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Abstract

This paper presents Variational Message Passing (VMP), a general purpose algorithm for
applying variational inference to a Bayesian Network. Like belief propagation, Variational
Message Passing proceeds by passing messages between nodes in the graph and updating
posterior beliefs using local operations at each node. Each such update increases a lower
bound on the log evidence (unless already at a local maximum). In contrast to belief
propagation, VMP can be applied to a very general class of conjugate-exponential models
because it uses a factorised variational approximation. Furthermore, by introducing ad-
ditional variational parameters, VMP can be applied to models containing non-conjugate
distributions. The VMP framework also allows the lower bound to be evaluated, and this
can be used both for model comparison and for detection of convergence. Variational Mes-
sage Passing has been implemented in the form of a general purpose inference engine called
VIBES (‘Variational Inference for BayEsian networkS’) which allows models to be specified
graphically and then solved variationally without recourse to coding.
Keywords: Bayesian Networks, Variational methods

1. Introduction

Variational inference methods (Neal and Hinton, 1998, Jordan et al., 1998) have been used
successfully for a wide range of models, and new applications are constantly being explored.
In each previous application, the equations for optimising the variational approximation
have been worked out by hand, a process which is both time consuming and error prone.

For several other inference methods, general purpose algorithms have been developed
which can be applied to large classes of probabilistic models. For example, belief propagation
can be applied to any acyclic discrete network (Pearl, 1986) or mixed-Gaussian network
(Lauritzen, 1992), and the algorithm used in Thomas et al. (1992) can perform Gibbs
sampling in almost any Bayesian network. Each of these algorithms relies on being able to
decompose the required computation into calculations that are local to each node in the
graph and which require only messages passed along the edges connected to that node.

In this paper, the Variational Message Passing algorithm is developed, which optimises
a variational approximation using a set of local computations for each node together with a
mechanism for passing messages between them. Hence, VMP allows for variational inference
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to be applied automatically to a very large class of Bayesian networks. In VMP, the messages
are exponential family distributions, summarised by either their natural parameter vector
(for child-to-parent messages) or a vector of moments (for parent-to-child messages). These
messages are defined so that the optimal variational distribution for a node can be found
by summing the messages from its children together with a function of the messages from
its parents, where this function depends on the conditional distribution for the node.

The paper is organised as follows. Section 2 gives a brief review of variational inference
methods. Section 3 contains the derivation of the Variational Message Passing algorithm,
along with an example of its use. In Section 4 the class of models which can be handled by
the algorithm is defined, while Section 5 describes an implementation of the algorithm, called
VIBES (Variational Inference in BayEsian networkS). Some extensions to the algorithm are
given in Section 6, and Section 7 concludes with an overall discussion and suggestions for
future research directions.

2. Variational Inference

In this section, variational inference will be reviewed briefly with particular focus on the
case where the variational distribution has a factorised form. The random variables in the
model will be denoted by X = (V,H) where V are the visible (observed) variables and H
are the hidden (latent) variables. We assume that the model has the form of a Bayesian
network and so the joint distribution P (X) can be expressed in terms of the conditional
distributions at each node i,

P (X) =
∏

i

P (Xi |pai) (1)

where pai denotes the set of variables corresponding to the parents of node i and Xi denotes
the variable or group of variables associated with node i.

Ideally, we would like to perform exact inference within this model to find posterior
marginal distributions over individual latent variables. Unfortunately, exact inference algo-
rithms, such as the junction tree algorithm (Cowell et al., 1999), are typically only applied to
discrete or linear-Gaussian models and are computationally intractable for all but the sim-
plest models. Instead, we must turn to approximate inference methods and, in particular,
the deterministic approximation method of variational inference.

The goal in variational inference is to find a tractable variational distribution Q(H)
that closely approximates the true posterior distribution P (H |V). To do this we note the
following decomposition of the log marginal probability of the observed data, which holds
for any choice of distribution Q(H)

lnP (V) = L(Q) + KL(Q ||P ) (2)

where
L(Q) =

∑

H

Q(H) ln
P (H,V)
Q(H)

(3)

KL(Q ||P ) = −
∑

H

Q(H) ln
P (H |V)

Q(H)

and the sums are replaced by integrals in the case of continuous variables. Here KL(Q ||P )
is the Kullback-Leibler divergence between the true posterior P (H |V) and the variational
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approximation Q(H). Since this satisfies KL(Q ||P ) > 0 it follows from (2) that the quantity
L(Q) forms a lower bound on lnP (V).

We now choose some family of distributions to represent Q(H) and then seek a member
of that family that maximises the lower bound L(Q). If we allow Q(H) to have complete
flexibility then we see that the maximum of the lower bound occurs when the Kullback-
Leibler divergence is zero. In this case, the variational posterior distribution equals the true
posterior and L(Q) = ln P (V). However, working with the true posterior distribution is
computationally intractable (otherwise we wouldn’t be resorting to variational methods).
We must therefore consider a more restricted family of Q distributions which has the prop-
erty that the lower bound (3) can be evaluated and optimised efficiently and yet which is
still sufficiently flexible as to give a good approximation to the true posterior distribution.

2.1 Factorised Variational Distributions

We wish to choose a variational distribution Q(H) with a simpler structure than that of the
model, so as to make calculation of the lower bound L(Q) tractable. One way to simplify
the dependency structure is by choosing a variational distribution where disjoint groups of
variables are independent. This is equivalent to choosing Q to have a factorised form

Q(H) =
∏

i

Qi(Hi), (4)

where {Hi} are the disjoint groups of variables. This approximation has been successfully
used in many applications of variational methods (Attias, 2000, Ghahramani and Beal,
2001, Bishop, 1999). Substituting (4) into (3) gives

L(Q) =
∑

H

∏

i

Qi(Hi) lnP (H,V)−
∑

i

∑

Hi

Qi(Hi) lnQi(Hi).

We now separate out all terms in one factor Qj ,

L(Q) =
∑

Hj

Qj(Hj)〈ln P (H,V)〉∼Qj(Hj) +H(Qj) +
∑

i 6=j

H(Qi)

= −KL(Qj ||Q?
j ) + terms not in Qj (5)

where H denotes entropy and we have introduced a new distribution Q?
j , defined by

ln Q?
j (Hj) = 〈ln P (H,V)〉∼Q(Hj) + const. (6)

and 〈·〉∼Q(Hj) denotes an expectation with respect to all factors except Qj(Hj). The bound
is maximised with respect to Qj when the KL divergence in (5) is zero, which occurs when
Qj = Q?

j . Therefore, we can maximise the bound by setting Qj equal to Q?
j . Taking

exponentials of both sides we obtain

Q?
j (Hj) =

1
Z

exp〈ln P (H,V)〉∼Q(Hj), (7)

where Z is the normalisation factor needed to make Q?
j a valid probability distribution.

Note that the equations for all of the factors are coupled since the solution for each Qj(Hj)
depends on expectations with respect to the other factors Qi6=j . The variational optimisation
proceeds by initialising each of the Qj(Hj) and then cycling through each factor in turn
replacing the current distribution with a revised estimate given by (7).
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3. Variational Message Passing

In this section, the Variational Message Passing algorithm will be derived and shown to opti-
mise a factorised variational distribution using a message passing procedure on a graphical
model. For the initial derivation, it will be assumed that the variational distribution is
factorised with respect to each hidden variable Hi and so can be written

Q(H) =
∏

i

Qi(Hi).

From (6), the optimised form of the jth factor is given by

lnQ?
j (Hj) = 〈lnP (H,V)〉∼Q(Hj) + const.

We now substitute in the form of the joint probability distribution of a Bayesian network,
as given in (1),

lnQ?
j (Hj) =

〈∑
i
ln P (Xi | pai)

〉
∼Q(Hj)

+ const.

