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comprises a set of servers that together implement some de-
sired semantics provided not too many of the servers are
compromised. Secret sharing [34, 2] is typically employed

to split the service private key among the set of servers, and

duce the corresponding ciphertext encrypted under the keythreshold cryptography [4, 13] is used for cryptographic op

of another distributed service, but without the plaintextre
becoming available. Each distributed service comprises a

set of servers and employs threshold cryptography to main-

tain its service private key. Unlike prior work, the proto-

erations involving that private key. Instances of this arch
tecture are found in COCA [37], e-vault [21], ITTC [35],
Omega [32], SINTRA [7], and CODEX [27].

We decided to employ ee-encryption protoco[23] so

col requires no assumptions about execution speeds or mesthat one distributed service could propagate a secret (en-
sage delivery delays. The protocol also imposes fewer concrypted under its service public key) to another distridute

straints on where and when various steps are performed,

which can bring improvements in end-to-end performance
for some applications (e.g., a trusted publish/subscnibe i
frastructure.) Two new building blocks employed—a dis-
tributed blinding protocol and verifiable dual encryption
proofs—could have uses beyond re-encryption protocols.

1 Introduction

Cryptographic protocols intended for distributed systems
are usually evaluated in terms of quantitative measutes, li

number of messages exchanged or total computing time.

Virtually no attention has been paid to supporting flexi-
bility in when and where the protocol steps are executed.
Yet there are applications where susthp flexibilityis use-
ful, as we recently discovered in designing a trusted pub-
lish/subscribe application.

This application required an infrastructure for transfer-
ring secrets from publishers to subscribers through acolle
tion of interactingdistributed servicesA distributed service

service; re-encryption—a form of proxy cryptography [3]—
produces a ciphertext encrypted under one key from a ci-
phertext encrypted under another but without plaintext be-
coming available during intermediate stépsAnd a re-
encryption protocol that admits step flexibility allows cer
tain optimizations:

e Computation that does not depend on the secret being
transferred can be performed beforehand and, there-
fore, moved out of the critical path so that it does not
contribute to end-to-end latency.

For a secret being sent from a single service to mul-

tiple recipients, computation that does not rely on the

sender’s private key can be relocated from the sender
to the receivers, thereby alleviating a potential bottle-

neck at the sender.

1The requirement that the plaintext not be disclosed duriag r
encryption is crucial for distributed services, becausdividual servers
storing the plaintext might become compromised. Notic¢ degrypting
the ciphertext with the first private key and then encryptingsing the
second public key is now precluded, though.



Extant re-encryption protocols (e.g., [23]) did not admit
step flexibility, so we developed a new one that does; it is
the subject of this paper.

Blinding [9] is the core for our new re-encryption pro-
tocol. An ElGamal encrypted [16] secret at servidas
blinded by a randomblinding factor, then decrypted using
A’s private key, and finally both encrypted usifds public
key and un-blinded using the original random blinding fac-
tor. A newdistributed blinding protocoallows distributed
services to perform the blinding and un-blinding. Use of the
distributed blinding protocol supports flexible allocatiof
computation, because the distributed blinding protocel re
quires no knowledge of the original ciphertext or 4%
private key. Consequently, the distributed blinding proto
col can be executed before the original ciphertext is gen-

erated (thereby enabling pre-computation) and on servers

other thanA (thereby enabling offloading).

Our distributed blinding protocol employs a new crypto-
graphic building block callederifiable dual encryptiorio
create proofs that, without disclosing the plaintext, ifert
two ciphertexts created under different public keys aré{wi
high probability) for the same plaintext. We conjecturetha
both the distributed blinding protocol and the verifiabladu
encryption protocol have uses outside of re-encryption pro
tocols.

Finally, since assumptions invariably translate into vul-
nerabilities (and opportunities for attackers), we esatew

assumptions about execution speed and message delivergn

delays in designing our protocols for the publish/subgcrib
application. So, unlike prior work in re-encryption, we
adopted thasynchronoumodel of computation, which has
no assumptions about timings. But deterministic solutions
to the consensus problem cannot exist in such settings [18]

and that creates challenges for the protocol designer who
nonetheless must implement any required server coordina-

tion. In the protocols contained herein, selection andegre
ment on a blinding factor is avoided by instead computing
multiple equivalent candidates along with a unique label fo

each; the labels allow a server to choose one of the blinding

private keykgs that is distributed among the servers accord-
ing to an(n, f) threshold cryptography scheme. Further-
more, each server is assumed to have a unique public/private
key pair, with the public key known to the other servérs.
Servers thus can communicate with each other securely and
the service can, using threshold cryptography, perform de-
cryption and generate digital signatures provided at least
f + 1 servers cooperate.

