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Abstract-The effect of local pressure gradients and of a local flattcning of the pressure profile W -  0)  
around the resonant surface of a tearing mode is investigated in toroidal geometry. I t  is shown that the 
stability index A ,  calculated from the idcal outer rcgion, is modified by local profile changes in a way 
reminiscent of the favourable curvature stabilization of linear and non-linear tearing mode layer theory. 
If  the width of the region of pressure Rattening is of the order of the linear mistive layer width, the 
stabilization from the ideal outer rcgion compensates for the loss of prcssurc gradient stabilization from 
the layer, and the overall stability of the mode is largely unarected. For pressure flattening over a larger 
region, however, the mode can be strongly destabilized. Since the Battening region may then still be loo 
small to rcsol~c experimentally, this result implies the essential difficulty of determining the tearing mode 
stability of experimental profiles. 

I .  !N?P.ODUC?!ON 
TEARING MODE STARILITY is known to depend sensitively on the pressure gradient at 
the tearing layer. In cylindrical geometry, COPPI ef al. (1966) showed that a pressure 
gradient within the resistive layer can drive a tearing-type instability, and GLASSER r f  
a/. (1975) later showed that in toroidal geometry, where the average curvature is 
favourable (DK < 0), tearing modcs can be strongly stabilized by pressure gradient 
effects within the resistive layer. This effect was then shown to persist (SOMON, 1984; 
KOTSCHENREUTHER et al., 1985) in the non-linear phase of island growth as originally 
described by RUTHERFORD (1973). In this note we investigate the effect of small 
modifications to the axisymmetric equilibrium in which the pressure profile (but not 
the q profile) is perturbed over a small region localized around the resonant magnetic 
surface. In Section 2 we assume a form for the local pressure gradient profile 

which represents local flattening at the resonant surface r,  (Fig. I) .  In equation 
( I ) ,  X = ( r - r s )  with r a flux surface coordinate (with dimension of length) and 
b/rs = E << I .  

In Section 3 we consider the form 
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FIG. I- 
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: model pressure profile olequat ion ( I ) ,  showing lhe Rattening < l e  pressure 
in the vicinity of thc rational surface (X = 0). 

with 6 ,  < 6, << I , .  This represents local pressure gradients (Fig. 2) with a maximum 
value ofpb in the region 6 ,  < 1x1 < S 2  with p' + 0 at the resonant surface (1x1 << 6J .  
and p' + 0 far from the rational surface (1x1 >> ~ 5 ~ ) .  

For both profiles (1) and (2) we derive expressions for the values of the stability 
index A' calculated close to the rational surrace (Ao) and far from the rational surface 
(KO). 

2 .  T H E  E F F E C T  O F  LOCAL FLATTENING O F  T H E  PRESSURE PROFILE 
In the cylindrical model of a Tokamak, thc cquation governing teering mode 

s!ahi!i!y raker the form 

(3) 
d d'J" n?' nzqu' 2p' m2 

y,,, - ~ 

- ,YY,=O 
(nz - nq) m-nq 
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Rc. 2.-Thc modcl prcssurc profile ofcquat ion (2), showing the Aatlening of the pressure 
both w r y  close to, and very far from, the rational surfdcc. 



Determining tearing mode stability 39 I 

where m and n are the poloidal and axial (kz = n / R )  mode numbers and Y,,, is 
the perturbed flux function. Primes denote radial derivatives and U = Jll/B is the 
longitudinal current. As discussed by COPPI et al. (1966), tearing mode stability is 
determined by asymptotic matching of the solutions to equation (3) to those obtained 
by solving more complicated equations in the resistive layer around r,, where r, is 
defined by m-nq(r,) = 0. For this purpose a single stability index 4' [see equation 
(IO) below for a precise definition] is calculated from equation (3). 

harmonics and by toroidal curvature [p' +p'(l - q 2 ) ] .  Close to the resonant surface, 
however, the pressure gradient term dominates over the current gradient term and 
also over toroidal coupling effects so that, locally, Yn, satisfies the equation 

!n +"r~;rl . , l  nnnmn+r,, -..., +:,." ,T, :" ...~-l:c^,l L., ",...XI:",. -I A:=--....+ ..,.ln;-lql 
L " L " . U Y l  p " 1 . 1 " L L J .  C'IYCLL,"" ,,, ,a I I I V U l l l G U  u y  C V U p l L " ~  U ,  U l l l C l C l l L  p"L"LUY1 

d2Y Y 
=+D,-=O Y2 
"/l ,. 

where 

2rp' I -q 
B" 

DI = - 7 (q) with s = rq'/q, 

and we have dropped the harmonic suffix m for simplicity. 
Now introducing the form (I) for the local pressure profile 

and using the stretched variable I = X/6, equation (4) takes the form 

(4) 

This equ.tio!! has the genera! solutio!! 