Any terms in the sum over i that do not depend on Hj will be constant under the expectation
and can be subsumed into the constant term. This leaves only the conditional P (Hj |paj )
together with the conditionals for all the children of Hj , as these have Hj in their parent
set,

ln Q?
j (Hj) = 〈ln P (Hj | paj )〉∼Q(Hj) +

∑
k∈chj

〈lnP (Xk | pak )〉∼Q(Hj) + const. (8)

where chj are the children of node j in the graph. Thus, the expectations required to
evaluate Q?

j involve only those variables lying in the Markov blanket of Hj , consisting of

its parents, children and co-parents1 cp(j )
k . This is illustrated in the form of a directed

graphical model in Figure 1. Note that we use the notation Xk to denote both a random
variable and the corresponding node in the graph. The optimisation of Qj can therefore
be expressed as a local computation at the node Hj . This computation involves the sum
of a term involving the parent nodes, along with one term from each of the child nodes.
These terms can be thought of as ‘messages’ from the corresponding nodes. Hence, we can
decompose the overall optimisation into a set of local computations that depend only on
messages from neighbouring (i.e. parent and child) nodes in the graph.

3.1 Conjugate-Exponential Models

The exact form of the messages in (8) will depend on the functional form of the conditional
distributions in the model. It has been noted (Attias, 2000, Ghahramani and Beal, 2001)
that important simplifications to the variational update equations occur when the distribu-
tions of variables, conditioned on their parents, are drawn from the exponential family and
are conjugate2 with respect to the distributions over these parent variables. A model where
both of these constraints hold is known as a conjugate-exponential model.

1. The co-parents of a node X are all the nodes with at least one child which is also a child of X (excluding
X itself).

2. A parent distribution P (X |Y ) is said to be conjugate to a child distribution P (W |X) if P (X |Y ) has
the same functional form, with respect to X, as P (W |X).
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Figure 1: A key observation is that the variational update equation for a node Hj depends
only on expectations over variables in the Markov blanket of that node (shown
shaded), defined as the set of parents, children and co-parents of that node.

A conditional distribution is in the exponential family if it can be written in the form

P (X |Y) = exp[φ(Y)Tu(X) + f(X) + g(Y)] (9)

where φ(Y) is called the natural parameter vector and u(X) is called the natural statistic
vector. The term g(Y) acts as a normalisation function that ensures the distribution inte-
grates to unity for any given setting of the parameters Y. The advantages of exponential
family distributions are that their logarithms are tractable to compute and their state can
be summarised completely by the natural parameter vector. The use of conjugate distri-
butions means that the posterior for each factor has the same form as the prior and so
learning changes only the values of the parameters, rather than the functional form of the
distribution.

If we know the natural parameter vector φ(Y) for an exponential family distribution,
then we can find the expectation of the natural statistic vector with respect to the distri-
bution. Rewriting (9) and defining g̃ as a reparameterisation of g in terms of φ gives,

P (X |φ) = exp[φTu(X) + f(X) + g̃(φ)].

We integrate with respect to X,
∫

X
exp[φTu(X) + f(X) + g̃(φ)] dX =

∫

X
P (X |φ) dX = 1

and then differentiate with respect to φ

∫

X

d

dφ
exp[φTu(X) + f(X) + g̃(φ)] dX =

d

dφ
(1) = 0

∫

X
P (X |φ)

[
u(X) +

dg̃(φ)
dφ

]
dX = 0
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Figure 2: Part of a graphical model showing a node Y , the parents and children of Y , and
the co-parents of Y with respect to a child node X.

and so the expectation of the natural statistic vector is given by

〈u(X)〉P (X |φ) = − dg̃(φ)
dφ

. (10)

3.2 Optimisation of Q in Conjugate-Exponential Models

We will now demonstrate how the optimisation of the variational distribution can be carried
out, given that the model is conjugate-exponential. We consider the general case of opti-
mising a factor Q(Y ) corresponding to a node Y , whose children include X, as illustrated
in Figure 2. From (9), the log conditional probability of the variable Y given its parents
can be written

ln P (Y | paY ) = φY (paY )TuY (Y ) + fY (Y ) + gY (paY ). (11)

The subscript Y on each of the functions φY ,uY , fY , gY is required as these functions differ
for different members of the exponential family and so need to be defined separately for
each node.

Consider a node X ∈ chY which is a child of Y . The conditional probability of X given
its parents will also be in the exponential family and so can be written in the form

ln P (X |Y, cpY ) = φX(Y, cpY )TuX(X) + fX(X) + gX(Y, cpY ) (12)

where cpY are the co-parents of Y with respect to X, in other words, the set of parents of
X excluding Y itself. The quantity P (Y | paY ) in(11) can be thought of as a prior over Y ,
and P (X |Y, cpY ) as a (contribution to) the likelihood of Y .

For example, if X is Gaussian distributed with mean Y and precision β, it follows
that the co-parent set cpY contains only β, and the log conditional for X is

ln P (X |Y, β) =
[

βY
−β/2

]T [
X
X2

]
+ 1

2 (lnβ − βY 2 − ln 2π). (13)
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Conjugacy requires that the conditionals of (11) and (12) have the same functional form
with respect to Y , and so the latter can be rewritten in terms of uY (Y ) by defining functions
φXY and λ as follows

lnP (X |Y, cpY ) = φXY (X, cpY )TuY (Y ) + λ(X, cpY ). (14)

It may appear from this expression that the function φXY depends on the form of the
parent conditional P (Y | paY ) and so cannot be determined locally at X. This is not the
case, because the conjugacy constraint dictates uY (Y ) for any parent Y of X, implying that
φXY can be found directly from the form of the conditional P (X |pak ).

Continuing the above example, we can find φXY by rewriting the log conditional in
terms of Y to give

ln P (X |Y, β) =
[

βX
−β/2

]T [
Y
Y 2

]
+ 1

2 (lnβ − βX2 − ln 2π),

which lets us define φXY and dictate what uY (Y ) must be to enforce conjugacy,

φXY (X, β) def=
[

βX
−β/2

]
, uY (Y ) =

[
Y
Y 2

]
. (15)

In order to compute the variational update for Y , we need to be able to find the ex-
pectations of the log conditionals (11) and (12) with respect to all factors but QY (Y ). The
expectation of the natural statistic vector u under any exponential family distribution can
be found from the natural parameter vector of that distribution using (10). The conse-
quence of this is that, for any variable A, we can find 〈uA(A)〉Q . In the case where A is
observed, the expectation is irrelevant and we can simply calculate uA(A) directly.

From (12) and (14), it can be seen that lnP (X |Y, cpY ) is linear in uX(X) and uY (Y )
respectively. Conjugacy also dictates that this log conditional will be linear in uZ(Z) for
each co-parent Z ∈ cpY . Hence, lnP (X |Y, cpY ) must be a multi-linear3 function of the
natural statistic functions u of X and its parents. This result is general in that any log
conditional lnP (A | paA) in a conjugate-exponential model must be a multi-linear function
of the natural statistic functions of A and its parents.

For example, the log conditional ln P (X |Y, β) in (13) is multi-linear in each of the
vectors,

uX(X) =
[

X
X2

]
, uY (Y ) =

[
Y
Y 2

]
, uβ(β) =

[
β

ln β

]
.

Returning to the variational update equation (8) for a node Y , it follows that all the
expectations on the right hand side can be calculated in terms of the 〈u〉 for each node in
the Markov blanket of Y . Substituting for these expectations, we get

ln Q∗
Y (Y ) =

〈
φY (paY )TuY (Y ) + fY (Y ) + gY (paY )

〉
∼Q(Y )

+
∑

k∈chY

〈
φXY (X, cpY )TuY (Y ) + λ(X, cpY )

〉
∼Q(Y )

+ const.

3. A function f is a multi-linear function of variables a, b . . . if it varies linearly with respect to each variable,
for example, f(a, b) = ab + 3b is multi-linear in a and b.
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which can be rearranged to give

ln Q∗
Y (Y ) =


〈φY (paY )〉∼Q(Y ) +

∑

k∈chY

〈φXY (X, cpY )〉∼Q(Y )




T

uY (Y )

+fY (Y ) + const.

