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Abstract-Reversed field pinches are conventionally stabilized by surrounding the plasma with a thick 
metallic shell. This suppresses flux penetration but only for times shorter than the shell’s resistive diffusion 
time. To improve on this we propose replacing the thick shell with an intelligent shell which provides active 
flux freezing on much longer time scales. 

1.  I N T R O D U C T I O N  
LARGE SCALE STABILITY in a reversed field pinch is generally achieved by surrounding 
the plasma with a close-fitting highly conducting shell. Macroscopic instabilities must 
drive flux through the shell and this sets up eddy currents which generate an opposing 
field distribution. On short time scales the flux through the shell remains fixed and 
growth of the unstable mode is inhibited. However, on longer time scales Ohmic 
dissipation damps the eddy currents and allows flux to diffuse through the shell. 
Theoretical models (HENDER et al., 1986 ; GIMBLETT, 1986 and references therein) 
have shown that instabilities are only suppressed on time scales which are short 
compared to the long time constant of the shell (i.e. the characteristic time constant 
for penetration of vertical field). Kecent experiments on HBTXlC (ALPER et al., 
1989) and OHTE (TAYLOR et al., 1988) using thin shells with short time constants 
have confirmed these results and suggest that the plasma cannot be sustained for times 
much longer than some multiple of the shell time. Lowering the resistance of the shell 
increases the shell time constant so that, with a thick shell, resistive diffusion times of 
a few hundred milliseconds may be achieved. If the system is to be used as a reactor, 
however, much longer time scales, of the order of many seconds, will be required. To 
achieve this we propose a novel method of active flux freezing which creates, within 
certain limits, the effects of a perfectly conducting shell. 

2 .  T H E  S I N G L E  LOOP 
We begin by considering how to freeze the total normal flux through a single 

conducting loop C. The flux is given by 

$ = J B . d S  
S 

where B is the total field, and S is any surface spanned by C. This flux may be split 
into two parts 
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where q5e is the flux due to external currents, while q$ arises from the current I flowing 
in the loop. From Ampere’s law, $r is proportional to I and hence we may write 

q5r = LI (3) 

where L is the self-inductance of the loop. Using Faraday’s law we have 

where d is the emf around the loop. Suppose we introduce a second “sensing” loop 
geometrically coincident with the first loop as shown in Fig. 1. The sensing loop 
detects a voltage Vs given by the rate of change of total flux, so that V, = -6. This 
is fed to a linear amplifier whose output drives the main “power” loop C. The circuit 
equation for the power loop is 

where R is the resistance of the loop. We take VR to be a linear function of V,  

where U is a constant describing the gain of the amplifier. Using equations ( 2 )  and (3) 
we have 

“R 

FIG. 1 .-Power loop together with associated sensing loop. 
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where R = R/L  is the characteristic frequency of the power loop. Equation (7) is 
easily solved for a general external flux source 4e(t) to give 

Consider a particular Fourier component of frequency w 

&(t )  = q50 cos (at) = 2{40 e’”‘}. (9) 

Then after the decay of any transients [the first term in equation (8)] the response flux 
is given by 

- 40(2sinwt-coswt) - 
[ 1 + j ,2] 

where 1- = (Qiao). As the amplification parameter x is increased, so il -+ 0 and 4r -+ 

-de. Thus the total flux $ = + e +  4r goes to zero. A simple resistive loop corresponds 
to cc = 1 and provides some degree of flux freezing, which improves as the resistance 
of the loop (and hence 0) is decreased. However, there are practical limits to how 
small the resistance can be made. By providing feedback with x >> 1 substantially 
better suppression of flux penetration is easily achieved. This will be effective for 
Fourier components whose frequencies exceed a minimum value given by 

and again as a is increased so w,,, can be made as small as desired. It is easily shown 
that the flux through the sensing loop remains frozen, in the limit a >> 1, even when 
the power and sensing loops are separated. An extension of this concept, to freeze the 
flux through a “virtual” loop displaced a short distance from the wall, is described in 
the Appendix. 