We assume:

Compromised Servers: Servers are eithecorrect

or compromised A compromised server might stop,

deviate arbitrarily from its specified protocols (i.e.,

Byzantine failure), and/or disclose information stored
locally. At mostf of then servers are compromised,

where3f + 1 = n holds?

Asynchronous System Model:There is no bound on
message delivery delay or server execution speed.

So an adversary can control the behavior of and obtain
all information available to as many &8 — 1)/3] servers.
Also, an adversary could conduct denial-of-service attack
that delay messages or slow down servers by arbitrary finite
amounts. As is customary, the capability of the adversary
is limited to that of a probabilistic polynomial-time Tugn
machine.

A re-encryption protocol for conveying a secretfrom

e distributed servicel to another distributed service
must ensure that neither confidentiality nor integritynof
is compromised. In particular, given a ciphertextforen-
crypted underk 4, a re-encryption protocol must produce
an output subject to the following criteria (which are for-
malized in [36]):

Progress: The protocol must terminate with correct
servers inB having received the output.

Integrity: The output produced by the re-encryption
protocol is a ciphertext af: encrypted undeK 5.

factors and have any subsequent computations by its peers

be consistent with this choice.
The rest of the paper is organized as follows. Section 2

Confidentiality: The protocol discloses no informa-
tion about the plaintext.

describes the system model. In Section 3, EIGamal encryp-

tion is reviewed and re-encryption by blinding is explained
Our distributed blinding protocol is the subject of Section
Section 5 discusses alternative re-encryption schemes an
other related work, followed by concluding remarks in Sec-
tion 6.

2 System Model and Problem Definition

Each distributed servicé comprisesn servers along
with a widely known service public keXs and a service

3
d

ElGamal Re-encryption Using Blinding

ElGamal public key encryption is based on large prime
numbersgp andg such thap = 2¢ + 1. LetG, be a cyclic
subgroup (of ordeq) of Zy = {i | 1 <i < p— 1}, and let

2By limiting the visibility of server public keys to only segvs com-
prising the service, clients and other services are stddiden changes to
these keys (including proactive refresh of private key efpand shielded
from changes to the composition of the service itself.

3The protocols are easily extended to cases wlgre- 1 < n holds.



Blinding

Ea(p)

g be some generator @f,. We assume that all EIGamal
keys share the same paramejerg, g, andg,,.

Any k € Z; can be an ElGamal private key, and then
K = (p,q,9,y) with y = ¢* mod p is the correspond-
ing public key. To simplify notation, modular calculations
will henceforth be left implicit. Thus, “mog” is omitted
when computing exponentiations and discrete logarithms,
and “modg” is omitted when performing computation on

Ea(mp)

Decryption| k4

exponents.
An ElGamal ciphertext(m) for plaintextm € G, is a

pair (¢g", my") with r uniformly and randomly chosen from
Zy. CiphertextE(m) = (a,b) is decrypted by computing

b/a*, since (for some)
b/a* = my"/(¢")* = m(g")/(g")" = m.

Where needed, we writE(m, r) to indicate the value of

used in computingZ(m) and we write€(m) to denote the

set{ E(m,r) | r € Z;} of all possible ciphertexts for..
ForE(ml) = (al,bl), E(mg) = (QQ,bQ), andE(m) =
(a, b), define the following operations:

BE(m)™ = (a b7
m' - E(m) = (a,m'b)
E(m1) x E(ma) = (aiaz,b1bs)
The following properties then hold:
ElGamal Inverse: E(m)~1 € £(m™1).
ElGamal Juxtaposition: m’ - E(m,r) = E(m/m,r).

ElGamal Multiplication: * If 7y +7, € Z; then
E(my,r1) x E(ma,r3) € E(mimz).