It follows that Q∗
Y is an exponential family distribution of the same form as QY but with

an updated natural parameter vector φ∗Y such that

φ∗Y = 〈φY (paY )〉+
∑

k∈chY

〈φXY (X, cpY )〉 (16)

where all expectations are with respect to Q. As explained above, the expectations of φY

and φXY are both multi-linear functions of the expectations of the natural statistic vectors
corresponding to their dependent variables. It is therefore possible to reparameterise these
functions in terms of these expectations

φ̃Y

({〈ui〉}i∈paY

)
= 〈φY (paY )〉

φ̃XY

(〈uX〉, {〈uj〉}j∈cpY

)
= 〈φXY (X, cpY )〉 .

In (15), we defined φXY (X, β) =
[

βX
−β/2

]
. We now reparameterise it as

φ̃XY (〈uX〉, 〈uβ〉) def=
[ 〈uβ〉0〈uX〉0

− 1
2 〈uβ〉0

]

where 〈uX〉0 and 〈uβ〉0 are the first elements of the vectors 〈uX〉 and 〈uβ〉 respectively
(and so are equal to 〈X〉 and 〈β〉). As required, we have reparameterised φXY into a
function φ̃XY which is a multi-linear function of natural statistic vectors.

3.3 Definition of the Variational Message Passing algorithm

We have now reached the point where we can specify exactly what form the messages
between nodes must take and so define the Variational Message Passing algorithm. The
message from a parent node Y to a child node X is just the expectation under Q of the
natural statistic vector

mY→X = 〈uY 〉. (17)

The message from a child node X to a parent node Y is

mX→Y = φ̃XY

(〈uX〉, {mi→X}i∈cpY

)
(18)

which relies on X having received messages previously from all the co-parents. If any node
A is observed then the messages are as defined above but with 〈uA〉 replaced by uA.
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For example, if X is Gaussian distributed with conditional P (X |Y, β), the messages
to its parents Y and β are

mX→Y =
[ 〈β〉 〈X〉
− 〈β〉 /2

]
, mX→β =

[ − 1
2

(〈
X2

〉− 2 〈X〉 〈Y 〉+
〈
Y 2

〉)
1
2

]

and the message from X to any child node is
[ 〈X〉〈

X2
〉

]
.

When a node Y has received messages from all parents and children, we can finds its
updated posterior distribution Q∗

Y by finding its updated natural parameter vector φ∗Y .
This vector φ∗Y is computed from all the messages received at a node using

φ∗Y = φ̃Y

({mi→Y }i∈paY

)
+

∑

j∈chY

mj→Y , (19)

which follows from (16). The new expectation of the natural statistic vector 〈uY 〉Q∗Y can
then be found, as it is a deterministic function of φ∗Y .

The Variational Message Passing algorithm uses these messages to optimise the varia-
tional distribution iteratively, as described in Algorithm 1 below. This algorithm requires
that the lower bound L(Q) be evaluated, which will be discussed in Section 3.5.

Algorithm 1 The Variational Message Passing algorithm

1. Initialise each factor distribution Qj by initialising the corresponding moment vector
〈uj(Xj)〉.

2. For each node Xj in turn,

• Retrieve messages from all parent and child nodes, as defined in (17) and (18).
This will require child nodes to retrieve messages from the co-parents of Xj .

• Compute updated natural parameter vector φ∗j using (19).

• Compute updated moment vector 〈uj(Xj)〉 given the new setting of the param-
eter vector.

3. Calculate the new value of the lower bound L(Q) (if required).

4. If the increase in the bound is negligible or a specified number of iterations has been
reached, stop. Otherwise repeat from step 2.

3.4 Example: the Univariate Gaussian Model

To illustrate how Variational Message Passing works, let us apply it to a model which
represents a set of observed one-dimensional data {xn}N

n=1 with a univariate Gaussian dis-
tribution of mean µ and precision γ,

P (x |H) =
N∏

n=1

N (xn |µ, γ−1).
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The conditional distribution of each data point xn is a univariate Gaussian, which is in the
exponential family and so its logarithm can be expressed in standard form as

ln P (xn |µ, γ−1) =
[

γµ
−γ/2

]T [
xn

x2
n

]
+

1
2
(ln γ − γµ2 − ln 2π)

and so ux(xn) = [xn, x2
n]T. This conditional can also be written so as to separate out the

dependencies on µ and γ

ln P (xn |µ, γ−1) =
[

γxn

−γ/2

]T [
µ
µ2

]
+

1
2
(ln γ − γx2

n − ln 2π) (20)

=
[ −1

2(xn − µ)2
1
2

]T [
γ

ln γ

]
− ln 2π (21)

which shows that, for conjugacy, uµ(µ) must be [µ, µ2]T and uγ(γ) must be [γ, ln γ]T or
linear transforms of these4. Therefore, µ must have a Gaussian prior and γ a Gamma prior
since these are the exponential family distributions having these natural statistic vectors.
We introduce the parameters m, β, a and b, so that

ln P (µ |m,β) =
[

βm
−β/2

]T [
µ
µ2

]
+

1
2
(lnβ − βm2 − ln 2π)

lnP (γ | a, b) =
[ −b

a− 1

]T [
γ

ln γ

]
+ a ln b− ln Γ(a).

3.4.1 Variational Message Passing in the Univariate Gaussian Model

We can now apply Variational Message Passing to infer the distributions over µ and γ
variationally. The variational distribution is fully factorised and takes the form

Q(µ, γ) = Qµ(µ)Qγ(γ).

We start by initialising Qµ(µ) and Qγ(γ) and find initial values of 〈uµ(µ)〉 and 〈uγ(γ)〉.
Let us choose to update Qµ(µ) first, in which case Variational Message Passing will proceed
as follows (illustrated in Figure 3a-d).

(a) As we wish to update Qµ(µ), we must first ensure that messages have been sent
to the children of µ by any co-parents. Thus, messages mγ→xn are sent from γ to
each of the observed nodes xn. These messages are the same, and are just equal to
〈uγ(γ)〉 = [〈γ〉, 〈ln γ〉]T, where the expectation are with respect to the initial setting
of Qγ .

(b) Each xn node has now received messages from all co-parents of µ and so can send a
message to µ which is the expectation of the natural parameter vector in (20),

mxn→µ =
[ 〈γ〉xn

−〈γ〉/2

]
.

4. To prevent the need for linear transformation of messages, a normalised form of natural statistic vectors
will always be used, for example [µ, µ2]T or [γ, ln γ]T.
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N N(b) (c) (d)(a) NN

µ γµ γµ

{mxn→µ} {mxn→γ}
mµ→xn

mγ→xn

γ µ γ

xn xn xn xn

Figure 3: (a)-(d) Message passing procedure for variational inference in a univariate Gaus-
sian model. The box around the xi node denotes a plate, which indicates that
the contained node and its connected edges are duplicated N times. The braces
around the messages leaving the plate indicate that a set of N distinct messages
are being sent.

(c) Node µ has now received its full complement of incoming messages and can update
its natural parameter vector,

φ∗µ =
[

βm
−β/2

]
+

N∑

n=1

mxn→µ

The new expectation 〈uµ(µ)〉 can then be computed under the updated distribution
Q∗

µ and sent to each xn as the message mµ→xn = [〈µ〉, 〈µ2〉]T.

(d) Finally, each xn node sends a message back to γ which is

mxn→γ =
[ −1

2(x2
n − 2xn〈µ〉+ 〈µ2〉)

1
2

]

and γ can update its variational posterior

φ∗γ =
[ −b

a− 1

]
+

N∑

n=1

mxn→γ .

As the expectation of uγ(γ) has changed, we can now go back to step (a) and send an
updated message to each xn node and so on. Hence, in Variational Message Passing, the
message passing procedure is repeated again and again until convergence (unlike in belief
propagation on a junction tree where the exact posterior is available after a message passing
is performed once). Each round of message passing is equivalent to one iteration of the
update equations in standard variational inference.

