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Abstract

One of the central issues in the use of princi-
pal component analysis (PCA) for data mod-
elling is that of choosing the appropriate num-
ber of retained components. This problem was
recently addressed through the formulation of a
Bayesian treatment of PCA (Bishop, 1999a) in
terms of a probabilistic latent variable model. A
central feature of this approach is that the effec-
tive dimensionality of the latent space (equiv-
alent to the number of retained principal com-
ponents) is determined automatically as part
of the Bayesian inference procedure. In com-
mon with most non-trivial Bayesian models,
however, the required marginalizations are an-
alytically intractable, and so an approximation
scheme based on a local Gaussian representa-
tion of the posterior distribution was employed.
In this paper we develop an alternative, varia-
tional formulation of Bayesian PCA, based on
a factorial representation of the posterior distri-
bution. This approach is computationally effi-
cient, and unlike other approximation schemes,
it maximizes a rigorous lower bound on the
marginal log probability of the observed data.

1 Introduction

Principal component analysis (PCA\) is a widely
used technique for data analysis (Jolliffe, 1986).
Recently Tipping and Bishop (1999b) showed
that a specific form of generative latent variable
model has the property that its maximum likeli-
hood solution extracts the principal sub-space of
the observed data set. This probabilistic refor-
mulation of PCA permits many extensions in-
cluding a principled formulation of mixtures of
principal component analyzers, as discussed by
Tipping and Bishop (1997, 1999a).

A central issue in maximum likelihood (as
well as conventional) PCA is the choice of the
number of principal components to be retained.
This is particularly problematic in a mixture
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modelling context since ideally we would like
the components to have potentially different di-
mensionalities. However, an exhaustive search
over the choice of dimensionality for each of
the components in a mixture distribution is of-
ten computationally intractable. In this paper
we develop a Bayesian treatment of PCA based
on variational inference, and we show how this
leads to an automatic selection of the appropri-
ate model dimensionality. Our approach avoids
a discrete model search, involving instead the
use of continuous hyper-parameters to deter-
mine an effective number of principal compo-
nents.

2 Probabilistic PCA

Consider a data set D of observed d-
dimensional vectors D = {t,,} where n €
{1,..., N}. Conventional principal component
analysis is obtained by first computing the sam-
ple covariance matrix given by

1 N
— E ¥ T

where t = N3 t, is the sample mean.
Next the eigenvectors u; and eigenvalues \;
of S are found, where Su; = \u; and 7 =
1,...,d. The eigenvectors corresponding to
the ¢ largest eigenvalues (where ¢ < d) are
retained, and a reduced-dimensionality repre-
sentation of the data set is defined by x,, =
Uy (t, — t) where U, = (uy,...,u,). Itis
easily shown that PCA corresponds to the linear
projection of a data set under which the retained
variance is a maximum, or equivalently the lin-
ear projection for which the sum-of-squares re-
construction cost is minimized.

A significant limitation of conventional PCA
is that it does not define a probability distribu-
tion. Recently, however, Tipping and Bishop
(1999b) showed how PCA can be reformulated



as the maximum likelihood solution of a spe-
cific latent variable model, as follows. We
first introduce a ¢g-dimensional latent variable x
whose prior distribution is a zero mean Gaus-
sian

P(x) = N(x]0,1,) @)

where N (x|m, X) denotes a multivariate nor-
mal distribution over x with mean m and co-
variance matrix X, and I, is the g-dimensional
unit matrix. The observed variable t is then de-
fined as a linear transformation of x with addi-
tive Gaussian noise t = Wx + u + € where W
is a d x ¢ matrix, p is a d-dimensional vector
and e is a zero-mean Gaussian-distributed vec-
tor with covariance ¢21,. Thus

P(t|x) = N(t|Wx + p,0%1;).  (3)

The marginal distribution of the observed vari-
able is then given by the convolution of two
Gaussians and is itself Gaussian

P(t) = /P(t|x)P(x) dx =N(u,C) (4)

where the covariance matrix C = WW7T +
02I,4. The model (4) represents a constrained
Gaussian distribution governed by the parame-
ters , W and o2.