YR.L(x) = (I +x')[PL(ix)+~,,,Qr(ix)I (7) 

where P, and Ql, are Legendre functions, prime denotes differentiation with respect 
to the argument, ,lR.L are arbitrary constants characterizing the solutions on the left 
(s : G) and right (x : 0) and !he order Y is gl:.e:: by 

(8) " =  -1 2+( i -DI , , )"2 .  

Now the solutions for 1x1 >> I on the left and on the right in general have the form 

Y = ~ X l ~ ' + 4 1 ~ ~ , l X ~ ' + "  X >  0 
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Y IXI-'+AL,IXI'+' X < O  (9) 

and the relevant measure of A in the outer region (1x1 >> 8) is 

A L  = $(A,,, (10) 

GUi &JCi-t is io calculate the quan:ipj; thz ratio o f t h e  coefl~en: of 
the small solution to the coefficient of the large solution) in the inner region where 
1x1 << 6 (i.e. x + 0). Note that it is still assumed that the relevant equations are those 
of ideal MHD in this region, and therefore that the resistive layer width S,, is even 
smaller than 6 (S,,/S << I ) .  In the inner region of the flattening zone, the solutions (7) 
have the asymptotic forms 

Y N 1 +An,,X, X > 0 

Y 1 +ALolXl, X < 0 

so that the relevant A parameter in the inner region is 

Ah ~(AL,,+AR,J. (12) 

Using the appropriate asymptotic forms (ERDELY~, 1953) of the Legendre functions 
at  large and small arguments to relate ARg to ARm and AL0 to ALm, wc obtain the 
following result 

where 

From equation (13) we immediately derive the desired relationship, namely 

A. = 

For a low f l  equilibrium, ID, 1 << 1 and v % -D,, this relation reduces to the form 
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where E = 26/r,. To understand the content of equation ( I  7) it is instructive to examine 
the tearing mode dispersion relations one would obtain in the two cases corresponding 
to (i) no pressure flattening around the singular surface (when A& must be matched 
to the analogous quantity obtained from the tearing layer equations) and (ii) pressure 
flattening around the singular surface (in which case A; must be matched to the 
analogous quantity obtained from a layer theory in which p’ = 0). 

To do this we choose the compressible resistive MHD model of the layer (GLASSER 
ef al., 1975) and obtain for case (i) 

and for case (ii) 

where E, = 6,,/rS with 6, being the linear layer width given by S,, = r , [ y / ( y , n ’ ~ ~ S ) ] ’ ’ ~ ,  
S = (Y~T,,) with zn = r:/qc’ and y a  = B / [ R 2 p ( l + 2 q Z ) ] ” 2 ,  and Q = y/yA(n2s2S)-li’. 
Note that the QSi4 factor familiar in the resistive layer theory of tearing modes is 
recovered in equations (18) or (19) when the Q dependence of the layer width cq is 
represented explicitly. With the aid of equation (17), the dispersion relation (19) can 
L “ - A : . .  L L - - , L  :..-CA-- --:..:-- A I  \ .  
VC C A p l C > > c U  111 LLlC a l l C l l l d l l Y C  l U l l l l  ( G U t I W ! l t t l l g  nCaJ . 