3.5 Calculation of the Lower Bound L(Q)

The Variational Message Passing algorithm makes use of the lower bound L(Q) as a di-
agnostic of convergence. Evaluating the lower bound is also useful for performing model
selection, or model averaging, because it provides an estimate of the log evidence for the
model.
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The lower bound can also play a useful role in helping to check the correctness both of the
analytical derivation of the update equations and of their software implementation, simply
by evaluating the bound after updating each factor in the variational posterior distribution
and checking that the value of the bound does not decrease. This can be taken a stage further
(Bishop and Svensén, 2003) by using numerical differentiation applied to the lower bound.
After each update, the gradient of the bound is evaluated in the subspace corresponding to
the parameters of the updated factor, to check that it is zero (within numerical tolerances).
This requires that the differentiation take account of any constraints on the parameters (for
instance that they be positive or that they sum to one). These checks, of course, provide
necessary but not sufficient conditions for correctness. Also, they add computational cost
so would typically only be employed whilst debugging the implementation.

In previous applications of variational inference, however, the evaluation of the lower
bound has typically been done using separate code from that used to implement the update
equations. Although the correctness tests discussed above also provide a check on the
mutual consistency of the two bodies of code, it would clearly be more elegant if their
evaluation could be unified.

This is achieved naturally in the Variational Message Passing framework by providing
a way to calculate the bound automatically, as will now be described. To recap, the lower
bound on the log evidence is defined to be

L(Q) = 〈lnP (H,V)〉 − 〈Q(H)〉 ,
where the expectations are with respect to Q. In a Bayesian network, with a factorised Q
distribution, the bound becomes

L(Q) =
∑

i

〈ln P (Xi | pai)〉 −
∑

i∈H

〈ln Qi(Hi)〉

def=
∑

i

Li

where it has been decomposed into contributions from the individual nodes {Li}. For a
particular latent variable node Hj , the contribution is

Lj = 〈ln P (Hj | paj )〉 − 〈ln Qj(Hj)〉 .
Given that the model is conjugate-exponential, we can substitute in the standard form for
the exponential family

Lj = 〈φj(paj )T〉〈uj(Hj)〉+ 〈fj(Hj)〉+ 〈gj(paj )〉
−

[
φ∗j

T〈uj(Hj)〉+ 〈fj(Hj)〉+ g̃j(φ∗j )
]
,

where the function g̃j is a reparameterisation of gj so as to make it a function of the natural
parameter vector rather than the parent variables. This expression simplifies to

Lj = (〈φj(paj )〉 − φ∗j )
T〈uj(Hj)〉+ 〈gj(paj )〉 − g̃j(φ∗j ). (22)

Three of these terms are already calculated during the Variational Message Passing al-
gorithm: 〈φj(paj )〉 and φ∗j when finding the posterior distribution over Hj in (19), and
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〈uj(Hj)〉 when calculating outgoing messages from Hj . Thus, considerable saving in com-
putation are made compared to when the bound is calculated separately.

Each observed variable Vk also makes a contribution to the bound

Lk = 〈ln P (Vk | pak )〉
= 〈φj(paj )〉Tuk(Vk) + fk(Vk) + g̃k

(〈φj(paj )〉
)
.

Again, computation can be saved by computing uk(Vk) during the initialisation of the
message passing algorithm.

Example 1 Calculation of the Bound for the Univariate Gaussian Model
In the univariate Gaussian model, the bound contribution from each observed node xn is

Lxn =
[ 〈γ〉〈µ〉
−〈γ〉/2

]T [
xn

x2
n

]
+

1
2

(〈ln γ〉 − 〈γ〉〈µ2〉 − ln 2π
)

and the contributions from the parameter nodes µ and γ are

Lµ =
[

β′m′ − βm
−β′/2 + β/2

]T [ 〈µ〉
〈µ2〉

]
+

1
2

(
ln β − βm2 − ln β′ + β′m′2)

Lγ =
[ −b′ + b

a− a′

]T [ 〈γ〉
〈ln γ〉

]
+ a ln b− ln Γ(a)− a′ ln b′ + lnΓ(a′).

The bound for this univariate Gaussian model is given by the sum of the contributions from
the µ and γ nodes and all xn nodes.

4. Allowable Models

The Variational Message Passing algorithm can be applied to a wide class of models, which
will be characterised in this section.

4.1 Conjugacy Constraints

The main constraint on the model is that each parent–child edge must satisfy the constraint
of conjugacy. Conjugacy allows a Gaussian variable to have a Gaussian parent for its mean
and we can extend this hierarchy to any number of levels. Each Gaussian node has a Gamma
parent as the distribution over its precision. Furthermore, each Gamma distributed variable
can have a Gamma distributed scale parameter b, and again this hierarchy can be extended
to multiple levels.

A discrete variable can have multiple discrete parents with a Dirichlet prior over the
entries in the conditional probability table. This allows for an arbitrary graph of discrete
variables. A variable with an Exponential or Poisson distribution can have a Gamma prior
over its scale or mean respectively, although, as these distributions do not lead to hierarchies,
they may be of limited interest.

These constraints are listed in Table 1. This table can be encoded in implementations
of the Variational Message Passing algorithm and used during initialisation to check the
conjugacy of the supplied model.
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Distribution 1st parent Conjugate dist. 2nd parent Conjugate dist.
Gaussian mean µ Gaussian precision γ Gamma
Gamma shape a None scale b Gamma
Discrete probabilities p Dirichlet parents {xi} Discrete
Dirichlet pseudo-counts a None

Exponential scale a Gamma
Poisson mean λ Gamma

Table 1: Distributions for each parameter of a number of exponential family distributions
if the model is to satisfy conjugacy constraints. Conjugacy also holds if the dis-
tributions are replaced by their multivariate counterparts e.g. the distribution
conjugate to the precision matrix of a multivariate Gaussian is a Wishart distri-
bution. Where “None” is specified, no standard distribution satisfies conjugacy.

4.1.1 Truncated Distributions

The conjugacy constraint does not put any restrictions on the fX(X) term in the exponential
family distribution. If we choose fX to be a step function

fX(X) =
{

0 : X ≥ 0
−∞ : X < 0

then we end up with a rectified distribution, so that P (X |θ) = 0 for X < 0. The choice
of such a truncated distribution will change the form of messages to parent nodes (as the
gX normalisation function will also be different) but will not change the form of messages
that are passed to child nodes. However, truncation will affect how the moments of the
distribution are calculated from the updated parameters, which will lead to different values
of child messages. For example, the moments of a rectified Gaussian distribution are ex-
pressed in terms of the standard ‘erf’ function. Similarly, we can consider doubly truncated
distributions which are non-zero only over some finite interval, as long as the calculation of
the moments and parent messages remains tractable. One potential problem with the use
of a truncated distribution is that no standard distributions may exist which are conjugate
for each distribution parameter.

4.2 Deterministic Functions

We can considerably enlarge the class of tractable models if variables are allowed to be
defined as deterministic functions of the states of their parent variables. This is achieved by
adding deterministic nodes into the graph, as have been used to similar effect in the BUGS
software (see Section 5).

Consider a deterministic node X which has stochastic parents Y = {Y1, . . . , YM} and
which has a stochastic child node Z. The state of X is given by a deterministic function f
of the state of its parents, so that X = f(Y). If X were stochastic, the conjugacy constraint
with Z would require that P (X |Y) must have the same functional form, with respect to
X, as P (Z |X). This in turn would dictate the form of the natural statistic vector uX of
X, whose expectation 〈uX(X)〉Q would be the message from X to Z.

14
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Returning to the case where X is deterministic, it is still necessary to provide a message
to Z of the form 〈uX(X)〉Q where the function uX is dictated by the conjugacy constraint.
This message can be evaluated only if it can be expressed as a function of the messages
from the parent variables, which are the expectations of their natural statistics functions
{〈uYi(Yi)〉Q}. In other words, there must exist a vector function ψX such that

〈uX(f(Y))〉Q = ψX(〈uY1(Y1)〉Q, . . . , 〈uYM
(YM )〉Q).