The log probability of the parameters under
the observed data set D is then given by

L(p,W,0?) = ,g {dln(27r)+lnC|

+Tr[C™'S] } (5)

where S is the sample covariance matrix given
by (1). The maximum likelihood solution for
is easily seen to be p,, = t. It was shown by
Tipping and Bishop (1999b) that the stationary
points of the log likelihood with respect to W
satisfy

WL = Uy(A, — 021,)"/? (6)

where the columns of U, are eigenvectors of
S, with corresponding eigenvalues in the diag-
onal matrix A,. It was also shown that the
maximum of the likelihood is achieved when
the ¢ largest eigenvalues are chosen, so that
the columns of U, correspond to the principal
eigenvectors, with all other choices of eigenval-
ues corresponding to saddle points. The maxi-
mum likelihood solution for o2 is then given by
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which has a natural interpretation as the aver-
age variance lost per discarded dimension. The
density model (4) thus represents a probabilis-
tic formulation of PCA. It is easily verified
that conventional PCA is recovered in the limit
o2 — 0. Some aspects of the links between la-
tent variable models and PCA were noted inde-
pendently by Roweis and Ghahramani (1999).

Probabilistic PCA has been successfully ap-
plied to problems in data compression, density
estimation and data visualization (Tipping and
Bishop, 1999a), and has been extended to mix-
ture and hierarchical mixture models (Bishop
and Tipping, 1998). As with conventional PCA,
however, the model itself provides no mecha-
nism for determining the value of the latent-
space dimensionality g. For ¢ = d— 1 the model
is equivalent to a full-covariance Gaussian dis-
tribution, while for ¢ < d — 1 it represents a
constrained Gaussian in which the variance is
independent in ¢ directions, and in the remain-
ing d — ¢ directions is governed by the single
parameter o2, Thus the choice of ¢ corresponds
to a problem in model complexity optimization.
If data is plentiful, then cross-validation to com-
pare all possible values of ¢ offers a possible,
if computationally demanding, approach. How-
ever, for mixtures of probabilistic PCA models
it quickly becomes intractable to explore the ex-
ponentially many combinations of different ¢
values for each component. This problem can
be resolved through an appropriate Bayesian re-
formulation.

3 Bayesan PCA

Armed with the probabilistic reformulation of
PCA defined in Section 2, a Bayesian treatment
of PCA is obtained by first introducing a prior
distribution P(p, W, o?) over the parameters
of the model. The corresponding posterior dis-
tribution P(u, W, o2|D) is then obtained by
multiplying the prior by the likelihood function,
whose logarithm is given by (5), and normaliz-
ing. Finally, the predictive density is obtained
by marginalizing over the parameters, so that

Pei0) = [[[ Pl w.o?

P(u,W,0?|D) dp dW do?.

In order to implement this framework we must
address two issues: (i) the choice of prior dis-
tribution, and (ii) the formulation of a tractable
procedure for marginalization over the poste-
rior distribution. Our focus in this paper is on
the specific issue of controlling the effective di-
mensionality of the latent space (correspond-



ing to the number of retained principal com-
ponents). Furthermore, we seek to avoid dis-
crete model selection and instead use contin-
uous hyper-parameters to determine automati-
cally the appropriate dimensionality for the la-
tent space as part of the process of Bayesian in-
ference. This is achieved by introducing a hi-
erarchical prior P(W|«) over the matrix W,
governed by a g-dimensional vector of hyper-
parameters o = {a1,...,a4}. Each hyper-
parameter controls one of the columns of the
matrix W through a conditional Gaussian dis-
tribution of the form

9 S\ d/2
P(Wla) = ] (2" exp {—%ai||wi||2}

where {w;} are the columns of W. This form
of prior is motivated by the framework of au-
tomatic relevance determination (ARD) intro-
duced in the context of neural networks by Neal
and MacKay (see MacKay, 1995). Each «;
controls the inverse variance of the correspond-
ing w;, so that if a particular «; has a pos-
terior distribution concentrated at large values,
the corresponding w; will tend to be small, and
that direction in latent space will be effectively
‘switched off’. The dimensionality of the la-
tent space is set to its maximum possible value
qg=d-—1.

