t is a release operation that enables a transition t′ with a
lower yield count than one of the transitions in α, yet t is not
a release operation.

Lemma 6. Let T be a nonempty fair-bound persistent set in
a state s = final(S) in AR(Fb,c) and let α.t.γ be a sequence
of transitions from s in AG(Fb,c) such that α is nonempty,
∀i ∈ dom(α) : αi 6∈ T , and t ∈ T . Then, t.α.γ is a sequence
of transitions from s in AG(Fb,c).

The intuitions for Lemma 6 are similar to the intuitions for
Lemma 5. If a transition in γ exceeds the fair bound in
S.t.α.γ then it also exceeds the fair bound in S.α.t.γ.

Theorem 7. If T is a nonempty fair-bound persistent set in
a state s in AR(Fb,c), then T is local sufficient in s.

The proof of Theorem 7 follows the correctness proof for
persistent sets, but it leverages Lemmas 5 and 6 to show that
each relevant sequence of transitions does not exceed the
bound [2, 3]. By Theorems 7 and 1, if Algorithm 1 explores
a nonempty fair-bound persistent set in each state then it
reaches all local states reachable in AG(Fb,c).

We have identified constraints on sufficient sets that per-
mit limited partial-order reduction while providing bounded
coverage for preemption-bounded and fair-bounded search.
In the next section, we present an algorithm to dynamically
compute bound persistent sets for these bound functions at
runtime. We generalize DPOR to search a bounded state
space, then specialize this algorithm for each bound func-
tion and prove the resulting algorithm correct.

5. Computing bound persistent sets

Algorithm 2 presents bounded, dynamic partial-order reduc-
tion (BPOR), a modified version of DPOR that computes
a bound persistent set in each state. We specialize BPOR
to compute preemption-bound persistent and fair-bound per-
sistent sets and prove the resulting algorithms correct. First,
we summarize Algorithm 2 and highlight differences from
DPOR. The procedure Explore in Algorithm 2, which is
common to all bound evaluation functions, recursively ex-
plores the bounded state space from a state s = final(S).
Lines 4-7 create backtrack points.

For each thread u, Line 6 computes the most recent
transition in S by each thread v that is dependent with
next(final(S), u). For each such dependence, Line 7 cre-
ates a backtrack point to reverse the order of the dependent
transitions in a future execution. The original DPOR algo-
rithm places a backtrack point only prior to the most recent
dependent transition, rather than the most recent dependent
transition by each thread. We make this change because we
differentiate read and write operations, so we must consider
read operations by each thread. This change also simplifies
the proofs and allows us to simplify the algorithm.

Lines 8-13 recursively explore the state space from s.
Line 12 ensures that the next transition does not exceed
bound c. Line 13 recursively explores Thread u’s next tran-
sition. This recursive search may add additional threads to
the backtrack set in s.

The Backtrack and Initialize procedures are specific to
each bound evaluation function. The Backtrack procedure
adds backtrack points to compensate for dependences that
the bound introduces. Initialize initializes the bound persis-
tent set with at least one enabled transition that does not ex-
ceed the bound, if one exists. The initial transition affects the
size of the final bound persistent set, so each bound function
carefully selects the initial transition to maximize its like-
lihood of reaching each state via the cheapest sequence of
transitions first. We specialize versions of Backtrack and
Initialize for the preemption and fair bounds.

Algorithm 2 is simplified in comparison to the original
DPOR algorithm to make it easier to describe and to make its
proofs more intuitive. We provide results for this simplified
algorithm and also for the original DPOR algorithm, which
we denote as “optimized.” The optimizations we omit in the
unoptimized version include the following [2].

1. Backtrack only dependences that are in the transitive
reduction on the program’s partial order.

2. If the backtracked thread is disabled, backtrack any en-
abled thread that is transitively dependent with it.

3. Do not backtrack release operations – backtrack only
prior to the matching acquire instead (DPOR only).

The last optimization does not apply to preemption-bounded
or fair-bounded BPOR because both of these algorithms
must specifically backtrack release operations. We include
these optimizations for DPOR in Figure 6 when we compare



Algorithm 3 BPOR for preemption-bounded search

1: procedure Initialize(S) begin
2: if (last(S).tid ∈ enabled(final(S))) then
3: add last(S).tid to backtrack(final(S))
4: else
5: add any u ∈ enabled(final(S)) to

backtrack(final(S))
6: procedure Backtrack(S, i, u) begin
7: AddBacktrackPoint(S, i, u)
8: if (j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6=

Sj .tid and j < i})) then
9: AddBacktrackPoint(S, j, u)

10: procedure AddBacktrackPoint(S, i, u) begin
11: if (u ∈ enabled(pre(S, i))) then
12: Add u to backtrack(pre(S, i))
13: else
14: backtrack(pre(S, i)) = enabled(pre(S, i))

DPOR to bounded search. In Section 6, however, we sepa-
rate these optimizations out because we do not include these
optimizations in our formal proofs [2, 3].