As was discussed in Section 3.2, this constrains uX(f(Y)) to be a multi-linear function of
the set of functions {uYi(Yi)}.

A deterministic node can be viewed as a having a conditional distribution which is a
delta function, so that P (X |Y) = δ(X−f(Y)). If X is discrete, this is the distribution that
assigns probability one to the state X = f(Y) and zero to all other states. If X is continuous,
this is the distribution with the property that

∫
g(X) δ(X − f(Y)) dX = g(f(Y)). The

contribution to the lower bound from a deterministic node is zero.

Example 2 Using a Deterministic Function as the Mean of a Gaussian
Consider a model where a deterministic node X is to be used as the mean of a child Gaus-
sian distribution N (Z |X, β−1) and where X equals a function f of Gaussian-distributed
variables Y1, . . . , YM . The natural statistic vectors of X (as dictated by conjugacy with Z)
and those of Y1, . . . , YM are

uX(X) =
[

X
X2

]
, uYi(Yi) =

[
Yi

Y 2
i

]
for i = 1 . . . M

The constraint on f is that uX(f) must be multi-linear in {uYi(Yi)} and so both f and
f2 must be multi-linear in {Yi} and {Y 2

i }. Hence, f can be any multi-linear function of
Y1, . . . , YM . In other words, the mean of a Gaussian can be the sum of products of other
Gaussian-distributed variables.

Example 3 Using a Deterministic Function as the Precision of a Gaussian
As another example, consider a model where X is to be used as the precision of a child
Gaussian distribution N (Z |µ,X−1) and where X is a function f of Gamma-distributed
variables Y1, . . . , YM . The natural statistic vectors of X and Y1, . . . , YM are

uX(X) =
[

X
ln X

]
, uYi(Yi) =

[
Yi

ln Yi

]
for i = 1 . . . M.

and so both f and ln f must be multi-linear in {Yi} and {ln Yi}. This restricts f to be
proportional to a product of the variables Y1, . . . , YM as the logarithm of a product can be
found in terms of the logarithms of terms in that product. Hence f = c

∏
i Yi where c is a

constant. A function containing a summation, such as f =
∑

i Yi, would not be valid as the
logarithm of the sum cannot be expressed as a multi-linear function of Yi and ln Yi.

4.2.1 Validating Chains of Deterministic Functions

The validity of a deterministic function for a node X is dependent on the form of the
stochastic nodes it is connected to, as these dictate the functions uX and {uYi(Yi)}. For
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example, if the function was a summation f =
∑

i Yi, it would be valid for the first of the
above examples but not for the second. In addition, it is possible for deterministic functions
to be chained together to form more complicated expressions. For example, the expression
X = Y1 + Y2Y3 can be achieved by having a deterministic product node A with parents
Y2 and Y3 and a deterministic sum node X with parents Y1 and A. In this case, the form
of the function uA is not determined directly by its immediate neighbours, but instead is
constrained by the requirement of consistency for the connected deterministic subgraph.

In a software implementation of Variational Message Passing, the validity of a particular
deterministic structure can most easily be checked by requiring that the function uXi be
specified explicitly for each deterministic node Xi, thereby allowing the existing mechanism
for checking conjugacy to be applied uniformly across both stochastic and deterministic
nodes.

4.2.2 Deterministic Node Messages

To examine message passing for deterministic nodes, we must consider the general case
where the deterministic node X has multiple children {Zj}. The message from the node X
to any child Zj is simply

mX→Zj = 〈uX(f(Y))〉Q
= ψX(mY1→X , . . . ,mYM→X).

For a particular parent Yk, the function uX(f(Y)) is linear with respect to uYk
(Yk) and so

it can be written as

uX(f(Y)) = ΨX,Yk
({uYi(Yi)}i6=k) .uYk

(Yk) + λ({uYi(Yi)}i6=k)

where ΨX,Yk
is a matrix function of the natural statistics vectors of the co-parents of Yk.

The message from a deterministic node to a parent Yk is then

mX→Yk
=


∑

j

mZj→X


ΨX,Yk

({mYi→X}i 6=k)

which relies on having received messages from all the child nodes and from all the co-
parents. The sum of child messages can be computed and stored locally at the node and
used to evaluate all child-to-parent messages. In this sense, it can be viewed as the natural
parameter vector of a distribution which acts as a kind of pseudo-posterior over the value
of X.

4.3 Mixture Distributions

So far, only distributions from the exponential family have been considered. Often it is
desirable to use richer distributions that better capture the structure of the system that
generated the data. Mixture distributions, such as mixtures of Gaussians, provide one
common way of creating richer probability densities. A mixture distribution over a variable
X is a weighted sum of a number of component distributions

P (X | {πk}, {θk}) =
K∑

k=1

πkPk(X |θk)
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where each Pk is a component distribution with parameters θk and a corresponding mixing
coefficient πk indicating the weight of the distribution in the weighted sum. The K mixing
coefficients must be non-negative and sum to one.

A mixture distribution is not in the exponential family and therefore cannot be used
directly as a conditional distribution within a conjugate-exponential model. Instead, we can
introduce an additional discrete latent variable λ which indicates from which component
distribution each data point was drawn, and write the distribution as

P (X |λ, {θk}) =
K∏

k=1

Pk(X |θk)δλk .

Conditioned on this new variable, the distribution is now in the exponential family provided
that all of the component distributions are also in the exponential family. In this case, the
log conditional probability of X given all the parents (including λ) can be written as

ln P (X |λ, {θk}) =
∑

k

δ(λ, k)
[
φk(θk)Tuk(X) + fk(X) + gk(θk)

]
.

If X has a child Z, then conjugacy will require that all the component distributions have
the same natural statistic vector, which we can then call uX so: u1(X) = u2(X) = . . . =
uK(X) def= uX(X). In addition, we may choose to specify, as part of the model, that all these
distributions have exactly the same form (that is, f1 = f2 = . . . = fK

def= fX), although this
is not required by conjugacy. In this case, where all the distributions are the same, the log
conditional becomes

ln P (X |λ, {θk}) =

[∑

k

δ(λ, k)φk(θk)

]T

uX(X) + fX(X)

+
∑

k

δ(λ, k)gk(θk)

= φX(λ, {θk})TuX(X) + fX(X) + g̃X(φX(λ, {θk}))
where we have defined φX =

∑
k δ(λ, k)φk(θk) to be the natural parameter vector of this

mixture distribution and the function g̃X is a reparameterisation of gX to make it a function
of φX (as in Section 3.5). The conditional is therefore in the same exponential family form
as each of the components.

We can now apply Variational Message Passing. The message from the node X to any
child is 〈uX(X)〉 as calculated from the mixture parameter vector φX(λ, {θk}). Similarly,
the message from X to a parent θk is the message that would be sent by the corresponding
component if it were not in a mixture, scaled by the variational posterior over the indicator
variable Q(λ = k). Finally, the message from X to λ is the vector of size K whose kth
element is 〈ln Pk(X | θk)〉.

4.4 Multivariate Distributions

Until now, only scalar variables have been considered. It is also possible to handle vector
variables in this framework (or to handle scalar variables which have been grouped into a
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vector to capture posterior dependencies between the variables). In each case, a multivariate
conditional distribution is defined in the overall joint distribution P and the correspond-
ing factor in the variational posterior Q will also be multivariate, rather than factorised
with respect to the elements of the vector. To understand how multivariate distributions
are handled, consider the d-dimensional Gaussian distribution with mean µ and precision
matrix5 Λ:

P (x |µ,Λ−1) =

√
|Λ|

(2π)d
exp

(− 1
2
(x− µ)TΛ (x− µ)

)
.