Thus equation (18) describes the dispersion relation obtained without pressure flat- 
tening, while equation (20) gives the dispersion relation for a pressure profile flattened 
near the resonant surface (Fig. 1). Comparison of these two equations shows that the 
principle difference (since v << 1) is a factor ( E , / & )  in the second term. Thus if the width 
i: of the region of pressure flattening is of the order of the linear layer width E, then 
the pressure flattening has little overall effect on the stability of the mode. For 
E > sq, however, the pressure flattening does indeed remove the stabilizing term and 
considerably affects the stability of the mode. This effect can occur when the width of 
the flattening region is still too small to be resolved by the usual experimental diag- 
nostics. Thus it is essentially impossible to determine the tearing mode stability of an 
experimental profile since this would require detailed knowledge of the pressure profile 
over small length scales near rational surfaces. Although this result was illustrated 
using a resistive MHD layer theory, it is actually a consequence of equation (17) and 
hence is independent of the model used to describe the layer. The favourable average 
curvature cffcct noted by GLASSER et al. (1975) in toroidal geometry has been 
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transferred from the resistive layer in equation (18) (where it is associated with e,,) to 
the outer ideal region in equation (20) (where it is associated with E ) .  

The appearancc of D, rather than D, in equation (20) needs some comment. In  
their non-linear island evolution calculation KOTSCHENKEUTHER er 01. (1985) obtained 
the form 

where c,, = Wjr, with W the island width. Within the large aspect ratio ordering used 
in this work D ,  2 D ,  rather than D,. However, as discussed by these authors, D,, 
and the precise form of the curvature term, must depend on the importance of particle 
transport in determining the p:essure p:ofi!e ac:oss the is!and. !E the uzcha~gcd 
topology of the ideal scenario envisaged in our model only D, can be expected to 
appear. 

3 .  EFFECT O F  A LOCAL S T E P  I N  T H E  P R E S S U R E  P R O F I L E  
In this section we consider the effect on A' of local pressure gradients close to the 

resonant surface of a tearing mode. To do this we assume a pressure gradient of the 
form (Fig. 2) 

with 6 ,  < 6, << r, and X =  r - r s .  Now introducing the scaled variable x = X / J m ,  
equation (4) for 'f' takes the form 

(23)  
d "i' 

( 1 + ~ ~ ) ' ~ + 4 D , , , y I  d x  = 0 

with general solution 

'f' = ( I  + , Y ~ ) " ~ { C ,  cos (a tan- '  x)+C2 sin(a tan- '  x)} (24) 

where a = ( I  +4D,,)"2 and Cl,2 are arbitrary constants. The values of 

are readily calculated in the limits 1x1 << 6 ,  and 1x1 >> h2 to obtain Ai, and A m ,  with 
the result 
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where c j  = Si/rs, j = 1,2. 
Foi vypical c.aluis of j and shiai  s, D, e l and equation (25)  izduces to 

(26)  
li rsA; = r sAL + ~ 

D1o 

which is similar to equation (17) of Section 2. With favourable average curvature 
n. K I7 thlt  etaan n r ~ ~ w n r ~  nraA;#nti. ,-InOP tn the r e c n n n n t  r l l r f o r r  ,,,;Aentlv hirip -,,, . ", <" L..YLo.C'v y.-""...-6.LIU.~...11 c."l.. .- ...I.~"~..II...YUI.II~""..I~ .... ., ..I._ 

a strong stabilizing effect on tearing modes. 

4 .  C O N C L U S I O N S  
Conventional linear and non-linear tearing mode layer theories predict a stabilizing 

effect arising from local pressure gradients at the resonant surface coupled to favour- 
able average curvature. We have shown that a flattening of the pressure profile at the 
resonant surface does not necessarily remove this effect since it can reappear in the 
ideal outer region. Indeed, if the width of the flattened region is of the order of the 
linear layer width the two effects roughly compensate, and the overall stability of the 
mode is largely unaffected. For flattening over a larger region, however, the stabilizing 
effect can be significantly reduced. Since the spatial resolution of diagnostics for 
determining experimental pressure profiles is much larger than a typical linear layer 

profilescannot be reliably calculatcd, these results imply that the tearing mode stability 
of Tokamak discharges cannot reliably be ascertained. 

Local flattening of the current gradient can also modify the stability of tearing 
modes. However, since the singularity associated with current gradients is weaker 
( - X -  I) then that associated with pressure gradients (- X -  *), current flattening must 
necessarily encompass a wider zone to affect stability significantly. A local analysis 
for current gradient flattening, similar to that performed in this paper for pressure 
flattening, would provide information on the accuracy required in measuring current 
profiles (poloidal fields, in practice) to compare with stability predictions. 

Widiii, ;iiid sinct: (in a;seiice &quaie iheoiy of ;oca; irai.ljpuiij 
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