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Abstract 

Visual representations are chosen to  meet the re- 
quirements of specified tasks such as object recognition 
or siereoscopic matching. When vision i s  regarded as 
a haptic sense, a new operational description is called 
for, in support of dezirous manipulation. In the con- 
tett  of two-fingered grasp, an appropriate description 
can be constructed in terms of local reflectional and 
rotational symmetry. Relaied to  sgmmetry-based rep- 
resentations that have been used in pattern and object 
recognition, i fs siructure is de iemined,  not heuristi- 
cally, but precisely, by the na tun  of ihe grasping iask. 
Its value is demonstrated by i ts  incorporation into the 
control of a robot that can manipulate objects under 
visual guidance. 

1 Symmetry in images 
Reflectional symmetry has been used in image de- 

scription both in pattern recognition [4] and in vi- 
sion [7] [15). The resulting Symmetric Axis Tkansform 
(SAT) or local symmetry set captures the underlying 
structure of “blobs” much ad the Voronoi diagram does 
for point-sets [5]. 

The suitability of a description is governed by the 
application. For instance, the codon description for 
bounding contours [19] is appropriate for the task of 
sub-part decomposition, as an aid to verbal descrip 
tion of an object. The SAT is appropriate for pattern 
recognition, reducing shapes to curves which can then 
be matched. I t  turns out that a new symmetry-based 
representation, outlined in this paper, is appropriate 
when the task is grasping. The representation consists 
of an ordered set of pairs of points at which an object 
can be effectively grasped, and which can be defined 
mathematically, it will be shown, in terms of local 
symmetry properties. This might be an appropriate 
representation for a blind agent that learns about ob- 
jects by feeling them. It might be operative in human 
preattentive vision, for instance, when a juggler at- 
tempts to  catch a flaming torch. Such “haptic vision” 

is an essential supporting mechanism for robot manip- 
ulators that operate visually. 

2 Symmetry and anti-symmetry sets 
The symmetry set of a smooth curve r(s) has been 

defined by Bruce and Giblin [8], formalising the mech- 
anism of Blum [4] for shape description . It is the set 
of centres of bitangent circles to the curve 4 8 ) .  This 
construdion is illustrated in figure 1. Alternatively 
Brady and Asada [“I take the symmetry set as the 
locus of midpoints of the line joining the bitangent 
points. A good deal is known about the properties 
of these sets in relation to the curve. For instance, 
the set need not be smooth even when the curve is 
[13]. An alternative geometric representation of the 
bitangency condition is shown in figure 2a, that the 
angles between the normals and the line joining the 
two points on the curve must be equal in magnitude 
but opposite in sign. 

Figure 1: The symmetry set of a curve r(s) i s  defined 
as the locus of centres of bitangent circles. 

The interpretation of the bitangency condition of 
figure 2a immediately suggests a natural partner to 
the symmetry set, the anti-symmetry set, in which 
the angles are equal and of the same sign (figure 2b). 
This is equivalent to choosing pairs of points on the 
curve with parallel tangents and taking their mid- 
points. Anti-symmetry has been used previously for 
capturing global relationships within planar shapes 
[20]. The anti-symmetry set is also related to the 
“rotational symmetry set” of Fleck [12] and similarly 
tends to pick out centres of rotational symmetry. For 
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Figure 2: The symmetry set (a)  consists of pairs of 
curve points which lie on a bitangent circle, or equiv- 
cilently, for which the angles shown are equal. This 
suggests immediately also the definition of an antisym- 
metry set (b). 

instance in the degenerate case of a circle, the anti- 
symmetry set collapses down to a point at the centre. 

Symmetry and anti-symmetry sets can be efficiently 
computed for object outlines in real images. B-spline 
approximations to bounding contours are obtained by 
using a species of closed snake [14] that implodes from 
the image periphery until it  locks onto a feature (fig- 
ure 3a, 3b). Since the snakes are parameterised as B- 

c )  

Figure 3: (a) A n  image 

splines, the locked snake yields a B-spline representa- 
tion of the contour. Then anti-symmetry and symme- 
try sets (figure 3c, 3d) can be computed efficiently [20] 
and further details are given later in the paper. Whilst 
the symmetry set for the bell is quite complex, it is ap- 
parent that it tends to pick out axes of mirror symme- 
try between parts of the outline. The anti-symmetry 
set picks out two-fold rotational symmetries of parts 
of the outline and contains cusps which indicate dom- 
inant centres of symmetry (see the appendix). 