This distribution can be written in exponential family form

lnN (x |µ,Λ−1) =
[

Λµ
− 1

2
vec(Λ)

]T [
x

vec(xxT)

]
+ 1

2
(ln |Λ| − µTΛµ− d ln 2π)

where vec(·) is a function that re-arranges the elements of a matrix into a column vector in
some consistent fashion, such as by concatenating the columns of the matrix. The natural
statistic function for a multivariate distribution therefore depends on both the type of the
distribution and its dimensionality d. As a result, the conjugacy constraint between a
parent node and a child node will also constrain the dimensionality of the corresponding
vector-valued variables to be the same. Multivariate conditional distributions can therefore
be handled by VMP like any other exponential family distribution, which extends the class
of allowed distributions to include multivariate Gaussian and Wishart distributions.

A group of scalar variables can act as a single parent of a vector-valued node. This is
achieved using a deterministic concatenation function which simply concatenates a number
of scalar values into a vector. In order for this to be a valid function, the scalar distributions
must still be conjugate to the multivariate distribution. For example, a set of d univariate
Gaussian distributed variables can be concatenated to act as the mean of a d-dimensional
multivariate Gaussian distribution.

4.4.1 Normal-Gamma Distribution

The mean µ and precision γ parameters of a Gaussian distribution can be grouped together
into a single bivariate variable c = {µ, γ}. The conjugate distribution for this variable is
the Normal-Gamma distribution, which is written

lnP (c |m,λ, a, b) =




mλ
− 1

2
λ

−b− 1
2
λm2

a− 1
2







µγ
µ2γ
γ

ln γ


 + 1

2
(lnλ− ln 2π) + a ln b− ln Γ(a).

This distribution therefore lies in the exponential family and can be used within VMP
instead of separate Gaussian and Gamma distributions. In general, grouping these variables
together will improve the approximation and so increase the lower bound. The multivariate
form of this distribution, the Normal-Wishart distribution, is handled as described above.

5. The precision matrix of a multivariate Gaussian is the inverse of its covariance matrix.

18



Variational Message Passing

4.5 Summary of Allowable Models

In summary, the Variational Message Passing algorithm can handle probabilistic models
with the following very general architecture: arbitrary directed acyclic subgraphs of multi-
nomial discrete variables (each having Dirichlet priors) together with arbitrary subgraphs
of univariate and multivariate linear Gaussian nodes (having Gamma and Wishart priors),
with arbitrary mixture nodes providing connections from the discrete to the continuous
subgraphs. In addition, deterministic nodes can be included to allow parameters of child
distributions to be deterministic functions of parent variables. Finally, any of the continu-
ous distributions can be singly or doubly truncated to restrict the range of allowable values,
provided that the appropriate moments under the truncated distribution can be calculated
along with any necessary parent messages.

This architecture includes as special cases models such as Hidden Markov Models,
Kalman filters, factor analysers, principal component analysers and independent compo-
nent analysers, as well as mixtures and hierarchical mixtures of these.

5. VIBES: An Implementation of Variational Message Passing

The Variational Message Passing algorithm has been implemented in a software package
called VIBES (Variational Inference in BayEsian networkS), first described by Bishop et al.
(2002). Inspired by WinBUGS (a graphical user interface for BUGS by Lunn et al., 2000),
VIBES allows for models to be specified graphically, simply by constructing the Bayesian
network for the model. This involves drawing the graph for the network (using operations
similar to those in a drawing package) and then assigning properties to each node such
as its name, the functional form of the conditional distribution, its dimensionality and its
parents. As an example, Figure 4 shows the Bayesian network for the univariate Gaussian
model along with a screenshot of the same model in VIBES. Models can also be specified in
a text file, which contains XML according to a pre-defined model definition schema. VIBES
is written in Java and so can be used on Windows, Linux or any operating system with a
Java 1.3 virtual machine.

As in WinBUGS, the convention of making deterministic nodes explicit in the graphical
representation has been adopted, as this greatly simplifies the specification and interpreta-
tion of the model. VIBES also uses the plate notation of a box surrounding one or more
nodes to denote that those nodes are replicated some number of times, specified by the
parameter in the bottom right hand corner of the box.

Once the model is specified, data can be attached from a separate data file which
contains observed values for some of the nodes, along with sizes for some or all of the
plates. The model can then be initialised which involves: (i) checking that the model is
valid by ensuring that conjugacy and dimensionality constraints are satisfied and that all
parameters are specified; (ii) checking that the observed data is of the correct dimensionality;
(iii) allocating memory for all moments and messages; (iv) initialisation of the individual
distributions Qi.

Following a successful initialisation, inference can begin immediately. As inference pro-
ceeds, the current state of the distribution Qi for any node can be inspected using a range
of diagnostics including tables of values and Hinton diagrams. If desired, the lower bound
L(Q) can be monitored (at the expense of slightly increased computation), in which case the
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(a) N

µ γ

xi

(b)

Figure 4: (a) Bayesian network for the univariate Gaussian model. (b) Screenshot of VIBES
showing how the same model appears as it is being edited. The node x is selected
and the panel to the left shows that it has a Gaussian conditional distribution
with mean µ and precision γ. The plate surrounding x shows that it is duplicated
N times and the heavy border indicates that it is observed (according to the
currently attached data file).

optimisation can be set to terminate automatically when the change in the bound during
one iteration drops below a small value. Alternatively, the optimisation can be stopped
after a fixed number of iterations.

The VIBES software can be downloaded from http://vibes.sourceforge.net. This
software was written by one of the authors (John Winn) whilst a Ph.D. student at the
University of Cambridge and is free and open source. Appendix A contains a tutorial for
applying VIBES to an example problem involving a Gaussian Mixture model. The VIBES
web site also contains an online version of this tutorial.

6. Extensions to Variational Message Passing

In this section, three extensions to the Variational Message Passing algorithm will be de-
scribed. These extensions are intended to illustrate how the algorithm can be modified
to perform alternative inference calculations and to show how the conjugate-exponential
constraint can be overcome in certain circumstances.
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6.1 Further Variational Approximations: The Logistic Sigmoid Function

As it stands, the VMP algorithm requires that the model be conjugate-exponential. How-
ever, it is possible to sidestep the conjugacy requirement by introducing additional vari-
ational parameters and approximating non-conjugate conditional distributions by valid
conjugate ones. We will now illustrate how this can be achieved using the example of
a conditional distribution over a binary variable x ∈ 0, 1 of the form

P (x | a) = σ(a)x[1− σ(a)]1−x

= eaxσ(−a)

where
σ(a) =

1
1 + exp(−a)

is the logistic sigmoid function.
We take the approach of Jaakkola and Jordan (1996) and use a variational bound for

the logistic sigmoid function defined as

σ(a) > F (a, ξ) def= σ(ξ) exp[(a− ξ)/2 + λ(ξ)(a2 − ξ2)]

where λ(ξ) = [1/2 − g(ξ)]/2ξ and ξ is a variational parameter. For any given value of a
we can make this bound exact by setting ξ2 = a2. The bound is illustrated in Figure 5 in
which the solid curve shows the logistic sigmoid function σ(a) and the dashed curve shows
the lower bound F (a, ξ) for ξ = 2.

We use this result to define a new lower bound L̃ 6 L by replacing each expectation of the
form 〈ln[eaxσ(−a)]〉 with its lower bound 〈ln[eaxF (−a, ξ)]〉. The effect of this transformation
is to replace the logistic sigmoid function with an exponential, therefore restoring conjugacy
to the model. Optimisation of each ξ parameter is achieved by maximising this new bound
L̃, leading to the re-estimation equation

ξ2 =
〈
a2

〉
Q

.

It is important to note that, as the quantity L̃ involves expectations of lnF (−a, ξ), it is no
longer guaranteed to be exact for any value of ξ.

−6 0 6
0

0.5

1

ξ = 2.0

Figure 5: The logistic sigmoid function σ(a) and variational bound F (a, ξ).
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It follows from (8) that the factor in Q corresponding to P (x | a) is updated using

lnQ?
x(x) = 〈ln(eaxF (−a, ξ))〉∼Qx(x) +

∑

k∈chx

〈ln P (Xk|pak )〉∼Qx(x) + const.