The probabilistic structure of the model is
displayed graphically in Figure 1.
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Figure 1. Representation of Bayesian PCA as a
probabilistic graphical model showing the hierarchi-
cal prior over W governed by the vector of hyper-
parameters ac. The box denotes a‘plate’ comprising
adata set of N independent observations of the vis-
ible vector t,, (shown shaded) together with the cor-
responding latent variables x,, .

We can complete the specification of the
Bayesian model by defining (broad) priors over

the parameters i, o and 2. Specifically, defin-
ing 7 = o2, we make the following choices

P(p) = N(u[0,57')
Pla) = HI‘(ai|aa,ba)

P(r) = T(rl|er,dy).

where T'(z|a,b) denotes a Gamma distribution
over z given by

bal'a71€7b1

I(z|a,b) = )

™

and I'(a) is the Gamma function. The distribu-
tion (7) has the useful properties

®)

(@%) - (2)* = 9)

el

We obtain broad priors by setting a, = b, =
a; =b, =10"3and 8 = 1073.

In order to make use of this model in prac-
tice we must be able to marginalize with respect
to W, a, u and o2, as well as the latent vari-
ables {x,}. In Bishop (1999a) we considered
two approximations based on type-11 maximum
likelihood using a local Gaussian approxima-
tion to the posterior distribution, and Markov
chain Monte Carlo based on Gibbs sampling.
In this paper we develop a variational treatment
which is computationally efficient and which
optimizes a rigorous bound on the marginal log
probability.

4 Variational Inference

In order to motivate the variational approach,
consider the problem of evaluating the marginal
likelihood

P(D) = / P(D,6)de

where 8 = {6;} denotes the set of all parame-
ters and latent variables in the model. We have
already noted that such integrations are analyt-
ically intractable. Variational methods involve
the introduction of a distribution Q (@) which,
as we shall see shortly, provides an approxima-
tion to the true posterior distribution. Consider
the following transformation applied to the log
marginal likelihood

InP(D) = ln/P(D,O)dO

P(D,0)
ln/Q(O) 00 de

P(D,0)
> /Q(G)ln 0w %
L£(Q)

= (10)
where we have applied Jensen’s inequality. We
see that the function £(Q) forms a rigorous
lower bound on the true log marginal likelihood.



The significance of this transformation is that,
through a suitable choice for the @) distribution,
the quantity £(Q) may be tractable to compute,
even though the original log likelihood function
is not. From (10) it is easy to see that the differ-
ence between the true log marginal likelihood
In P(D) and the bound £(Q) is given by

L@IP) = - [@om 9'D> a6 (11)

which is the Kullback-Leibler (KL) divergence
between the approximating distribution Q(0)
and the true posterior P(6|D). The relationship
between the various quantities is shown in Fig-
ure 2.

KL(Q|IP)

A

InP(D)
£(Q)

Figure 2: The quantity £(Q) provides a rigor-
ous lower bound on the true log marginal like-
lihood In P(D), with the difference being given
by the Kullback-Leibler divergence KL(Q||P)
between the approximating distribution Q(6)
and the true posterior P(6|D).

The goal in a variational approach is to
choose a suitable form for Q(8) which is suf-
ficiently simple that the lower bound £(Q) can
readily be evaluated and yet which is suffi-
ciently flexible that the bound is reasonably
tight. We generally choose some family of @
distributions and then seek the best approxima-
tion within this family by maximizing the lower
bound. Since the true log likelihood is indepen-
dent of @) we see that this is equivalent to mini-
mizing the Kullback-Leibler divergence.

Suppose we consider a completely free-form
optimization over @, allowing for all possible @
distributions. Using the well-known result that
the KL divergence between two distributions
Q(0) and P(0) is minimized by Q(6) = P(0)
we see that the optimal @ distribution is given
by the true posterior, in which case the KL di-
vergence is zero and the bound becomes exact.
However, this will not lead to any simplification
of the problem. In order to make progress it is
necessary to consider a more restricted range of
Q distributions.