3 Properties of the anti-symmetry set 
Although the primary purpose of this paper is to  re- 

late symmetry to grasp, it is worth digressing briefly to 
mention two relevant properties of the anti-symmetry 
set which, unlike the symmetry set, has not been so 
extensively analysed. The first property is that the 
anti-symmetry set is an affine invariant, that is, the 
mapping from a curve to its anti-symmetry set com- 
mutes with affine transformation, as in figure 4. Note 

Figure 4: The bell in figure 9 is imaged here from 
two new viewpoints (a,b) and since the bell is planar, 
the outlines in the two views should be related by an 
afine transformation. The B-spline outlines from the 
views are shown with their anti-symmetry sets (c,d). 
Note that the parameterisation, indicated by  numbers 

1 "  

( b )  An  imploding, B-spline snake captures the outline 
of the bell from which both the anii-symmetry set (c) 
and the symmetry set (d) can be computed. 

an artifact of the spline fitting process. 

that the symmetry set is not an affine invariant. This 
is illustrated by the case of ellipses which are all re- 
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lated by &ne transformation. For any ellipse, the 
anti-symmetry set consists of a angle point, the cen- 
tre, and is hence invariant (since the centre of one 
ellipse transforms affinely to the centre of another). 
However, the symmetry set of an ellipse consirts of 
its major and minor axes which do noi generally map 
to major and minor =ea in an dtinely transformed 
ellipse. 

The second relevant property is that, generically, 
the anti-symmetry set contains one or more c u s p  (an 
odd number for convex curves) which are affine in- 
variant featurea of the curve. In principle, thia could 
be useful for model-based vision (11. Note that the 
cusps on the anti-symmetry set exist even for convex 
curves where inflections, for instance, are not available 
as features on the curve itself. In practice we have not 

cwc r (s) 

Figure 5:  In a two-fingered grip of a smooth contour 
r(s), the fingers are placed at 8 = 81,82. The line 
joining the two fingers makes angles ~ 1 , 0 1 2  with the 
normals at s = s1 , s2 respeciively. 

yet found a contour with fewer than three cusps on 
its anti-symmetry set and although generically (it can 
be shown) there may not be two CU~PS, we have not 
been able to show that there may not be just one. 
Three cusps are sufficient to “locate” or “normalise” 
the curve subject to planar affine transformation. Fur- 
ther details are given in the appendix. 

4 Symmetry, anti-symmetry and grasp 
The aim of this paper is to establish the relation- 

ship between symmetry and two-fingered grasping of 
planar contours. It turns out that the symmetry and 
anti-symmetry sets, quite apart from any descriptive 
value they may have for vision, are valuable opera- 
tionally in relating perception to manipulatory action. 
4.1 Finger contact 

It will be assumed that there are two identical thin 
fingers, small circles in the plane of the object. They 

are placed on the outline r(s) at s = s1 , 82 and make 
a frictional contact with the curve, with coefficient of 
friction p 2 0. The vector joining the fingers makes 
angles cyl,a2 with the curve normals, as shown in 
figure 5. An addition to the thin-fingered gripper, 
the parallel-jaw gripper is commonly used in practice. 
Parallel-jaw grasps can be considered as a special case 
of thin-fingered ones, exactly those grasps that are an- 
tisymmetric. The main technical result of this paper, 

b) 

Figure 6: a) A generic egg with two ”type 1” opiimal 
grasps as shown, with midpoints marked. b) The sym- 
m e i y  (thin) and an i i - symmety  (ihick) seis fo r  the 
egg, which interseci four  times. Two of those four  in- 
tersections are midpoints of the optimal grasps shown 
in a). 

to be made precise later, is that any grasp that is op- 
timal in the sense that perturbing the finger positions 
only increases the friction needed, is either symmet- 
ric or anti-symmetric. Of these, the most favourable, 
type 1, require only infinitesimal friction for equilib- 
rium. They are both symmetric and anti-symmetric. 
Such grasps are illustrated in figure 6 for a generic egg. 

It is clear from the figure that the intersection of 
the symmetry and anti-symmetry sets can only be a 
necessary condition for type 1 optimal grasps, not a 
sufficient one; there are four intersections of the sets 
but only two indicate type 1 grasps. The other two 
are spurious. Even in the case of the two that are not 
spurious, there is no straightforward mapping from the 
position of the midpoint of the grasp, at  the set inter- 
section, back to the positions of the two fingers them- 
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selves. Apparently an inconvenient representation of 
the symmetry sets is being used. For the purpose of 
characterising grasp, it will prove more effective to r e p  
resent the sets in configumiiou space (C-space) [ll], 
that is on a diagram w h m  axes are 8 1 , s ~ ~  the para- 
metric positions of the two fingers themselves. 