= 〈ax〉∼Qx(x) +
∑

k∈chx

〈bkx〉∼Qx(x) + const.

= a?x + const.

where a? = 〈a〉+∑
k 〈bk〉 and the {bk} arise from the child terms which must be in the form

(bkx + const.) due to conjugacy. Therefore, the variational posterior Qx(x) takes the form

Qx(x) = σ(a?)x[1− σ(a?)]1−x.

6.1.1 Using the Logistic Approximation within VMP

We will now explain how this additional variational approximation can be used within the
VMP framework. The lower bound L̃ contains terms like 〈ln(eaxF (−a, ξ))〉 which need to
be evaluated and so we must be able to evaluate [〈a〉 〈

a2
〉
]T. The conjugacy constraint

on a is therefore that its distribution must have a natural statistic vector ua(a) = [a a2].
Hence it could, for example, be Gaussian.

For consistency with general discrete distributions, we write the bound on the log con-
ditional lnP (x | a) as

ln P (x | a) >
[

0
a

]T [
δ(x− 0)
δ(x− 1)

]
+ (−a− ξ)/2 + λ(ξ)(a2 − ξ2) + lnσ(ξ)

=
[

δ(x− 1)− 1
2

λ(ξ)

]T [
a
a2

]
− ξ/2− λ(ξ)ξ2 + ln σ(ξ).

The message from node x to node a is therefore

mx→a =
[ 〈δ(x− 1)〉 − 1

2

λ(ξ)

]

and all other messages are as in standard VMP. The update of variational factors can then
be carried out as normal except that each ξ parameter must also be re-estimated during
optimisation. This can be carried out, for example, just before sending a message from x to
a. The only remaining modification is to the calculation of the lower bound in (22), where
the term 〈gj(paj )〉 is replaced by the expectation of its bound,

〈gj(paj )〉 > (−〈a〉 − ξ)/2 + λ(ξ)(
〈
a2

〉− ξ2) + lnσ(ξ).

This extension to VMP enables discrete nodes to have continuous parents, further enlarging
the class of allowable models. In general, the introduction of additional variational parame-
ters enormously extends the class of models to which VMP can be applied, as the constraint
that the model distributions must be conjugate no longer applies.
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6.2 Finding a Maximum A Posteriori Solution

The advantage of using a variational distribution is that it provides a posterior distribution
over latent variables. It is, however, also possible to use VMP to find a Maximum A
Posteriori (MAP) solution, in which values of each latent variable are found that maximise
the posterior probability. Consider choosing a variational distribution which is a delta
function

QMAP(H) = δ(H−H?)

where H? is the MAP solution. From (3), the lower bound is

L(Q) = 〈ln P (H,V)〉 − 〈lnQ(H)〉
= ln P (H?,V)

and so maximising the bound is equivalent to finding the MAP solution. The variational
distribution can be written in factorised form as

QMAP(H) =
∏

j

Qj(Hj).

with Qj(Hj) = δ(Hj − H?
j ). The KL divergence between the approximating distribution

and the true posterior is minimised if KL(Qj ||Q?
j ) is minimised, where Q?

j is the standard
variational solution given by (6). Normally, Qj is unconstrained so we can simply set it to
Q?

j . However, in this case, Qj is a delta function and so we have to find the value of H?
j

that minimises KL(δ(Hj − H?
j ) ||Q?

j ). Unsurprisingly, this is simply the value of H?
j that

maximises Q?
j (H

?
j ).

In the message passing framework, a MAP solution can be obtained for a particular
latent variable Hj directly from the updated natural statistic vector φ?

j using

(φ?
j )

T duj(Hj)
dHj

= 0.

For example, if Q?
j is Gaussian with mean µ then H?

j = µ or if Q?
j is Gamma with parameters

a, b, then H?
j = (a− 1)/b.

Given that the variational posterior is now a delta function, the expectation of any
function 〈f(Hj)〉 under the variational posterior is just f(H?

j ). Therefore, in any outgoing
messages, 〈uj(Hj)〉 is replaced by uj(H?

j ). Since all surrounding nodes can process these
messages as normal, a MAP solution may be obtained for any chosen subset of variables
(such as particular hyper-parameters), whilst a full posterior distribution is retained for all
other variables.

6.3 Learning Non-conjugate Priors by Sampling

For some exponential family distribution parameters, there is no standard probability dis-
tribution which can act as a conjugate prior. For example, there is no standard distribution
which can act as a conjugate prior for the shape parameter a of the Gamma distribution.
This implies that we cannot learn a posterior distribution over a Gamma shape param-
eter within the basic VMP framework. As discussed above, we can sometimes introduce
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conjugate approximations by adding variational parameters, but this may not always be
possible.

The purpose of the conjugacy constraint is two-fold. First, it means that the posterior
distribution of each variable, conditioned on its neighbours, has the same form as the
prior distribution. Hence, the updated variational distribution factor for that variable has
the same form and inference involves just updating the parameters of that distribution.
Second, conjugacy results in variational distributions being in standard exponential family
form allowing their moments to be calculated analytically.

If we ignore the conjugacy constraint, we get non-standard posterior distributions and
we must resort to using sampling or other methods to determine the moments of these
distributions. The disadvantages of using sampling include computational expense, inability
to calculate an analytical lower bound and the fact that inference is no longer deterministic
for a given initialisation and ordering. The use of sampling methods will now be illustrated
by an example showing how to sample from the posterior over the shape parameter of a
Gamma distribution.

Example 4 Learning a Gamma Shape Parameter
Let us assume that there is a latent variable a which is to be used as the shape parameter

of K gamma distributed variables {x1 . . . xK}. We choose a to have a non-conjugate prior
of an inverse-Gamma distribution:

P (a |α, β) ∝ a−α−1 exp
(−β

a

)
.

The form of the gamma distribution means that messages sent to the node a are with respect
to a natural statistic vector

ua =
[

a
ln Γ(a)

]

which means that the updated factor distribution Q?
a has the form

ln Q?
a(a) =

[
K∑

i=1

mxi→a

]T [
a

ln Γ(a)

]
+ (−α− 1) ln a− β

a
+ const.

This density is not of standard form, but it can be shown that Q?(ln a) is log-concave, so we
can generate independent samples from the distribution for ln a using Adaptive Rejection
Sampling from Gilks and Wild (1992). These samples are then transformed to get samples
of a from Q?

a(a), which is used to estimate the expectation 〈ua(a)〉. This expectation is then
sent as the outgoing message to each of the child nodes.

Each factor distribution is normally updated during every iteration and so, in this case,
a number of independent samples from Q?

a would have to be drawn during every iteration.
If this proved too computationally expensive, then the distribution need only be updated
intermittently.

It is worth noting that, as in this example, BUGS also uses Adaptive Rejection Sampling
for sampling when the posterior distribution is log-concave but non-conjugate, whilst also
providing techniques for sampling when the posterior is not log-concave. This suggests
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that non-conjugate parts of a general graphical model could be handled within a BUGS-
style framework whilst Variational Message Passing is used for the rest of the model. The
resulting hybrid variational/sampling framework would, to a certain extent, capture the
advantages of both techniques.

7. Discussion

The Variational Message Passing algorithm allows approximate inference using a factorised
variational distribution in any conjugate-exponential model, and in a range of non-conjugate
models. As a demonstration of its utility, this algorithm has already been used to solve prob-
lems in the domain of machine vision and bioinformatics (see Winn, 2003, Bishop and Winn,
2000). In general, Variational Message Passing dramatically simplifies the construction and
testing of new variational models and readily allows a range of alternative models to be
tested on a given problem.

The general form of VMP also allows the inclusion of arbitrary nodes in the graphical
model provided that each node is able to receive and generate appropriate messages in the
required form, whether or not the model remains conjugate-exponential. The extensions to
VMP concerning the logistic function and sampling illustrate this flexibility.