Note that side condition; + ro € Zy in EIGamal Mul-
tiplication is easily checked without knowledgergfor rs.
This is because

(a,b) = E(my,r1) X E(ma,r2)
= (ng +7‘2’m1m2y7‘1+7‘2)’

so by checking thai # 1 holds, we conclude; + ry # 0
which, by closure of grouf;, implies thatr; + r2 € Z;
holds as well.

In those rare instances wheretr, = 0 holds, plaintext
mymeg IS disclosed. This is not a concern for our protocols,
because ElGamal Multiplication is used only in connection
with random factors that are being multiplied to obtain a
(random) encrypted blinding factor; new values can thus be

requested whenever + r, = 0 is found to hold® Our

4This property is often referred to as themomorphicproperty of a

public key cryptosystem.
5The obvious denial-of-service attack of repeatedly retjgsnew

values is prevented by accompanying such a request witherséd

E(mq,r1) andE(ma, r2).

Un-blinding
Es(p)

Figure 1: Re-encryption using blinding.

Egp(m) mp

protocols omit such details, leaving implicit the checking
of this side condition and any additional communications
required to fetch suitable EIGamal encrypted values.

Blinding and Un-blinding with EIGamal

Let Es(m) denote plaintexin encrypted according to
the public keyKs of a serviceS and let Dg(c) denote
ciphertextc decrypted with the corresponding private key.
Figure 1 summarizes how to perform re-encryption using
blinding and un-blinding. Each arrow is labeled by an op-
eration and its parameters. So we see figtm) is first
blinded usingE 4(p), wherep is a random blinding factor;
that result is decrypted to obtainp; and finallymp is un-
blinded usingE's (p).

Figure 2 gives the actual protocol for re-encryption using
blinding. Step 4 works because, lettifig; (p) be Eg(p, 1),
we have:

(mp) - (Eg(p, 7))
= (ElGamal Inverse)
(mp) - Ep(p~", 1)
= (ElGamal Juxtaposition)
Ep(mpp~', —7)
= (Cancellation)
EB (ma _T)
€ (definition ofEg(m))
53 (m)

Note that step 1 can be performed by sendt@stead
of serviceA and can be done beforg, (m) is known. All
other steps must be carried out aftés (m) is available.
Step 3 must be executed drbecause it requires knowledge
of A’s private key for threshold decryption. In the rest of the
paper, we assume that step 1 is done by se®icalthough
it could be easily done byl.

The possibility of compromised servers makes choosing
p and computing? 4 (p) andE(p) in step 1 tricky to im-
plement. Oudistributed blinding protocoto accomplish
this task is the subject of the next section.



. Pick a random blinding factqr € G,; computeE 4(p) and
Es(p).
2. Compute blinded cipherte® 4 (mp) := Ea(m) x Ea(p).

3. Employ threshold decryption to obtain blinded plaintext
from blinded ciphertex 4 (mp) computed in step 2.

4. ComputeEp(m) := (mp) - Es(p) .

Figure 2: Re-encryption protocol.

4 Distributed Blinding Protocol

We start by giving a protocol for a relatively benign envi-
ronment; modifications for tolerating malicious attacks ar
then incorporated. This form of exposition, though perhaps

1. CoordinatorC} initiates the protocol by sending to eve
server inB aninit message.

ry

C; — B :id,init

2. Upon receipt of ainit message frond’;, a servet:

(a) Generates an independent random number
(b) Computes encrypted contributiOf 4 (p;), Es(pi)).
(c) ¢ — Cj : id, contribute, i, Ea(p:), EB(p:)

3. Upon receipt otontribute messages from a sétcompris-
ing f + 1 servers inB:
(@) C; computes:Ea(p) = XierEa(pi) andEp(p) =
XierEs(pi).
(b) C; — A id, Ealp), En(p).

a bit longer, elucidates the role played by each element of Figure 3: Failstop adversary distributed blinding protocol.

the protocol.

Given two related ElGamal public key#(,
(p,q,9,ya) andKg = (p,q,9,ys), the distributed blind-
ing protocol must satisfy the following correctness requir
ments.

Randomness-Confidentiality: Blinding factorp €
G, is chosen randomly and kept confidential from the
adversary.