4.2 Symmetry and anti-symmetry sets in 
conf igu ra t ion  space 

Symmetry and anti-symmetry seta S,d can be de- 
ffined in configuration space as 

S = ((s1,sa) : t a n a l  = -tanan, 81 # 82) (1) 

'The sets S,d are illustrated for the generic egg in 
figure 7. Note that the sets will always be symmetrical 
,about the SI = 8 2  line since this corresponds simply to 
exchange of fingers. I t  is apparent that there are just 
two intersections of the sets, corresponding to the two 
type 1 grasps. In the new representation, intersection 
(of the sets is a necessary and sufficient condition for 
a type 1 grasp. Moreover, for type 1 and for other 
optimal grasps (type 2 - see later) the locations of 
the two fingers can be read directly from the C-space 
diagram, unlike the imageplane representation of the 
(sets which is obscure in thie sense. 

5 Problem framework and definitions 
The main result of the following section is a the- 

orem to the effect that the optimal two-finger grasps 
of a planar curve lie on the curve's symmetry set or 
antisymmetry set, or on both. From the point of view 
of robotics, this gives a relatively general analysis of 
grasp, free of the need to a88ume a particular value for 
the coefficient of friction p,  in contrast with the quan- 
titative analysis of Faverjon and Ponce (1992). First, 
in this section, the mathematical framework and no- 
tation is set up. 

5.1 Smooth curve 
The bounding curve of the object is a planar vector- 

valued function r(s), s E Z of an arclength parameter s 
over a set Z. It  is free of self-intersections and assumed 
to be bounded, closed, of finite, non-zero length and 
twice continuously differentiable, The tangent vector 
is t(s) E ( t l , t 2 )  = dr/ds, a unit vector. The curve 
is oriented by the inward unit normal vector n(s) = 
( - t z ,  t l ) ,  pointing into the object. 

Figure 7 :  The symmetry set (grey) and anti-symmetry 
set (black) for the generic egg of figure 6 are repre- 
sented here in configuration space. The intersections 
of the sets correspond t o  the iwo type 1 optimal grasps 
shown an figure 6a. 

5.2 Friction 

of the tangents and normals shown in figure 5:  
The friction angles al,  a2 can be defined in terms 

cos a1 = -n(sl).ii(sl,  s2) (3) 

sinal = t(sl) .R(sl ,  s2), (4) 

and similarly for a2, where the vector joi?ing the fin- 
gers is R(s1,sz) = (r(s1) - r(s2)) and R = R/IRI. 

5.3 Equilibrium 
A grasp is in equilibrium when each finger lies 

within the friction cone of the other [18] [ll], as in 
figure 8. This is equivalent algebraically to satisfying 
simultaneously the condition 

that magnitudes of the friction angles are not too 
great, and the condition 

that curve normals at  the two fingers are opposed. 
This covers both the case of compressive grasp when 
cosal > 0, cosa2 > 0, and of expansive grasp when 
cosa1 < 0, cosa2 < 0. 
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Figure 8: The two-fingered grip in  a) as in equilibruim. 
The fingers make contact at ihe two points shown on 
the contour. Each point lies within the fnc t ion  cone 
of the other (semi-angle a = tan-’(p), where p is the 
coeficient of friction). In b)  there is no equilibrium. 

5.4  Distance function and grasp map 
Two mathematical constructs needed to prove the 

theorem relating grasp and symmetry are the disfance 
function 

R(s1, sa) = I N S 1  l S d 1  (7) 

which is the length of the vector R between the contact 
points of the two fingers, and the grasp map 

It is straightforward to show that, provided R # 0, 

aR . 
- = Sinai, i = 1,2 .  
asj (9) 

5.5 Friction function 

friction function 
The test (5) above can be expressed in terms of the 

The set E,, of force closure grasps, for a given coeffi- 
cient of friction p ,  is then 

€p = ((s1,sz) ET2 : 61 # 8 2 ,  cosa1 cosaz > 0, 

F(s1, sz) < sin(tan-’ p ) } .  (11) 

Faverjon and Ponce [ll] illustrate the set E,, in the 
C-space (configuration or parameter space) X 2  of the 
curve. They also show how the boundaries of the set 
can be efficiently computed for spline curves by ex- 
pressing the bounding curves 

tan a, = Ap, i = 1 , 2  

in terms of polynomial equations and applying a con- 
tinuation method to solve them. 