One approach is to consider a parametric
family of @ distributions of the form Q(6,x)

governed by a set of parameters x. We can
then adapt x by minimizing the KL divergence
to find the best approximation within this fam-
ily. Here we consider an alternative approach
which is to restrict the functional form of Q(6)
by assuming that it factorizes over the compo-
nent variables {6;} in 0, so that

= H Qi(6:). (12)

The KL divergence can then be minimized over
all possible factorial distributions by performing
a free-form minimization over the @, leading to
the following result

exp (In P(D, 0)>k# 13

Q1(97) = feXp<1nP(D70)>k7éj d0]

where ( - )x; denotes an expectation with re-
spect to the distributions Q. (0y,) for all k& # 4.

In order to apply this framework to Bayesian
PCA we assume a @ distribution of the form

QX,W,a, u, )
= QX)RW)Q(a)Q(r)Q(1) (14)

where X = {x,}. The true joint distribution of
data and parameters is given by

N
P(D,e) - H P(tn|xnaW>H7T)P(X)

n=1

P(Wla)P(a)P(n)P(r).  (15)

Using the result (13), together with the ex-
plicit forms for the various P(-) distributions,
we obtain the following results for the compo-
nent distributions of Q(+)

N
QX) = [[N(xalm{, =) (16)
=1

N(plmy, 3y) 17)

d
QW) = J[N@mf), =) (18)

k=1
q

Q@) = [[r(eildn.be)  (19)
=1

Q(r) = T(rfa,b,) (20)

where wy, denotes a column vector correspond-



ing to the kth row of W, we have defined

m{") = (1) (WT)(t, — (1))
S o= (I+(HWTw)
N
my = (DY (b — (W)ix,)
n=1
Sp = (BN
N
m{) = (NS > (%) (tr — (1x))
n=1
N -1
Ew = <dlag<a> + <T> Z<ann>>
~ d "
Ao = aa+§
112
~ Nd
ar = a7+7
- 1Y
b= bt g > (el + (lal?)
+Tr((WTW) (x,x)))
+2(u") (W) (x,)

=2t (W) (xn) — 2t,, (1) }

and diag(a) denotes a diagonal matrix whose
diagonal elements are given by («;).

An interesting point to note is that we auto-
matically obtain some additional factorization,
in Q(X), Q(W) and Q(«), that was not as-
sumed in the original @ distribution (14).

The solution for the optimal factors in the
Q(0) distribution is, of course, an implicit one
since each distribution depends on moments
of the other distributions. We can find a so-
lution numerically by starting with a suitable
initial guess for the distributions and then cy-
cling through the groups of variables in turn,
re-estimating each distribution using the above
results. Note that at each re-estimation step we
need only moments of those variables contained
in the corresponding Markov blanket, which can
be obtained from Figure 1.

The required moments are easily evaluated
using (8) together with the result that, for a
Gaussian distribution NV (x|u, X)

(21)
(22)

(x) = np
(xx') = Z+pp'.

In order to monitor the convergence of the
variational optimization it is convenient to be
able to evaluate the lower bound £(Q) on the
marginal log likelihood, which is easily done.
As well as monitoring the evolution of the
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bound during training, the derivatives of the
bound with respect to the parameters of the
distribution at the end of the optimization pro-
cess can be evaluated numerically using central
differences to confirm that they are indeed close
to zero.

5 1llustration

In this section we consider a simple example to
illustrate the capability of the model to deter-
mine the appropriate number of principal com-
ponents. We generate 100 data points in d = 10
dimensions from a Gaussian distribution having
standard deviations of (5, 4, 3, 2) along four or-
thogonal directions and a standard deviation of
1 in the remaining five directions. The result
of fitting a maximum likelihood PCA model is
shown as a Hinton diagram in Figure 3, in which
the elements of W are given by (6).

Figure 3: Hinton diagram of the elements of W in
the maximum likelihood PCA model for a data set
in 10 dimensions drawn from a distribution having
different variances in 4 independent directions and a
common, smaller variance in the remaining 6.