5.1 Computing preemption-bound persistent sets
Algorithm 3 contains the Initialize and Backtrack proce-
dures for preemption-bounded search. Initialize adds the ex-
ecuting thread to the backtrack set in final(S) if it is enabled
there. Otherwise, Initialize adds any u ∈ enabled(final(S))
to the backtrack set because all threads cost the same in
final(S).

The Backtrack procedure adds two backtrack points: at
Line 7 it adds one prior to the most recent dependent tran-
sition Si, and at Line 9 it adds one prior to the most recent
transition to Si at which the executing thread changed. The
first backtrack point satisfies Requirement 2 of Definition 4.6
and the second backtrack point satisfies Requirement 3 of
Definition 4.6. The backtrack point at Line 9 is conservative
– it may lead to precisely the same states that the backtrack
point at Line 7 leads to, but with fewer preemptions. The
search cannot know whether these backtrack points lead to
the same states yet, however, because it has not yet searched
the intervening state space. Thus, the search must add both
backtrack points. The procedure AddBacktrackPoint adds
u to the backtrack set if it is enabled in pre(S, i); otherwise,
it conservatively adds all enabled threads.

To prove that Algorithm 2 computes a preemption-bound
persistent set in each state, we create postconditions for
preemption-bounded search, which we derive from the post-
conditions that DPOR satisfies in each state [6].

Definition 5.1. PC for Explore(S) – Preemption bound.
∀u∀ω : if Pb(S.ω) ≤ c then Post(S.ω, len(S), u)

Algorithm 4 BPOR procedures for fair-bounded search

1: procedure Initialize(S) begin
2: if (len(S) > MAX) then
3: report livelock and exit
4: Backtrack(S, len(S), u) where u is a lowest cost en-

abled thread in final(S)
5: procedure Backtrack(S, i, u) begin
6: if (u ∈ enabled(pre(S, i)) and next(pre(S, i), u) is

not a release operation) then
7: add u to backtrack(pre(S, i))
8: else
9: backtrack(pre(S, i)) = enabled(pre(S, i))

Definition 5.2. Post(S, k, u) – Preemption bound.
∀v : if i = max({i ∈ dom(S) | Si = next(final(S), u) and
Si.tid = v}) then

1. if i ≤ k then
if u ∈ enabled(pre(S, i)) then u ∈ backtrack(pre(S, i))
else backtrack(pre(S, i)) = enabled(pre(S, i))

2. if j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6=
Sj .tid and j < i}) and j < k then
if u ∈ enabled(pre(S, j)) then u ∈ backtrack(pre(S, j))
else backtrack(pre(S, j)) = enabled(pre(S, j))

Definition 5.1 requires that Post hold for all threads and for
all sequences of transitions that are reachable within the pre-
emption bound. Definition 5.2 requires an additional back-
track point to guarantee that ext(pre(S, j), next(pre(S, j), u))
is independent with transitions not in the local sufficient set.
Requirement 3 of Definition 4.6 of preemption-bound per-
sistent sets requires this backtrack point.

Theorem 8. Whenever a state s = final(S) is back-
tracked during the search performed by Algorithm 2 in an
acyclic state space, the postcondition Post for Explore(S)
is satisfied, and the set T of transitions explored from s is
preemption-bound persistent in s.

This proof leverages Lemmas 2 and 3 to show that each
sequence of transitions is reachable within the preemption
bound [2, 3].

5.2 Computing fair-bound persistent sets
Algorithm 4 contains the Initialize and Backtrack proce-
dures to compute fair-bound persistent sets. Assume that
Algorithm 2 calls these procedures. Initialize adds any
minimum-cost enabled thread to the backtrack set. Back-
track checks whether Si is a release operation, or u is dis-
abled in pre(S, i). In either case, the search conservatively
adds all enabled threads to the backtrack set. Otherwise,
Line 7 adds u to the backtrack set.

To prove that Algorithm 2 computes a fair-bound persis-
tent set in each state, we define postconditions that Algo-
rithm 2 guarantees prior to backtracking each state [6].



