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Abstract—The effect of local pressure gradients and of a local flattening of the pressure profile (p” — 0)
around the resonant surface of a tearing mode is investigated in toroidal geometry. It is shown that the
stability index A’, calculated from the ideal outer region, is modified by local profile changes in a way
reminiscent of the favourable curvature stabilization of linear and non-linear tearing mode layer theory.
If the width of the region of pressure flattening is of the order of the linear resistive layer width, the
stabilization from the idea! outer region compensates for the loss of pressure gradient stabilization from
the laver, and the overall stability of the mode is largely unaffected. For pressure flattening over a larger
region, however, the mode can be strongly destabilized. Since the flattening region may then still be 1oo
small to resolve experimentally, this result implies the essential difficulty of determining the tearing mode
stability of experimental profiles.

I INTRODUCTION
TEARING MODE STABILITY is known to depend sensitively on the pressure gradient at
the tearing layer. In cylindrical geometry, CoppI et al. (1966) showed that a pressure
gradient within the resistive layer can drive a tearing-type instability, and (GLASSER e/
al. (1975) later showed that in toroidal geometry, where the average curvature is
favourable (Dy < 0}, tearing modcs can be strongly stabilized by pressure gradient
effects within the resistive layer. This effect was then shown to persist (SoMON, 1984;
KOTSCHENREUTHER ¢! al., 1985) in the non-linear phase of island growth as originally
described by RUTHERFORD (1973). In this note we investigate the effect of small
modifications to the axisymmetric equilibrium in which the pressure profile (but not
the g profile) is perturbed over a small region localized around the resonant magnetic
surface. In Section 2 we assume a form for the local pressure gradient profile
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which represents local flattening at the resonant surface r, (Fig. 1). In equation
(1), X =(r—r,) with r a flux surface coordinate (with dimension of length) and
dro=¢« |
In Section 3 we consider the form
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FIG. 1.—The model pressure profile of equatien (1), showing the flattening of the pressure
in the vicinity of the rational surface (X" = 0).

with &, € 8, « r,. This represents local pressure gradients (Fig. 2) with a maximum
value of pjy in the region 8, < |X| < &, with p" — 0 at the resonant surface (| X| « &),
and p’ — 0 far from the rational surface (X} » &,).

For both profiles (1) and (2) we derive expressions for the values of the stability
index A’ calculated close to the rational surface (A%) and far from the rational surface
(A%).

2. THE EFFECT OF LOCAL FLATTENING OF THE PRESSURE PROFILE
In the cylindrical model of a Tokamak, the equation governing tearing mode
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FiG. 2.—The model pressure profile of eguation (2), showing the flattening of the pressure
both very close to, and very far from, the rational surface.
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where m and » are the poloidal and axial (k. = n/R) mode numbers and ¥, is
the perturbed flux function. Primes denote radial derivatives and o = J/B is the
longitudinal current. As discussed by CoPPI et al. (1966), tearing mode stability is
determined by asymptotic matching of the solutions to equation (3) to those obtained
by solving more complicated equations in the resistive layer around r,, where v, is
defined by m—ng(r;) = 0. For this purpose a single stability index A’ [see equation
{10) below for a precise definition] is Cdlculated from equation {3).
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harmonics and by toroidal curvature [p” — p’(1 —g*)]. Close to the resonant surface,
however, the pressure gradient term dominates over the current gradient term and
also over toroidal coupling effects so that, locally, P, satisfies the equation

d?¥ k4
iD= 0 @
where
2rp (1 —g?
DI:——@(—;;) with s = rg'/q,
B s

and we have dropped the harmonic suffix m for simplicity.
Now introducing the form (1) for the local pressure profile

XZ
Dl — DIUW (5)
and using the stretched variable x = X/4, equation (4) takes the form
, A7
(l+x )EE'—FD]"“P = (. (6)
T
This equation has the general solution
Pro(x) = (1+x9)[PL(ix) + Ax LQ 1 (1X)] (M

where P, and Q, are Legendre functions, prime denotes diflerentiation with respect
to the argument, 4, are arbitrary constants characterizing the solutions on the left

t{x > 0)and the order vis given by

+GE-DY", ®)

bdl—

v=—

Now the solutions for |x| > | on the left and on the right in general have the form

\PEIXl_v+A|{a]|XIl+v X>0
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and the relevant measure of A” in the outer region (|X| > §) is

Ay = 1B, +A0). (10)

g N ilata tla
1
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Our object is to calculate t

18 equivalent A” quantity (i.e. the ratio of the coefficient of
the small solution to the coefficient of the large solution) in the inner region where
|X| « 8 (i.e. x ~» 0). Note that it is still assumed that the relevant equations are those
of ideal MHD in this region, and therefore that the resistive layer width , is even
smaller than § (6,/8 <« 1). In the inner region of the flattening zone, the solutions (7)

have the asymptotic forms

W l4A X, X>0
W 14 AL XL X <0 (11

so that the relevant A" parameter in the inner region is
A = (AL, +Ar). (12)

Using the appropriate asymptotic forms (ERDELYI, 1953) of the Legendre functions
at large and small arguments to relate Ag to Ay and Ag to A, , we obtain the
following result

Ry av  Fy(v) L, TV .
ARLD = —Tlan 5 + F.0) 1 —tan 3 ARLJS (13)
where
23+ (1 — )T v+ DT (v + 3 cos ny
= 14
Fi0) 032 (14)
v 1 v
Fi(v) = . {15)
o1+ K)r iy
2 2 2
From equation (13) we immediately derive the desired relationship, namely
F, v Fy ( 2:'rv>
0= ——=tan— +6~A, = 1 —tan*— ). 16)
’ o 2 F, 2 (

For a low f equilibrium, |D,| « 1 and v & — D,, this relation reduces to the form
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D
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where ¢ = 23/r,. To understand the content of equation (17) itis instructive to examine
the tearing mode dispersion relations one would obtain in the two cases corresponding
to (i) no pressure flattening around the singular surface (when A, must be matched
to the analogous quantity obtained from the tearing layer equations) and (ii) pressure
flattening around the singular surface (in which case Aj, must be matched to the
analogous quantity obtained from a layer theory in which p’ = 0).