We illustrate these results by considering a specific external flux given by 

&(t )  = ~ { c o s ~ t + c o s  3wt j  (12) 

which is plotted, for w = 1, in Fig. 2. A closed resistive loop with no feedback 
(analogous to the conventional shell) corresponds to a = 1 and the corresponding 
total flux $ = 4e+q5r, is plotted (for R = 1) in Fig. 3. Some degree of flux freezing 
is apparent since $ is somewhat less than 4e. The total flux with x = 10, corresponding 
to a system with feedback, is plotted in Fig. 4 and shows the substantially smaller flux 
penetration. 
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FIG. 2.-Example of an external flux function 4,  
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FIG. 3.-The corresponding total flux I) due to a simple resistive loop 
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t 

FIG. 4.-Total flux with feedback amplification parameter c i  = 10. 

3. STABILITY CONSIDERATIONS 
Since the single loop of the previous section corresponds to an amplification circuit 

with feedback it is important to consider whether such a circuit will always be stable. 
For an ideal amplifier described by equation (6) the exact expression for the response 
flux is given by equation (8) and the stability of the system is clear. The imperfections 
of a practical amplifier can, however, induce instability and a general method for 
analysing this is provided by the Nyquist criterion. This requires a plot of the open 
circuit transfer function in the complex plane as a function of the input frequency. 

To define the transfer function consider the sensing and power loops of Section 2 
to be well separated so that their mutual inductance is zero and there is no feedback. 
For an input flux 

the output flux in Fourier space is given, from equations (3), (5) and (6), by 

where the transfer function G(w) is given by 

(.- l )o(w+iQ)  
w2+Q2 

G(w) = - 
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Now consider the situation where the sensing and power loops coincide. Then for an 
external flux +e( t )  the power loop generates a flux +r( t )  while the sensing loop sees a 
flux q5e(f) + &(t ) .  Using equation (14) we have, again in Fourier space, 

Suppose the function G(w) is plotted in the complex plane for real values of 
o E [- x, x]. The Nyquist criterion states that the circuit will be stable unless this 
plot encloses the point (1,0), corresponding to the poles w = wJ where G(o,) = 1 in 
equation (1 6). For the idealized amplifier described by equation (1 5) the Nyquist plot 
is shown in Fig. 5a and the circuit is clearly stable. As an example of an imperfect 
amplifier, suppose that a time delay z is introduced so that VR(t)  = - (a- 1) Vs( t - z ) .  
Then 

(a - l ) w ( o  + io) ecIwr 
Q2 + U 2  

G(w) = - 

which at large w becomes a circle of radius (a - 1) which, for a >> 1, encloses the point 
G = 1 many times corresponding to the unstable modes with o N (2n+ 1)n/z (solid 
curve in Fig. 5b). Stability may be restored by reducing the gain at large frequencies 
such that a(w) --$ 0 as w + E ,  as shown schematically by the dashed curve in Fig. 5b. 

FIG. 5a.-Nyquist diagram for the open circuit response function G(o) of the idealized 
amplifier of equation (15) (- tc < o < E). 
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FIG. 5b.-The solid curve shows the Nyquist plot for an imperfect amplifier with time delay 
(0 < w < CO). F o r o  + m the curve approaches the outer circle and encloses the point (1,O) 
many times. Stability is restored by reducing the gain of the amplifier at large frequencies 

(dashed curve). 

In a practical system the high frequency components of the radial field could be 
suppressed by a conventional shell, leaving the feedback system to deal with the 
long timescale response. In this way the amplifiers need only have high gain at low 
frequencies (a few tens of Hertz and below), thus greatly simplifying the stability 
requirement. 