Definition 5.3. PC for Explore(S) - Fair bound.
∀u∀ω : if Fb(S.ω) ≤ c and len(S.ω) ≤ MAX then
Post(S.ω, len(S), u)

Definition 5.4. Post(S, k, u) - Fair bound.
∀v : if i = max({i ∈ dom(S) | Si = next(final(S), u) and
Si.tid = v}) and i ≤ k then

if u ∈ enabled(pre(S, i)) and Si is not a release then
u ∈ backtrack(pre(S, i))

else backtrack(pre(S, i)) = enabled(pre(S, i))

Definition 5.3 requires that Post hold for all threads and for
all sequences of transitions that are reachable within the fair
bound and within a maximum depth parameter, MAX. This
maximum depth bound should be very large such that it con-
strains the search only when the state space contains a cycle
that the fair bound cannot break. In such a case, the search
reports a livelock to indicate that a thread likely yielded the
processor when it should not have, or failed to yield the pro-
cessor when it should have. If u is enabled in pre(S, i) and Si

is not a release operation, then Definition 5.4 requires that u
be in backtrack(pre(S, i)). Otherwise, Definition 5.4 conser-
vatively requires that all enabled threads be in the backtrack
set in pre(S, i).

Theorem 9. Whenever Algorithm 2 backtracks a state s =
final(S), postcondition Post for Explore(S) is satisfied, and
the set T of transitions explored from s is fair-bound persis-
tent in s.

This proof is similar to DPOR’s correctness proof, but
it leverages the Initialize procedure in Algorithm 4 and
Lemma 6 to show that each sequence of transitions is within
the fair bound [2, 3].

5.3 Combining bounds
Combining bound functions may be advantageous if the
bounds serve fundamentally different purposes, as the pre-
emption and fairness bounds do. Combining these bounds
provides the incremental coverage guarantees of preemption-
bounded search but also prunes cyclic state spaces. Combin-
ing these bounds sacrifices partial-order reduction, however.
If a fair-blocked transition does not allow a non-preemptive
context switch, then the search may lose coverage.

When using multiple bounds, it is also more likely that
the search will reach states in which all transitions exceed
a bound. For example, a preemption-bounded, fair-bounded
search may leave all transitions exceeding the bound, unless
you assume that fair blocked threads get a free preemption.
If all transitions exceed the bound, then the search must con-
servatively schedule all threads at their most recent cheaper
locations to ensure that no states are left unexplored.

We conservatively place additional backtrack points when-
ever a thread’s enabledness changes to eliminate these inter-
actions. By exploiting dynamic information about the subse-
quent state space, however, these conservative assumptions

could likely be optimized. We leave these additional opti-
mizations to future work.

5.4 Optimizations
In the performance results, we report in the next section, we
always apply sleep sets to DPOR and BPOR. The sleep sets
algorithm is complementary to the partial-order reduction
algorithm and ensures that previously visited transitions are
not visited again until after the search explores a dependent
transition. To compensate for the bound, we never place
transitions in the sleep set if they were conservatively added
by BPOR due to the bound.

The optimized results also include one additional opti-
mization that is specific to the bound. When all states are
reachable within the bound from a given state, then the
search does not add any conservative backtrack points. This
optimization ensures that with a sufficiently large bound,
BPOR will behave exactly like DPOR and explore the entire
state space with no conservative overhead due to the bound.

6. Results
We evaluate BPOR by measuring its state space reduction
and time required to manifest known bugs. We measure state
space coverage over time to ensure that the per-transition
overhead of BPOR’s bookkeeping is not lost. We compare
to bounded search without partial-order reduction, and if the
DPOR search terminates, then we compare to DPOR as well.

Methodology We compare DPOR, bounded search, and
BPOR in CHESS, a publicly available, stateless, dynamic
model checker for concurrent software. CHESS places a thin
wrapper between the program under test and the Win32 and
.NET APIs using binary instrumentation [15]. This wrapper
intercepts calls into the Win32 and .NET APIs and provides
hooks into CHESS that control thread scheduling completely
without modifying the semantics of the API or the behavior
of the program under test.

We validate our implementation in several ways. First, we
hash local and deadlock states to track the unique states that
the search visits. We compare these states with and with-
out partial-order reduction to ensure that they are the same.
Second, we automatically generate random concurrent pro-
grams and compare the states that DPOR, bounded search,
and BPOR explore for these programs. Third, we explicitly
verify that the lemmas and postconditions in Section 5 are
true at runtime.