5.6 Valid grasp 
A grasp is defined to be a configuration (SI , 5 2 )  E Z2 

such that, for some finite coefficient of friction p 2 0, 
(s1,sz) E Ell .  In particular, the case s1 = sa, 
in which fingers coincide, is excluded. Equivalently, 
grasps are pairs (~1,s~) E Z2 for which s1 # s2 and 
cosal cosaz > 0 which is the auxiliary condition (6) 
for force closure. 

6 Extrema1 grasps 
Minima of F are of particular interest because they 

represent locally optimal grasps - grasps for which 
any perturbation of finger positions only increases the 
minimum value of p required for equilibrium. Given 
that the function F is not smooth everywhere because 
of the modulus function I . . I ,  the extrema of F must be 
carefully characterised. A point (SI, s2) will be called 
an extremum of F if, for all dsl ,  dsz, d F  2 0, to first 
order in ds1,dsZ. It is clear that, for any r(s), there 
must be at least one extremum since F is continuous, 
defined over a compact set and bounded below (F 2 

6.1 Type 1 grasps 
The simplest kind of extremum, which will be called 

type 1, is a zero of F and hence a minimum. If also 
(SI, 62)  is a grasp (see the definition above) it will be 
called a type 1 grasp. Note from (11) that since F = 
0 at  a type 1 grasp, there is force closure provided 
p > 0. That at  least one type 1 grasp must exist 
on a smooth, closed curve was  shown by Chen and 
Burdick [9] who refer to type 1 grasps as “antipodal”. 
Furthermore it can be shown that at least one type 1 
grasp is accessible to a parallel jaw gripper [l]. 
6.2 Type 2 grasps 

It is reasonable to ask whether extrema1 grasps will 
always be of type 1. It would be convenient if that 
were so, for then the configurations E,, of force do- 
sure grasps for varying coefficient of friction p would 
be determined qualitatively by behaviour at the limit 
p -+ 0 of zero friction. The topology of E,, would not 
change as p varied. It is easy to show that this is not 
the c a e  by constructing counterexamples. 

Two examples of locally optimal type 2 grasps are 
given in figure 9, one antisymmetric grasp and one 
symmetric one. In each case the grasps are locally 
but not globally optimal. For instance, the “smile” in 
figure 9a has a type 1 grasp along the vertical axis of 
mirror symmetry but this grasp would be inaccessible 
to a parallel-jaw gripper because of concavity, so the 
nearby type 2 grasps are viable alternative choices. 
Note, in each of the examples, that the line joining 
the fingers is not orthogonal to the curve at  either 

0). 
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Figure 9: Type 2 grasps. In both cases shown they 
are minima representing locally optimal grasps. (a) 
An antisymmetric grasp on a Smile" curue. It is in 
equilibrium for p > 0.3. (b) A s p m e t r i c  grasp on 
a "bell" (Gaussian) cnrue, which i s  in equilibrivm i f  
1.1 > 0.83. 

finger; this is what makes those graaps type 2 rather 
than type 1. 
6.3 Conditions for optimality 

A complete classification of optimal grasps is given 
by the following theorem. 

Theorem 1 (Classification of extrema) Optimal 
grasps can be classified as follows: 
Type 1: intersections of fhe sets AIS, which are 

minima o f F ( s 1 , s ~ )  with F(s1 , s z )  = 0. 

Type 2a: critical points of G lying on the set A. 

Type 2s: critical points of G lying on the set S 

A proof of this theorem may be found in the appendix. 
The practical consequence of the theorem is that 

optimal grasps can be located by tracking along the 
sets S,d, which are generically smooth, looking for 
minima of the friction function F restricted to those 
sets. This is illustrated in figure 10. It is clear from 
figures 9, 10 and 11 that the extremal grasps, both of 
type 1 and of type 2, do represent the intuitively natu- 
ral grasp8 of an object. A practical grasp planner can 
select type 1 grasps in descending order of stability. 
If no type 1 grasp is suitable, for example because of 
inaccessibility, the type 2 grasps can be examined. It 
is reasonable to select them in ascending order of the 
minimum friction required to grasp them. 

7 An algorithm for computing robot 
grasps 

We have applied symmetry and anti-symmetry set 
computation to robot hand-eye coordination in our 
laboratory. The robot is an ADEPT-1 with a CCD 
camera built into its end-effector, which has already 
demonstrated the ability to follow collision-free paths 
visually PI. We have added to that the ability to 
inspect visually an object that is to be picked up and 
execute a suitable grasp with its gripper (figure 11). 
We are currently using a parallel-jaw gripper so that 
all grasps are restricted to the anti-symmetry set A. 
For this gripper then, it is sufficient to search A for 
optimal grasps and we use a fast algorithm to do this, 
described below. 