4 .  T H E  INTELLIGENT SHELL 
Consider a toroidal pinch surrounded by a grid as shown in Fig. 6. Each plaquette 

in the grid is constructed like the single loop described in Section 2 and independently 
freezes the total flux through that plaquette. The overall effect is equivalent to a 
perfectly conducting mesh for frequencies greater than CL),,,. Modes with wavelengths 

FIG. 6.-A toroidal pinch surrounded by an Intelligent Shell. 
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shorter than the grid spacing will be largely unaffected, and this will determine the 
choice of the plaquette dimensions, both in the poloidal and toroidal directions, in 
terms of the spectrum of mode numbers. 

Using the notation of Section 2 the flux through the ith loop may be written 

where N is the total number of plaquettes, and Ci, describes the amount of flux 
penetrating the ith plaquette due to a current flowing in thejth plaquette. Equation 
(18) is conveniently cast in vector notation : 

where 1 denotes the unit matrix. The response of the amplifiers is given by 

VR = - (a- l)V, 

and hence the circuit equation for the grid can be written 

d 
dt (:) dt (1+C').-dr+ - = --de. 

The solution of this equation is given by 

d 
dt' 

* dt'exp {: (1 + C ) -  ' t] * (1 + C ) -  * -  d,(t') (22) 

where the exponential of a matrix is defined by 

Again consider a single Fourier component 

de(t) = 9 { d o  eior). 

Then neglecting transients we have 
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For a >> 1, we again have q5r N - (1 + C)- ' * 4e and hence the total flux $ 
If required, a given external flux 40(t) can be allowed to pass freely through the 

shell by adding to the input voltage an offset AVO(t) = -a(d40/dt)/(a-l) .  This 
cancels the emf induced by +o(t ) ,  and allows the flux to penetrate freely and without 
drawing power from the amplifier. With the conventional thick shell an external 
control field which penetrates the shell cannot be changed on a timescale faster than 
the shell time constant. This constraint is removed with the intelligent shell. 

0. 

5 C O N C L U S I O N S  
Recent experimental results, as well as theoretical models, suggest that the pulse 

duration of a reversed field pinch is limited by some small multiple of the resistive 
diffusion time of the conducting shell. This is typically very much shorter than the 
long pulse times required for a reactor. To solve this problem we introduce an active 
feedback system which reproduces, to some extent, the effects of a perfectly conducting 
wall. A simple extension of this concept generates a virtual shell situated a short 
distance inside the wall. 

The technology for such a system already exists and will be used for feedback 
control of tearing modes in Tokamaks (MOKTICELLO et al., 1979; LAZZARO and 
NAVE, 1987). This will be done by detecting the presence of a single tearing mode 
with specific poloidal and toroidal mode numbers and applying a feedback field, with 
carefully controlled phase, to suppress the mode. In many respects the intelligent shell 
for the reversed field pinch is a simpler system yet effectively deals with a whole 
spectrum of toroidal and poloidal mode numbers simultaneously as well as a wide 
range of frequencies. 

Conventional feedback systems require amplifiers with large power ratings in order 
to supply current against the back emf. (Although current and back emf are in 
quadrature, and so dissipate no net energy, the amplifiers must nevertheless be suitably 
rated.) In the intelligent shell, however, the flux through each loop is arranged to be 
frozen, and so the dominant power requirement comes from (the usually much 
smaller) Ohmic dissipation. 

Acknowledgements-I would like to thank Dr. S. C. COWLEY and Dr. C. G. GIMBLETT for valuable 
discussions, and also Dr. M. K. BEVIR for suggesting the possibility of a virtual shell. 

R E F E R E N C E S  
ALPER B. et al. (1988) Plasma Phys. contr. Fusion 30, 843. 
ALPER B. et al. (1989) Plasma Phys. contr. Fusion 31, 205. 
GIMBLETT C. G. (1986) Nucl. Fusion 26, 617. 
HENDER T. C. et al. (1986) Proc. 13th European Conf. on ControlledFusion and Plasma Physics (Schliersee), 

LAZZARO E. and NAVE M. F. F. (1987) JET Report JET-P(87)54, JET Joint Undertaking, Abingdon, 

MONTICELLO D. A. et al. (1979) Proc. Con6 on Plasma Physics and Controlled Fusion (Innsbruck), IAEA 

Vol. 1, 61. 