One limitation of the current algorithm is that it uses a variational distribution which
is factorised across nodes, giving an approximate posterior which is separable with respect
to individual (scalar or vector) variables. In general, an improved approximation will be
achieved if a posterior distribution is used which retains some dependency structure. Whilst
Wiegerinck (2000) has presented a general framework for such structured variational infer-
ence, he does not provide a general-purpose algorithm for applying this framework. Winn
(2003) and Bishop and Winn (2003) have therefore proposed an extended version of Vari-
ational Message Passing which allows for structured variational distributions. VIBES has
been extended to implement a limited version of this algorithm that can only be applied
to a constrained set of models. However, a complete implementation and evaluation of this
extended algorithm has yet to be undertaken.

The VIBES software is free and open source and can be downloaded from the VIBES
web site at http://vibes.sourceforge.net. The web site also contains a tutorial that
provides an introduction to using VIBES.
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Appendix A: VIBES Tutorial

In this appendix, we demonstrate the application of VIBES to an example problem involving
a Gaussian Mixture model. We then demonstrate the flexibility of VIBES by changing the
model to fit the data better, using the lower bound as an estimate of the log evidence for
each model. An online version of this tutorial is available at http://vibes.sourceforge.
net/tutorial.

The data used in this tutorial is two-dimensional and consists of nine clusters in a
three-by-three grid, as illustrated in Figure 6.
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Figure 6: The two-dimensional data set used in the tutorial, which consists of nine clusters
in a three-by-three grid.

Loading Matlab Data Into VIBES

The first step is to load the data set into VIBES. This is achieved by creating a node with
the name x which corresponds to a matrix x in a Matlab .mat file. As the data matrix is
two dimensional, the node is placed inside two plates N and d and the data filename (in this
case MixGaussianData2D.mat) is entered. Selecting File→Load data loads the data into
the node and also sets the size of the N and d plates to 500 and 2 respectively. The node
is marked as observed (shown with a bold edge) and the observed data can be inspected by
double-clicking the node with the mouse. At this point, the display is as shown in Figure 7.

Creating and Learning a Gaussian Model

The node x has been marked as Gaussian by default and so the model is invalid as neither
the mean nor the precision of the Gaussian have been set (attempting to initialise the model
by pressing the Init. button will give an error message to this effect). We can specify latent
variables for these parameters by creating a node µ for the mean parameter and a node γ
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Figure 7: A VIBES model with a single observed node x which has attached data.

for the precision parameter. These nodes are created within the d plate to give a model
which is separable over each data dimension. These are then set as the Mean and Precision
properties of x, as shown in Figure 8.

Figure 8: A two-dimensional Gaussian model, showing that the variables µ and γ are being
used as the mean and precision parameters of the conditional distribution over x.

The model is still invalid as the parameters of µ and γ are unspecified. In this case,
rather than create further latent variables, these parameters will be set to fixed values
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to give appropriate priors (for example setting µ to have mean = 0 and precision = 0.3
and γ to have a = 10 and b = 1). The network now corresponds to a two-dimensional
Gaussian model and variational inference can be performed automatically by pressing the
Start button (which also performs initialisation). For this data set, inference converges
after four iterations and gives a bound of −1984 nats. At this point, the expected values of
each latent variable under the fully-factorised Q distribution can be displayed or graphed
by double-clicking on the corresponding node.

Extending the Gaussian model to a Gaussian mixture model

Our aim is to create a Gaussian mixture model and so we must extend our simple Gaussian
model to be a mixture with K Gaussian components. As there will now be K sets of the
latent variables µ and γ, these are placed in a new plate, called K, whose size is set to 20.
We modify the conditional distribution for the x node to be a mixture of dimension K, with
each component being Gaussian. The display is then as shown in Figure 9.

Figure 9: An incomplete model which shows that x is now a mixture of K Gaussians. There
are now K sets of parameters and so µ and γ have been placed in a plate K. The
model is incomplete as the Index parent of x has not been specified.

The model is currently incomplete as making x a mixture requires a new discrete Index
parent to indicate which component distribution each data point was drawn from. We must
therefore create a new node λ, sitting in the N plate, to represent this new discrete latent
variable. We also create a node π with a Dirichlet distribution which provides a prior over
λ. The completed mixture model is shown in Figure 10.
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Figure 10: The completed Gaussian mixture model showing the discrete indicator node λ.

Inference using the Gaussian mixture model

With the model complete, inference can once again proceed automatically by pressing the
Start button. A Hinton diagram of the expected value of π can be displayed by double-
clicking on the π node, giving the result shown in Figure 11. As can be seen, nine of the
twenty components have been retained.

Figure 11: A Hinton diagram showing the expected value of π for each mixture component.
The learned mixture consists of only nine components.

The means of the retained components can be inspected by double-clicking on the µ
node, giving the Hinton diagram of Figure 12. These learned means correspond to the
centres of each of the data clusters.

Figure 12: A Hinton diagram whose columns give the expected two-dimensional value of
the mean µ for each mixture component. The mean of each of the eleven unused
components is just the expected value under the prior which is (0, 0). Column
4 corresponds to a retained component whose mean is roughly (0, 0).
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A graph of the evolution of the bound can be displayed by clicking on the bound value
and is shown in Figure 13. The converged lower bound of this new model is −1019 nats,
which is significantly higher than that of the single Gaussian model, showing that there is
much greater evidence for this model. This is unsurprising since a mixture of 20 Gaussians
has significantly more parameters than a single Gaussian and hence can give a much closer fit
to the data. Note, however, that the model automatically chooses only to exploit 9 of these
components, with the remainder being suppressed (by virtue of their mixing coefficients
going to zero). This provides an elegant example of automatic model complexity selection
within a Bayesian setting.

Figure 13: A graph of the evolution of the lower bound during inference.

Modifying the mixture model

The rapidity with which models can be constructed using VIBES allows new models to
be quickly developed and compared. For example, we can take our existing mixture of
Gaussians model and modify it to try and find a more probable model.

First, we may hypothesise that each of the clusters has similar size and so they may
be modelled by a mixture of Gaussian components having a common variance in each
dimension. Graphically, this corresponds to shrinking the K plate so that it no longer
contains the γ node, as shown in Figure 14a. The converged lower bound for this new
model is −937 nats showing that this modified model is better at explaining this data set
than the standard mixture of Gaussians model. Note that the increase in model probability
does not arise from an improved fit to the data, since this model and the previous one both
contain 20 Gaussian components and in both cases 9 of these components contribute to
the data fit. Rather, the constrained model having a single variance parameter can achieve
almost as good a data fit as the unconstrained model yet with far fewer parameters. Since
a Bayesian approach automatically penalises complexity, the simpler (constrained) model
has the higher probability as indicated by the higher value for the variational lower bound.

We may further hypothesise that the data set is separable with respect to its two di-
mensions (i.e. the two dimensions are independent). Graphically this consists of moving all
nodes inside the d plate (so we effectively have two copies of a one-dimensional mixture of

30



Variational Message Passing

(a) (b)

Figure 14: (a) Mixture of Gaussians model with shared precision parameter γ (the γ node
is no longer inside the K plate). (b) Model with independent data dimensions,
each a univariate Gaussian mixture with common variance.

Gaussians model with common variance). A VIBES screenshot of this further modification
is shown in Figure 14b. Performing variational inference on this separable model leads
to each one-dimensional mixture having three retained mixture components and gives an
improved bound of -876 nats.

We will consider one final model. In this model both the π and the γ nodes are common
to both data dimensions, as shown in Figure 15. This change corresponds to the assump-
tion that the mixture coefficients are the same for each of the two mixtures and that the
component variances are the same for all components in both mixtures. Inference leads
to a final improved bound of −856 nats. Whilst this tutorial has been on a toy data set,
the principles of model construction, modification and comparison can be applied just as
readily to real data sets.

Figure 15: Further modified mixture model where the π and γ nodes are now common to
all data dimensions.
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