Since the theory so far applies strictly to planar 
grasps, three-dimensional grasping as shown in figure 
11 must be performed by approximating the extremal 
contour. 'The robot executes infinitesimal transverse 
motion in order to recover the extremal contour from 
the image motion of the silhouette [6], [3]. Planar re- 
gression can be used to check that the extremal con- 
tour is approximately planar and to reorient the grip- 
per so that it is orthogonal to the estimated plane. 
Grasp planning is then applied to the planar approx- 
imation of the extremal contour. 
7.1 Fast computation of the 

The anti-symmetry set is produced as an ordered 
list of Cspace points so that the grasp points (type 1 
and type 2a) can be found by a simple one dimensional 
search for minima of a. It can be shown that, in or- 
der to achieve adequate smoothneas for a stable search 
for minima, the B-spline used to represent the contour 
must be of cubic order (or higher). Thus we cannot 
use the algorithm of Rom and Medioni [20] which ap- 
plies to quadratic splines, exactly as it stands. Their 

anti-symmetry set 
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Figure 10: This bell-shaped cookie-cutter a) has 11 
type  1 grasps of which the 3 most stable are displayed 
in b). The eleven type 1 grasps in c) correspond to 
the intersections of the antisymmely set (black) with 
ihe symmetry set (grey). The black dots are the type 
2 grasps computed b y  tracking along the symmetry set 
searching for minima of F .  

Figure 11: A n  ADEPT-1 robot inspects the outline of 
a fruit visually and plans how to grasp the object with 
its parallel-jaw gripper. 
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algorithm is modified for the cubic case below. Given 
a cubic B-spline with L spans, and that the spline 
curve is sampled at  N points, the algorithm has an 
asymptotic time-complexity of O(N + La)  compared 
with O ( N 2 )  for the obvious greedy algorithm. 

Following Rom and Medioni, the core of the algo- 
rithm is a procedure to calculate the anti-symmetry 
set of a pair of parametric-cubic spans, which can be 
shown to have the form 

a(s1) + p ( S 1 ) s Z  -k 7(s1)8; = 0. ( 12) 

where a, p and 7 are all quadratic functions of s1 
whose coefficients are derived from the four control 
points of each span. This means that for a given value 
of s1 on one span, the antisymmetric value of s2 is the 
solution of the quadratic (12). 

The possibility of having two solutions of this 
quadratic is undesirable, necessitating the tracking of 
multiple branches of the antisymmetry set simultane- 
ously. If the spans are split into “sub-spans” with 
constant sign of curvature then, between any pair of 
sub-spans, (12) has only one solution. This is because, 
in the absence of inflections, a given tangent on one 
sub-span is parallel to at most one tangent on the 
other sub-span. The splitting takes only O ( N )  time. 
For a cubic span, there are at  most two points of in- 
flection, and hence at  most three sub-spans per span 
so the splitting produces at  most 3L sub-spans. The 
anti-symmetry set of a pair of sub-spans is generated 
in O ( N / L )  time ( N I L  is the number of samples on 
one sub-span). There are O(La)  pairs of sub-spans in 
total so overall complexity is O ( N L ) .  

Many sub-span pairs have a null anti-symmetry set, 
as in figure 12 and this can be detected by a fast test. 
Relying on the fact that sub-spans are free of inflec- 
tions, it is sufficient to test and compare the gradients 
at  the start and end of each of the two sub-spans. This 
reduces the asymptotic complexity of the algorithm 
still further, to O(L2 + N). 

For a thin fingered gripper it is necessary to com- 
pute both A and S but it is difficult to apply the 
principles above to compute S efsciently, though ap- 
proximations are possible [20]. However, it should be 
possible, in principle, to compute the symmetry set in 
O ( N V )  time, where V is the number of vertices (ex- 
trema of curvature [lo] on the curve) using the tech- 
nique of Morris [lS] which tracks numerically between 
singularities of the symmetry set. 