Consistency: The protocol outputs a pair of cipher-
textsE 4 (p) andEg(p) for blinding factorp.

4.1 Defending Against Failstop Adversaries

Replace Compromised Servers assumption by:

Failstop Adversaries: Compromised servers are lim-
ited to disclosing locally stored information or halting
prematurely. Assume at mosf out of n servers are
compromised, whergf + 1 = n holds.

Now to compute a confidential blinding factpy it suf-
fices to calculat [, p;, wherel is a set of at least + 1
servers and each serviee I generates a randoaontribu-
tion p;. Confidentiality ofp follows because, with at mogt
compromised servers, one serverirs not compromised.

Ciphertext E4(p) can thus be obtained by calculat-
ing X;crFEa(pi), due to EIGamal Multiplicatiorf. Sim-
ilarly, ciphertext Ez(p) can be obtained by calculating
XierFEp(pi). So a serviced can satisfy the confiden-
tiality requirement for blinding factop if each server
outputs as itsencrypted contributiorthe ciphertext pair
(Ea(pi), EB(pi))-

To solicit encrypted contributions and then combine
them into E4(p) and Eg(p), we postulate a coordinator
C; and (unrealistically) assume the seryexecutingC; is
never compromised:

Correct Coordinator: CoordinatorC; is correct.

We then have the distributed blinding protocol in Fig-
ure 3. There, we writé — j : m to specify that a message
m is sent byi to j, i — B : m to specify that a message
m is sent byi to every server comprising servide, and
id identifies thanstanceof the protocol executiony con-
tains, among other things, the identifier for the coordinato

Coping with Faulty Coordinators

To eliminate the Correct Coordinator assumption, the proto
col must tolerate coordinator disclosure of locally stared
formation or premature halting. Disclosure causes no harm,
because the only locally stored information is the encrypte
contributions from servers; to compute the blinding factor

This correct server picks a contribution that is random and from these encrypted contributions, the adversary would
unknown to the adversary; and the Failstop Adversaries as-have to know the private key of serviceor serviceB. A

sumption means all compromised servers necessarily select 7Use of ElGamal Multiplication to concluds
. . . . A
contributions that are independent of choices made by theg, (,, r,) x -

correct servers.

6Thus, a failstop adversary is equivalent to an honest bigusiserver
that can halt.

(p) = Ealpr,m1) X
- X Ea(psy1,7p41) requires thatry + r2 + -+ +
rfy1 € Zy hold. As before, this can be checked by seeing whether the
first component off 4 (p) equals 1 and soliciting new contributions if it
does.

8This assumption is relaxed later in this section.



coordinator halting would prevent protocol terminationt b by the protocol. Suppose

this is easily tolerated by usinfy+ 1 different coordinators

instead of just one. Wittf + 1 coordinators, at least one {(Ea(pi), Ep(pi)) |1 <i < f}

will be correct and will complete the protocol. And if more o ]

than one coordinator is correct, then multiple blinding-fac 1S the set of encrypted contributions received from fhe

tors will be produced, which causes no difficulty. The same Other servers at the start of step 3 in Figure 3. After receiv-
techniques of using multiple coordinators were used in [37] Ind these, the compromised server generates two ciphertext
and [6]. E4(p) andEg(p) and constructs as its encrypted contribu-

Employing multiple coordinators does imply a perfor- tion:

mance penalty. In the worst case, run-time costs are inflated

by a factor off, since as many ag of the coordinators are (Ea(p)x (X1 Ea(pi) ™,
superfluous. This cost, however, can be reduced by delay- R f .
ing whenf of the coordinators commence execution. Since Ep(p)x(Xiz1Ep(pi)) (1)

our protocol is designed for an asynchronous system, ex-
ecution of coordinators can be delayed without adversely
affecting correctness. So, one server acts asléiseggnated
coordinator and the others become coordinators only if the
designated coordinator fails to complete execution within
specified period of time.