Each column of W corresponds to one poten-
tial principal direction in data space. Note that
the eigenvector routine used to compute this so-
lution finds orthogonal eigenvectors and orders
them left to right in order of decreasing eigen-
value. We see that the first four columns have
larger elements than the remaining columns.
However, the last six columns have non-zero en-
tries even though the data was generated from a
distribution requiring only four principal com-
ponents. In a finite data set the sample variance
will be different along the different principal
directions. The maximum likelihood solution
cannot distinguish between signal and (sample)
noise and so attributes each different variance
value to the presence of an independent princi-
pal component.

Next we run variational Bayesian PCA on the
same data set. The resulting matrix (W) is
shown in Figure 4. Here we see that the model



Figure 4: Hinton diagram of (W) from variational
Bayesian PCA for the same data set used to obtain
Figure 3. Note that all but four of the columns of
(W) have been suppressed. Since the posterior vari-
ance of W issmall, typical samples from this poste-
rior have the same property.

has correctly discovered the underlying dimen-
sionality of the generator of the data. Although
the sample variance is different in the six low-
variance directions there is insufficient evidence
in the data set to support a complex model hav-
ing more than four non-zero principal compo-
nents.

6 Conclusions

An important application of probabilistic PCA
models is to density modelling. Given the prob-
abilistic formulation of PCA it is straightfor-
ward to construct a mixture distribution com-
prising a linear superposition of principal com-
ponent analyzers. In the case of maximum like-
lihood PCA we have to choose both the number
M of components and the latent space dimen-
sionality ¢ for each component. For moderate
numbers of components and data spaces of sev-
eral dimensions it quickly becomes intractable
to explore the exponentially large number of
combinations of ¢ values for a given value of
M. Here Bayesian PCA offers a significant
advantage in allowing the effective dimension-
alities of the models to be determined auto-
matically. An example of mixture modelling
with Bayesian PCA components (using the
Laplace approximation) involving hand-written
digit data is given in Bishop (1999a).

The Bayesian treatment of PCA discussed in
this paper can be particularly advantageous for
small data sets in high dimensions as it can
avoid the singularities associated with maxi-
mum likelihood (or conventional) PCA by sup-
pressing unwanted degrees of freedom in the
model. This is especially helpful in a mixture
modelling context, since the effective number
of data points associated with specific ‘clusters’

514

can be small even when the total number of data
points is large.

It should be emphasised that the Bayesian
framework discussed in this paper does not de-
termine a specific value for the number of non-
zero principal components. Rather, it estimates
a posterior distribution over models including
those with a complete range of possible (effec-
tive) dimensionalities. For many applications
this distribution may be tightly concentrated on
a specific dimensionality. However, a posterior
distribution over models is much more power-
ful than a point estimate of complexity. Optimal
Bayesian predictions are obtained by marginal-
izing over all models, weighted by their poste-
rior distribution.

Acknowledgements

I would like to thank Neil Lawrence for help-
ful discussions as well as for his contributions
to the Matlab implementation of variational
Bayesian PCA.

References

Bishop, C. M. (1999). Bayesian PCA. In
S. A. S. M. S. Kearns and D. A. Cohn
(Eds.), Advances in Neural Informa-
tion Processing Systems, Volume 11, pp.
382-388. MIT Press.

Bishop, C. M. and M. E. Tipping (1998).
A hierarchical latent variable model for
data visualization. IEEE Transactions on
Pattern Analysis and Machine Intelli-
gence 20 (3), 281-293.

Jolliffe, 1. T. (1986). Principal Component
Analysis. New York: Springer-Verlag.

Roweis, S. and Z. Ghahramani (1999). A
unifying review of linear Gaussian mod-
els. Neural Computation 11, 305-345.

Tipping, M. E. and C. M. Bishop (1997).
Mixtures of principal component anal-
ysers. In Proceedings IEE Fifth Inter-
national Conference on Artificial Neural
Networks, Cambridge, U.K., July., pp.
13-18. London: IEE.

Tipping, M. E. and C. M. Bishop (1999a).
Mixtures of probabilistic principal
component analyzers. Neural Computa-
tion 11 (2), 443-482.

Tipping, M. E. and C. M. Bishop (1999b).
Probabilistic principal component analy-
sis. Journal of the Royal Statistical Soci-
ety, Series B 21 (3), 611-622.