We test four concurrent unit tests developed by testers for
concurrent software and libraries at Microsoft. Exception
tests a concurrent exception for the Concurrency Coordi-
nation Runtime (CCR) library. MRSE tests a manual reset
event for the .NET 4.0 concurrency libraries. FFT is a par-
allel fast Fourier transform with eight threads. We also pro-
vide results for a microbenchmark that we created explic-
itly to test fair-bounded search without partial-order reduc-
tion. Because fair-bounded search prunes only cycles in the
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Figure 7. Coverage vs. time as the bound increases.

state space, its state space is intractably large without partial-
order reduction or other bound functions, so we needed a test
that was small enough that we could explore the entire fair-
bounded state space.

Coverage time Figure 7 shows coverage over time for each
benchmark. If at least one test explores the entire state space,
then we show % of local states, otherwise we show the raw
number of visited local states on the x-axis. We measure and
report time on the y-axis as a function of explored states and
the bound value to show the overhead of executing BPOR
compared to the other approaches. Each point on the graphs
in Figure 7 represents an invocation of CHESS with a par-
ticular bound function and bound. Lines connect points only
for visual clarity – we test only integer bounds. Dashed lines
represent DPOR, which is a single invocation of CHESS that
searches the entire state space. We show both optimized and
unoptimized results because our proofs explicitly cover only
the unoptimized algorithms. In practice, the optimized re-
sults explore all of the same local states, but we have not
proved the optimizations.

BPOR explores new states significantly more quickly
than bounded search without partial-order reduction, par-
ticularly as the bound increases. Note that the y-axis is log-
arithmic in Figure 7. We show results for MRSE to com-
pare BPOR with DPOR when the search space is small
enough that DPOR terminates. We include FFT because it
is pathological for the preemption bound. FFT contains eight
threads that access a shared lock. The lock release operations
all require conservative backtrack points with preemption-
bounded BPOR. Each acquire operation also requires a con-
servative backtrack point that turns out to be unnecessary.
Still, BPOR reduces search time. Note that we terminate
tests if they do not complete after 3 hours – without BPOR,
most tests time out.

DPOR does does not terminate within 3 hours for the
Exception test, and neither does preemption-bounded search
with a bound of two or greater. BPOR search does terminate
within three hours with a bound of two. Figure 7(d) shows
fair-bounded search with and without partial-order reduc-
tion. There are no DPOR results for this program because it
has a cyclic state space, and thus DPOR crashes with a stack
overflow. BPOR improves the rate at which fair-bounded
search explores new states considerably over fair-bounded
search without partial-order reduction.

Finding Bugs Table 1 shows time required to find several
previously known bugs with DPOR, without any partial-
order reduction, and with BPOR. Tests marked with “-”
either do not find the bug within three hours, or die after the
first execution due to a stack overflow as a result of the cyclic
state space. All of the DPOR and BPOR tests in Table 1
use the optimized search settings described in Section 5, and
each bounded search uses the minimum bound required to
detect the bug. This result is a best-case scenario for bounded
search because the ideal bound cannot be known beforehand.

DPOR cannot explore the NQueens, Matrix, or RegOwn
tests because they have cyclic state spaces. Fair-bounded
BPOR finds each bug, and preemption/fair-bounded BPOR
finds each bug more quickly than fair-bounded BPOR de-



Unit test Bug Time to manifest bug (s)
DPOR No BPOR BPOR

Pb Pb

MRSE Deadlock 2 6 1

CCR
Assertion 69 39 9
Assertion 64 35 8

Fb Pb Fb Fb Pb

NQueens

Assertion - 75 5 4
Livelock - 3235 502 125
Assertion - 312 80 11

Matrix

Assertion - 54 2 2
Livelock - 1089 787 137
Livelock - - 694 136

RegOwn Exception - - 3474 1586

Table 1. Time required to find bugs. Preemption/fair
bounded search without BPOR requires much longer than
fair-bounded BPOR requires. Fair-bounded BPOR requires
longer than preemption/fair-bounded BPOR.

spite the conservative approach we chose to combine these
bounds.

7. Conclusions
This paper exploits properties of bounds to combine pre-
emption and fair-bounded search with dynamic partial-order
reduction (DPOR). We show that bounded search alone is
insufficient to reduce the time to find many bugs without
partial-order reduction. DPOR is also insufficient without
a bound if the search space is large or the test program is
cyclic. Bounded, dynamic partial-order reduction (BPOR)
provides incremental coverage guarantees for a reduced state
space. We specialize this algorithm for preemption and fair-
bounded search, prove its coverage guarantees, and show
that it reduces search time considerably in practice. We de-
scribe two desirable bound properties: stability and extensi-
bility. We show that neither preemption or fair-bounds have
these properties. However, these properties do point to ways
to choose better bound functions [2]. Bounded partial-order
reduction gives testers a more effective tool for verifying the
correctness of concurrent programs with bounded guaran-
tees.
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