Due to ElGamal Multiplication and ElGamal Inverse, the
second factor in each element of this encrypted contribu-
tion will cancel the encrypted contributions from the other
servers, so the resulting blinding factompis

An obvious defense is to prevent servers that have not
published an encrypted contribution from learning the en-
crypted contributions of others. So we modify the protocol
of Figure 3 accordingly. Instead of sending an encrypted
] ) ) ] contribution to the coordinator, each server sendsramit-

Relf'»f the Failstop Adversanes assumption, returning to ment which is a cryptographic hash (e.g., SHA1) of that
the original Compromised Servers assumption, and thréegncrypted contribution. And only after the coordinator has
noteworthy forms of misbehavior become possible: receivedf + 1 commitments does it solicit encrypted con-
tributions from the servers.Waiting for 2f + 1 commit-
ments is necessary to ensure the coordinator will ultingatel
receivef + 1 encrypted contributions, since as manyfas

e the encrypted contribution from each servaptbeing ~ Of the servers sending thef + 1 commitments could be
of the form(E4(p;), Eg(pl)) wherep; = p’, and compromised.

4.2 Defending Against Malicious Attacks

e servers choosing contributions that are not indepen-
dent,

e servers and coordinators not following the protocolin 4.2.2 Encrypted Contribution Consistency

other ways. ) ) )
A compromised server might create an encrypted contribu-

This section describes corresponding defenses. tion that is not of the forniE 4 (p;), Er(p;)) wherep; = p,
holds. Suchnconsistenencrypted contributions cause the
Consistency requirement for our distributed blinding prot
col to be violated. Decrypting 4 (p;) andEp(p}) would be
Randomness-Confidentiality for the protocol of Figure 3 one way to check for inconsistent encrypted contributions,
hinges on the contribution from at least one server beingbut having that plaintext would also undermine maintaining
confidential and independent from contributions of all the the confidentiality ofp. So our protocol instead employs
others. It suffices to focus on a single run if, when engaging a new cryptographic building block callagrifiable dual
with different coordinators, a correct server selectsoamd ~ encryptionthat checks whethes;, = p; holds given two
contributions that are independent. Unfortunately, even EIGamal ciphertext& 4 (p;) andEg(p;).
here a single compromised server can falsify the premise Verifiable dual encryption is based on the non-interactive
that its contribution is independent from the contribusion zero-knowledge proof, which we refer to BE0G, for the
e e =" S, v i o o 1, s )
A non-malleable [15] commit protocol (e.g., [12]) might beetbasis for
from all other servers, exploiting the malleability of EiGa  a scheme that ensures (informally speaking) server catitits are un-
mal encryption and choosing a contribution that cancels outrelated with respect to any polynomial time relation. Hoerewa non-

the encrypted contributions from the other servers malleable commit protocol would not by itself suffice, besauhis en-
) sures the encrypted contributions are unrelated but notthieacontribu-

Specifically, a compromised Ser\fer_COU|d proceed as fol- ions themselves are unrelated. A non-malleable proofaififext knowl-
lows to ensure thgt becomes the blinding factor generated edge [24] might be needed.

4.2.1 Randomness-Confidentiality




equality of two discrete logarithms, as first proposed by

Chaum and Pedersen [10]. Giveng, X = ¢%, Y, and
Z = Y*“, DLOG(a,g,X,Y, Z) shows thaf a = log, X =
logy- Z without disclosingz. (Protocols foDLOG are given
in [36].)

Consider an encrypted contributidi® 4 (p;), Es(p}))
where

Ea(pi) =
Ep(p;) =

(61,7m1) =
(62,72)

(9™, piy'y)
/T2

(9", PiygE)

corresponding to encryption using ElGamal public keys

Ka = (p,q,9,ya) andKp = (p,q¢, 9,yp). We can show
pi = p; holds by verifying

T/72 = graniTher (2
because ip; = p; holds then

/72 = (py')/ (Piy)
i/ i) (9" [ gFeTe)

kari—kprs

= (
=y

SincegkATlkaTz — g(kA+kB)(T1*T2)gkAT2/ngT1 holds,

equation (2) is satisfied if the following three conditions

hold:
Gz = gham (3)
G = g'm (4)
iy = gFatER)=r G, /Gy (5)

Recall, a server that generates cipherteXts(p;)
and Eg(p;) knows bothr; and rp, and thus is able
to generate averifiable dual encryption propfdenoted
VDE(E 4(p:), EB(p})), by constructin@L0G proofs for the
conditions defined by equations (3) though (5).