To do this we choose the compressible resistive MHD model of the layer (GLASSER
ef al., 1975) and obtain for case (i)

F(i) 0 w'Dy T(3)

rsl+2"A,'3” = r() A"H-Zv - £?l+2fr 4F(l) (18)
and for case (i)
re oY
r Ay = 19
=R o 19

where &, = 3,/r, with &, being the linear layer width given by 8, = r,[y/(y,n%s*5)]"4,
S = (y47,) with 7, = rl/gc? and y, = B/[R?p(1+2¢™)]"?, and Q = y/p.(n*s’8) '3,
Note that the Q** factor familiar in the resistive layer theory of tearing modes is
recovered in equations (18) or (19) when the @ dependence of the layer width ¢, is
represented explicitly With the aid of equation (17) the dispersion relation (19) can

be expressed in the alternative {form {countaining AL) :

L+ 20 pr 1_(4) Q%j?. Dl
¥y Am r( 4) —TN W . (20)
Thus equation (18) describes the dispersion relation obtained without pressure flat-
tening, while equation (20) gives the dispersion relation for a pressure profile flattened
near the resonant surface (Fig. 1). Comparison of these two equations shows that the
principle difference (since v « 1) is a factor (g, /¢) in the second term. Thus if the width
¢ of the region of pressure flattening is of the order of the linear layer width ¢, then
the pressure flaitening has little overall effect on the stability of the mode. For
£ > g,, however, the pressure flattening does indeed remove the stabilizing term and
considerably affects the stability of the mode. This effect can occur when the width of
the flattening region is still too small to be resolved by the usual experimental diag-
nostics. Thus it is essentially impossible to determine the tearing mode stability of an
experimental profile since this would require detailed knowledge of the pressure profile
over small length scales near rational surfaces. Although this result was illustrated
using a resistive MHD layer theory, it is actually a consequence of equation (17) and
hence is independent of the model used to describe the layer. The favourable average
curvature cffcct noted by GrLassEr er gl (1975} in toroidal geometry has been
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transferred from the resistive layer in equation (18) (where it is associated with g,) to
the outer ideal region in equation (20} (where it is associated with g),

The appearance of D; rather than Dy in equation (20) needs some comment. In
their non-linear island evolution calculation KOTSCHENREUTHER ef al. {1985) obtained
the form

1 d

A D
Ta 1_66:1[,,3” AL, +63 EH—’;] @1

"

where ¢, = W/r, with W the island width. Within the large aspect ratio ordering used
in this work Dy ~ Dy rather than D,. However, as discussed by these authors, Dy,
and the precise form of the curvature term, must depend on the importance of particle

transport in determining the pressure profile across the island. Tn the unchanged

topology of the ideal scenario envisaged in our model only D, can be expected to
appear,

3. EFFECT OF A LOCAL STEP IN THE PRESSURE PROFILE
In this section we constder the effect on A’ of local pressure gradients close to the
resonant surface of a tearing mode. To do this we assume a pressure gradient of the

form (Fig. 2)
48, § Xx\?
PXy = (5—2)1:’0(;‘ + 5—2) @2

with &, € 0, « ryand X = r—r,. Now introducing the scaled variable x = X/./9,0,,
equation (4) for ‘¥ takes the form

Ld?¥
(14372 S +4D,% =0 (23)
with general solution
W= (1+x)"2{C, cos{atan™" x)+ C,sin{z tan~ ' x)} (24)

where o = (1 +4D, )"? and C, ; are arbitrary constants. The values of

e
A = [@, J}r:

are readily calculated in the limits | X| « 8, and | X| » &, to obtain A} and A7, with
the result
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where ¢ = 0,/r,, j=1,2.
For Ly'pical values of § and shear 5, D, « | and equation (25) reduces to
, 4
¥ A = rsAm DIO (26)
Ej€y

which is similar to equation (17) of Section 2.
t

N. « n sy that gteen nressure oradients close
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a strong stabilizing effect on tearing modes.

4. CONCLUSIONS

Conventional linear and non-linear tearing mode layer theories predict a stabilizing
effect arising from local pressure gradients at the resonant surface coupled to favour-
able average curvature. We have shown that a flattening of the pressure profile at the
resonant surface does not necessarily remove this effect since it can reappear in the
ideal outer region. Indeed, if the width of the flattened region is of the order of the
linear layer width the two effects roughly compensate, and the overall stability of the
mode is largely unaffected. For Rattening over a larger region, however, the stabilizing
effect can be significantly reduced. Since the spatial reselution of diagnostics for
dclermining experimental pressure proﬁles is much larger than a typical lincar layer
width, and since Un the absence of an dULL]lelt: Lut":OTy of local uai‘lS‘pOf'L) pressure
profilescannot be reliably caleulated, these results imply that the tearing mode stability
of Tokamak discharges cannot reliably be ascertained.

Local flattening of the current gradient can also modify the stability of tearing
modes. However, since the singularity associated with current gradients is weaker
{~X~") then that associated with pressure gradients { ~ X ~?), current flattening must
necessarily encompass a wider zone to aflect stability significantly. A local analysis
for current gradient flattening, similar to that performed in this paper for pressure
flattening, would provide information on the accuracy required in measuring current
profiles {(poloidal fields, in practice) to compare with stability predictions.
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