8 Conclusions 
The important relationship between local symme- 

try and grasping has been established. Optimal grasps 

Figure 1%: Computation of the antisymmetry set of a 
blob, in C-space. Each box is a pairing of sub-spans, t o  
which the basic anti-symmetty set procedure is applied. 
Empty bozes can be detected by a fast  test .  

lie either on the symmetry or antisymmetry sets. Pre- 
viously, local symmetries have been used as a descrip- 
tive tool, a simplifying process for shape descriptors. 
Consideration of grasping, however, forces an opera- 
tional description of shape. This has the effect both 
of confirming the descriptive value of local symmetry 
and modifying it. The most significant modification 
is to view it in configuration space, rather than in 
image-space. This has the additional benefit of side- 
stepping the mathematically fascinating but practi- 
cally annoying problems of singularity [13] that occur 
in the image-space representations of the symmetry 
and anti-symmetry sets. 

An outstanding problem is the extension of the the- 
ory to three dimensions, continuing to estimate grasps 
based on a visible silhouette a~ at  present, but to relax 
the planarity assumption. Structure from motion de- 
livers not a mere space curve (the extremal contour) 
but a “strip” - a space curve carrying the surface 
normal. Surface curvature can also be readily com- 
puted along such a strip. One possibility would be to 
seek optimal grasps on that strip, a problem with a 
2-dimensional C-space as in the planar case but with 
more complex geometry. A more ambitious strategy 
would be to explore viewpoints actively, in search of 
a silhouette that supports a more stable grasp. Local 
geometric information from one silhouette would be 
used to drive the robot to a new vantage point with a 

731 



more favourable silhouette. 
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Case 2 above arises in one of two ways. Either 
G1(sl1s2) = G2(81,82) so that, from (6), (8) and 
(9), a1 = a 2  = a and therefore (s1,82) E A, or 
G1(sl1s2) = -G2(81,82) with a1 = - a 2  = a and 
(s1,s2) E S. These will give type 2a and 2s grasps 
respectively. 

At a type 2 extremum of F, G1 = G2 and since 
F = max(lG11, IG2l) the condition for extremality, for 
type 2a, is that 

dGldG2 5 0 for all ds1, d82, to first order. 

(The condition ensures that there exists no step 
(dsl , ds2) in C-space for which lGll and IG21 simul- 
taneously decrease.) Now Now 

(::;) = J  (:::)I 

where J is the Jacobian matrix of G, so extremality is 
achieved when det J = 0 and also 

511 J12 + J2iJ22 5 0. (13) 

Type 2 s  
is that 

The condition for extremality, for type 28, 

dGldG2 2 0 for all dsl ,  d82, to first order. 

and, using the same reasoning as in the type 2a case, 
extrema arise on the set S where det J = 0 0 

B Derivation of some properties of the 
anti-symmetry set 

As mentioned earlier in the text, the cusps in the 
anti-symmetry set indicate dominant centres of two- 
fold rotational symmetry. Here we show that they 
arise when the curvatures of the two points on the 
curve are equal. These special points clearly posseas a 
greater degree of local rotational symmetry than those 
with equal tangents alone. 

For the purpose of the following brief analysis, the 
anti-symmetry set can be defined in C-space as pairs 
of parameter values such that: 

A = ( ( ~ 1 ~ ~ 2 )  : a(s1,82) = O 1 s l  # 82) 

where a is defined in terms of the unit tangent vectors 
at  s1 and s p  as the function: 

a(sl,s2) = ii(sl)*f(s2). 

Differentiating this along A with respect to s1 and s 2  
it can be shown that: 

8a - = K(S1) 
as1 

8a - = -482). 
as2 

An incremental step along the set A in C-space of 
(681, 682) will not change a(s1,82) from zero, and so: 

Ba Ba 
8 8 2  as1 
-682 + -681 = 0 

ds2 - 4 4  
ds1 482)’  

- 

This shows that the general (non-unit) tangent to the 
Cspace curve is given by: 

The mapping I that transforms the pairs of parameter 
values in A from C-space on to the image plane as the 
locus of mid-points is: 

1 
I : 8’ H S2, I(s1, s2) = 5 (r(s1) + r(s2)) . 

The Jacobian of I on A can be derived as: 

Hence, the local image of the general tangent vector 
to the C-space curve can now be calculated: 

ti = J A t c  

ti = ( ~ ( ~ 2 1 -  ~ (81 ) )  E(s1). 

This shows that the magnitude of the tangent vec- 
tor in the image plane diminishes to zero as the curva- 
tures of the two points converge, thus forming cusps at 
points of distinguished local rotational symmetry. It 
also shows that the tangent to the anti-symmetry set 
in the image is always parallel to the tangents at  the 
curve. This result helps when interpreting the various 
figures earlier in the paper. 
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