VDE(E4(m), Eg(m)) is obtained by showing:

Prl: DLOG(r2,9,9™,ya,G12) proves thatGis =

Y= (¢g*4)"2 holds. Therefore, condition (3) is satis-

fied.

Pr2: DLOG(r1,9,9"%,yp,Ga1) proves thatGay =

yg = (¢*2)™ holds. Therefore, condition (4) is satis-

fied.

Pr3: DLOG(r1—72,9,9™ "%, yayB, (71/72)(G21/G12))

proves that

(71/72)(G21/G12) = (yAyB)Tl_TZ
— (gkA+/€B )Tl—Tz

_ g(kAJrkB)(Tl*Tz)

holds and therefore condition (5) is satisfied.

1%Note, all operations are in domaity,.

Thus, it suffices that every server attach
VDE(Ea(pi), Es(pi)) when sending encrypted con-
tribution (E4(p;), Es(p;)) to the coordinator.  The
coordinator, in turn, only uses encrypted contributiorat th
are accompanied by valid proofs—at legst 1 will be,
because at leagt+ 1 servers are correct out of ti2¢f + 1

from which the coordinator received commitments.

4.2.3 Constraining Malicious Coordinators

It only remains to deal with compromised servers and co-
ordinators that cause disruption by taking overt action. In
a distributed system, such action is limited to sending mes-
sages.

We dealt above with two attacks that servers might
launch through interaction with coordinators: (i) revagli
encrypted contributions prematurely and (ii) sending mco
sistent encrypted contributions. Compromised coordisato
have corresponding attacks, and a compromised coordina-
tor might:

e cause some servers to reveal encrypted contributions
before other (presumably compromised) servers have
selected theirs or

o fabricate an encrypted value for the blinding factor
rather than computing that value frofrt+ 1 encrypted
server contributions.

For these and all attacks that involve sending bogus mes-
sages, we employ a single, general defense: each message
sent is madself-verifying[29, 25] as in COCA [37], so that
a receiver of the message can check whether the message is
valid, based solely on message contents. A valid message
is, by definition, one that is consistent with the sender fol-
lowing the protocol. Thus, if messages that are not valid
are ignored then attacks involving bogus messages become
indistinguishable from lost messages.

A message is made self-verifying by attachevijdence
In general, it suffices that any message produced by a pro-
tocol step be signed by the sender and include as evi-
dence all messages that served as the inputs to that protocol
step, where these included messages are themselves self-
verifying. For example, returning to the attacks mentioned
above for compromised coordinators, messages might be
made self-verifying as follows.

e The message requesting servers to reveal their en-
crypted contributions would be signed by the coordi-
nator and include signed messages ftofa- 1 servers
containing the commitment for that server’s encrypted
contribution.

e The message conveyin@©4(p), Eg(p)) would be
signed by the coordinator and also contain



— signed messages frof + 1 servers containing
the hash of that server’s encrypted contribution,

— signed messages frogh+ 1 servers containing
their encrypted contributions and corresponding
valid verifiable dual encryption proofs.

4.2.4 Putting it Together

Applying these defenses, we obtain the re-encryption prot

tocol of Figure 4, wherém); denotes a message that is
signed byi, andk is a cryptographic hash function. Criteria
for validity of self-verifying messages used in the protoco
are given in Figure 5. See [36] for the proof that this proto-
col works correctly in environments satisfying the Compro-
mised Servers and Asynchronous System Model assumy
tions of Section 2.

5 Related Work

Ciphertext Transformation. Re-encryption protocols
transform one ciphertext to another without ever revealing
the plaintext. We are not the first to study the problem.

Mambo and Okamoto [26] introduced the notion of
proxy cryptosystents support delegation of decryption. In
their scheme A can endowB with the power to decrypt
messages that have been encrypted using publickkgy
but without disclosing taB corresponding private key.
Delegation is accomplished by transforming a ciphertext
encrypted undeK 4 into another ciphertext tha® can de-
crypt; the transformed ciphertext is decrypted by using 4
proxy keythat B receives fromA when the proxy is ini-
tially set up. This is in contrast to our scheme, where re-
encryption produces ciphertext unde’s public key.