Oxon OX14 3EA, U.K. 

Vienna, Vol. 1, 605. 



1188 C. M.  BISHOP 

TAYLOR J. B. (1974) Phys. Rec. Lett. 33, 1139 
TAYLOR P. et al. (1988) Proc. 15th European Con$ on Controlled Fusion and Plasma Physics (Dubrovnic), 

Vol. 11, p. 573. 

A P P E N D I X  : T H E  V I R T U A L  S H E L L  
In the fully relaxed state of a toroidal plasma (TAYLOR, 1974), the quantity p = J.B/B2 (where J is the 

current density and B is the magnetic field) is constant over the whole plasma volume. In practice this does 
not occur since p ,  though constant over most of the plasma, falls to zero in the edge region. By making 
the conducting shell a closer fit to the plasma, however, the plasma can more closely approach the Taylor 
state and this is manifested as a reduction in the loop volts for a given toroidal current (ALPER et al., 
1988). This procedure is limited, however, because the plasma edge must he in contact with a cold wall. 
A simple extension of the intelligent shell concept overcomes this problem by introducing a “virtual shell” 
displaced a short distance inside the wall. 

Consider first a single plaquette as in Section 2. Defining x = ( r w - r ) ,  where r is the minor radius variable 
and Y, is the minor radius of the power loop. we consider two sensing loops located at x = x, and x = x2 
as shown in Fig, 7. The aim is to freeze the flux through the imaginary loop at  x = x,, by using the pair of 
sensing loops to detect the gradient of the radial field. This requires that we represent the radial field due 
to the plasma currents as a linear function of x, and this places a limit on how far the virtual shell can be 
displaced inwards from the wall. Higher coefficients in the Taylor expansion of B,(x) could be detected 
using extra sense coils a t  the price of ificreased complexity. The flux through the virtual loop, due to 
external sources, is therefore 

where 
to the current I in the power loop as 

and + 2  are the fluxes through the sense loops. We write the flux x through the virtual loop due 

where the mutual inductance function f ( x )  satisfies f ( 0 )  = I .  The output voltages of the sensing loops are 
given by 

d 
I - d t  V - - (m,LI++,)  

d 
dt v, = -(m*LI+&) 

I I  I :  I 

FIG. 7.-This shows two sensing loops and a power loop displaced so as to create a virtual 
loop at  x = x, (the spacing of the loops has been exaggerated for clarity). 
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where m ,  = f(x,)  and m2 = f ( x 2 ) .  The circuit equation for the power loop is 

(29) 
d 
dt 
- (LI+ + ( O ) )  = V R  - IR 

where the amplifier output V, is a linear function of VI and V2 : 

v, = - (x- l ) [V,+pV,I  

and p is to be determined. Solving the equations as before we find, in the limit of large x ,  

(m1 +Pm*)x(x\) + ( + I  + P + d f ( X \ )  = const. (3 1) 

We now require x(xv) = -+(xv), for any +(x\) .  Using equation (26) and equating coefficients of +, and +* we find 

[as expected. since this gives the correct mix of and +* in equation (30) to generate + ( x V ) ] .  together with 

where 

A graphical solution of equation (33) is shown schematically in Fig. 8. The solution (A) is x, = x l  which, 
from equation (32), gives p = 0. This corresponds to flux frozen through the loop at  x l ,  with the loop at 
x2 playing no role. Similarly solution (B) is x, = x2 which gives p = cc and corresponds to freezing the 
flux through the loop at x 2 .  There is a third, non-trivial, solution for x, at  (C) ,  which, with the appropriate 
value of p from equation (32), gives frozen flux through the virtual, loop. A mesh of such loops will create 
a virtual shell located a short distance inside the wall. This will freeze normal flux in so far as external 
fields (including those from other loops as well as from the plasma) can be represented as linear functions 
of x. 

FIG. 8.-Graphical solution of equation (33). 