Blaze, Bleumer, and Strauss [3] coined the tetiomic
proxy cryptographywhich applies not only to encryption
but also to other cryptographic operations (such as identifi
cation and signature). An atomic proxy encryption scheme
involves anatomic proxy functionwhich converts cipher-
texts for decryption by a first key into ciphertexts for a sec-
ond key. The atomic proxy function is public, so any en-
tity (even an untrusted one) can perform the transformation
making an encrypted message available to holders of th
second key. With our re-encryption protocol, a distributed
serviceA, which knows the first key (private kéy, ), con-
verts the ciphertext to the second key. And becatise a
distributed service, the individual servers4fre not them-
selves trusted. Thus, a crucial difference between atomi
proxy encryption and our re-encryption protocol concerng
where trust is being placed.

Jakobsson’s  Re-Encryption  Scheme. Jakobsson’s

e

guorum-controlled proxy re-encryption scheme [23], like
ours, gives a way for a distributed servideto transform

)_

1. CoordinatorC}; initiates protocol instanced with an init
message:
Cj — B : (id, init)c;

2. Upon receipt of a valithit message, a serveér

(@) Generates an independent random value

(b) Computes encrypted contributidi® a(p:), Es(ps))
and corresponding commitmertE 4 (p:), Er(p:)).

(c) RepliestaC;:

i — Cj : (id,commit, i, K(Ea(p:), Es(pi)))i

3. Upon receipt of a sé¥/ of valid commit messages from a s|
I comprising2f + 1 servers(; requests the correspondi
encrypted contributions.

Cj — B : (id, reveal, M)c;

. Upon receipt fronT”; of a validreveal messager containing
serveri’s commitment, serveiresponds:

i — Cj : (id, contribute, i, R, (Ea(p:), EB(p:)),
VDE(Ea(p:), EB(pi)))s

. Upon receipt of a se¥’ of valid contribute messages fror
asetl’ C I of f+ 1 servers(;:

(@) Computesza(p) := XicrEalpi)
(b) Computestis(p) := X e Es(pi)

(c) Invokes at servicd3 threshold signature protocol ¢
(id,blind, A, Ea(p), B, Es(p)), with M’ included
as evidence to make the request self-verifying; obt
(id,blind, A, Ea(p), B, EB(p))B.

(d) C; — A: (id,blind, A, Ea(p), B, E5(p)) B

server [

6. Upon receipt  of a vald M
(id, blind, A, Ea(p), B, Es(p))s from Cj,
in serviceA:

(a) ComputeFa(mp) ;= Ea(m) x Ea(p)
(b) Invokes at servicel threshold decryption foE 4 (mp)

et
ng

=}

n

Ains

with M" included as evidence to make the decryption

request self-verifying; obtains:p and evidencd/,;‘;dp
that the decryption result is correct.

(c) Computestis(m) := (mp) - (Ep(p)) ™"

(d) Invokes at servicel threshold signature protocol ¢
(done, A, Ea(m), B, Eg(m)), with (mp, VL) in-
cluded as evidence to make the request self-verify
obtains(done, A, Ea(m), B, Eg(m)) .

() I — B : (done, A, Ea(m), B, Eg(m))a

n

ing;

Figure 4: Complete Re-encryption Protocol.



type check erateF 4 (m) andEg(m).
init The message is correctly signed.
. . . Proactive Secret-Sharing. A premise of our work is that
commit The message is correctly signed. L . . .
encryption is being used to store secret information se-
reveal The message (i) is correctly signed and (i)  curely. An alternative is to use secret sharing [2, 34]. Bath
contains a sed/ of 2f + 1 different valid than storing® 4 (m) on servers comprising, now shares of
commit messages with a matchirig. m are distributed among those servers.
contribute | The message is (i) correctly signed, (i) in- e To retrieve secret information stored in this manner,
cludes a valid verifiable dual encryption a client establishes secure links to the servers and re-
proof, and (iii) the encrypted contribution trieves enough shares to reconstruct the secret. Verifi-
corresponds to the commitment in the in- able secret sharing [11, 17, 30] allows correctness of
cludedreveal message. the shares to be checked.
blind The message is correctly signed. ¢ To transmit the secret information from a servitgo
a serviceB, a new, independent sharing of the secret
Figure 5: Validity of self-verifying messages. information is constructed and distributed among the
servers comprising?. Proactive secret sharing (PSS)
Ea(m) to Ep(m) without disclosingm to individual ggoéﬁgf,’\',‘:‘] [iiz[]lagreli‘i"s"y adapted to solve this problem,
servers inA. T

The scheme leverages the observation that a ciphertext The PSS-based solution does have advantages. Our re-
encrypted using4’s pub||c key can first be encrypted us- encryption protocol is restricted to a particular pUb'I(y ke
ing B’s public key, after which decryption usingjs private ~ cryptosystem (ElGamal) whereas the PSS-based solution
key yields a ciphertext undeB’s public key!! Because imposes no such restrictions. Also, the PSS-based solu-
Jakobsson’s scheme also assumes a distributed service, tHon does not involve threshold cryptographic operations,
encryption and decryption operations are performed jpintl thereby avoiding a complicated and expensive computation
by servers, with servers carrying out a partial encryption thatis required with our re-encryption protocol.
and a partial decryption (in parallel). This dictates thm t The PSS-based solution, however, requires secure com-
re-encryption must be done entirely by servitce munication links between each serverdrand every server

In contrast, by employing the distributed blinding pro- in B, so individual server public keys must be known out-
tocol, our scheme allows a flexible allocation of computa- Side of each service. Periodic refresh of server keys now
tion both over time and in location. Only step 6 in Fig- becomes problematic. Our re-encryption protocol requires
ure 4 needs to be performed on servitafter 4 (m) is only that service public keys be known and, therefore, re-
available—this essentially involves only one threshold de freshis transparent outside the service. (Refreshingethe s
cryption operation. (The threshold signature operation in Vice’s private key shares does not change the service public
step 6(d) simply makes the result verifiable by servers in Key.)

B.) To achieve such flexibility, our scheme has to employ  Furthermore, in the presence of a mobile adversary [28],
a new building block for robustness, namely, verifiable dual the PSS-based solution would require use of proactive se-
encryption, whereas Jakobsson’s scheme emptaysla- cret sharing, periodically refreshing shares of all seicret
tion certificates A translation certificate is a non-interactive formation the service stores. A service that stores a lot the
proof showing that? 4 (m) and Ep(m) are encryptions of incurs a significant recurring overhead. Our re-encryption
the same plaintext under public keys, and K5 respec-  Pprotocol only involves one set of secret shares—the service
tively. The two building blocks differ in what private in- ~ private key—and thus the overhead of defending against
formation is known to a prover and hence require entire|y mobile adversaries is ConSiderably lower. In faCt, it was th
different constructs: For a translation certificate, thever ~ COst, in connection with the design of a publish/subscribe
knows A’s private key and the random number used in the Service, that prompted us to design a re-encryption proto-
encryption to generaté& (mn); for verifiable dual encryp-  col.

tion, the prover does not know'’s private key but does

know both random numbers used in the encryption to gen-6  Concluding Remarks

More precisely, givem’s public key(p, ¢, g, y.4) and B’s public key

(94,9, y5), consider a ciphertextZ, (m,r) = (¢",my’;). Encrypt- Distributed services and distributed trust [31, 20, 5,

ing my’, using B's public key producesg” , my’yy% ), and subsequent 33] cqnstitut_e a.general architecture for e_zxtending state-
decryption usingd's private key yieldsny?,. Note that(g™ , my?, ) = machine replication to obtain a system that is not oqu fault
Ep(m, ') is a ciphertext ofn underB’s public key. tolerant but also resists attacks. With new architectures



come new needs. The protocols described in this paper—a [5] C. Cachin. Distributing trust on the Internet. Rroceed-

re-encryption protocol, a distributed blinding protochd
verifiable dual encryption—were developed to satisfy those
needs. But beyond the protocol details, a contribution of
this work is to signal the importance of two non-traditional
requirements for cryptographic protocols:

e Cryptographic protocols should assume the asyn-
chronous (instead of the synchronous) model of com-
putation, since the result will then be an intrinsic de-
fense against denial of service and other forms of tim-
ing attacks.

e Cryptographic protocols should admit what we have
termed step flexibility, since this provides ways to re-
duce overall latency, which can be important.

(6]

(7]

(8]

So in that sense, our new protocols should be seen as but

one piece of a far bigger picture.
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