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Abstract—Empirical studies of the scaling of Tokamak encrgy confinement times with machine parameters
constitute a useful point of contact with physics-based transport theories. They also form the basis for the
design of next-step and reactor grade Tokamaks. In most cases a simple power law (or sometimes offset
linear) functional form is fitted to the data. Such linear regression techniques have the advantage of
computational simplicity, but otherwise have little a-priori justification. Neural networks provide a powerful
general purpose technique for nenlinear regression which exhibits no essential limitations on the functional
form which can be fitted. In this paper we apply neural networks to the problem of energy confinement
scaling and we illustrate the technique using data from the JET (Joint Buropean Torus) Tokamak. The
results show that the neural network approach leads to a substantial improvement in the ability Lo predict
the encrgy confinement times as compared with linear regression. The significance of this result is discussed.

I. INTRODUCTION

SUSTAINED THERMONUCLEAR FUSION in a magnetically confined plasma requires that
the product of temperature, density and energy confinement time should exceed a
critical threshold (the Lawson criterion). The confinement time is therefore a quantity
ofcentral importance in the design of next-step and reactor grade Tokamaks. Improve-
ments in the confinement time can be obtained by increasing the volume of the plasma.
However, this greatly increases the cost of the system. Indeed, uncertainties in the
expected confinement time of a large Tokamak system require the inclusion of extra
margins in the design parameters, and therefore improvements in the ability to predict
the confinement time accurately can result in substantial cost savings. However, due
to the present limitations in the theoretical understanding of energy transport pro-
cesses in a magnetically confined plasma, it is not possible to give a first principles
calculation of the energy confinement time.

For these reasons, empirical studies of the dependence of global confinement time
Tgon various physical parameters have received considerable attention in recent years
(see, for example, CONNOR, 1988 ; KAYE ef ai., 1990). The resulting scaling relations
constitute a convenient point of contact with theoretical models of transport, and
extrapolations of the scaling relations form the basis for the design of future
Tokamaks. For most such studies a particular functional form for the confinement
time, in terms of a number of physical variables, is assumed. Free parameters con-
tained in the expression for t; are determined by means of a least-squares fit to an
experimental database. In general the functional form is taken te be a multivariate
power law expression which (after taking logarithms) leads to a linear problem to
determine the unknown exponents. Such a power law expression does not arise from
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any general theoretical constraint, but rather is chosen for computational convenience.
Offset linear forms, which also gencrate linear expressions for the free parameters,
have also been used. In this paper we exploitl ncural network techniques to eliminate
this restriction and thereby allow nonfinear regression using a very general class of
functional forms.

In the next section we give a brief introduction to neural networks and describe the
particular network architecture known as the multitayer perceptron which will form
the basis of our approach to confinement scaling. Section 3 describes how neural
networks can be applied to the analysis of confinement scaling in Tokamaks, and in
Section 4 results obtained using data from the JET experiment are presented. We find
that the neural network method leads to a significantly better prediction for the energy
confinement time than does the conventional linear regression approach. Finally,
conclusions are given in Section 5.

2. THE MULTILAYER PERCEPTRON

Neural networks are analogue computational systems whose structure is inspired
by studies of the brain. Many different architectures of neural network have been
devcloped to tackle a variety of problems, and research in this area continues at a
rapid pace. For introductory reviews of neural networks see Lippmann (1987) or
Rratk and Jackson (19901 In thig gection we give a brief overview of a relatively
simple but very widely used network type known as the multilayer perceptron (MLP).
This class of network will form the basis for our analysis of energy confinement scaling
in the next two sections.

An MLP consists of a network of units (also known as processing elements or
neurons) as illustrated in Fig, 1. Each unit is shown as a circle in the diagram, and
the lines connecting them are known as weights or links. The network can be thought
of as describing an analytic mapping between a set of real-valued input variables x,,
(m=1,..., M) and a set of output variables y, (n = 1,..., N). The input variables
are applied to the M input units at the bottom of the diagram (M = N = 4 in the case
of Fig. 1}. These variables are multiplied by a matnx of parametersw,, (! =1,...,L;
m=1,..., M) corresponding to the first layer of links. Here, L is the number of units
in the middle, or hidden, layer. (L = 3 in the example shown in Fig. 1.} This resuits
in a vector of inputs to the units in the middle layer. Each component of this vector

inputs

FiG. [.—An example of a multilayer percepiron network, in this case having four input
units, three units in the “hidden™ layer, and four cutput units,
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is then transformed by a nonlinear function f( ) so that the outputs of the middle
layer units can be written

zrif( zl w,mx,,,+9,> ({=1,....L) (1)

m=

where 6, is an offset (or threshold). The function f( } is generally chosen to be the
sigmoid defined by

fx) = 2

and this function is plotted in Fig. 2.

The outputs from the hidden layer units are now multiplied by a second matrix of
parameters w,,(n=1,...,N;I=1,..., L), and offsets 6, are added to the components
of the resulting vector to generate the network outputs:

1""}11,’214_0"" (Ft = l-,,N) (3)

1

Yo =
!

L

Combining equations (1} and (3) we see that the entire network corresponds to a
mapping from inputs x,, to outputs y, which is specified by the analytic function

i M
yn(xls- . -st) = Z wm’f( Z Wfrnxnr+8.')+6n (4)

i=1 m=1
where f( ) is defined by equation (2). This mapping is parameterized by the quantities

Wi 01, ]";’,,ﬂ' and 0,,.
More complex architectures of MLP, having more than one layer of hidden units,

o
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FiG. 2.—Plot of the sigmoid function f(x) defined in equation (2).
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or different patterns of connectivity between the units, are also of interest, and an
example of an alternative architecture will be introduced in Section 3. Note that MLPs
can also be used to solve classification problems in which the network outputs are to
be interpreted as binary quantities according to whether the output is above or below
some threshoeld. In this case, it is usual to apply the nonlinear activation function of
equation (2) to the outputs y,. This would be inappropriate, however, in the present
conlexl where we are interested in fitting smooth continuous mappings. Neural
networks, such as the MLP, in which information is fed from a set of inputs through
a series of hidden units te a set of outputs are referred to as feedforward nerwarks Lo
distinguish them from more complex networks with feedback loops.

The functional form in equation (4) appears somewhat arbitrary. Its importance,
however, stems from two crucial properties:

(1) For suitable choices of the parameters w;,, @, W, and §, the mapping can
approximate, with arbitrary accuracy, any given nonlinear multivariate map-
ping (subject to some mild restrictions) provided the number L of middle layer
units is sufficiently large. Formal discussions of this property can be found in
FunaHasHI (1989) and HorNIK ef al. (1989).

(2) Given a set of P exemplar vector pairs {x%, yi;, p = 1,..., P, characterizing a
particular mapping, there exist procedures, based on the technique known as
error backpropagation, for determining appropriate values for the parameters
Wi, O W, and €, so that the network function in equation (4) approximates
the required mapping. (In the neural network terminology these are referred
Lo as training or learning algorithms.)

Error backpropagation aims to minimize an error function £ defined to be the root-
mean-square (RMS) error between the output vector y{x”) of the network (for given
input vector x”) and the corresponding target vector y¥, summed over all exemplars
IR

11 P N 172
= {PR’ Z] Zl (J/n(xp)‘“J’f)l} . (5)

Thus, ¥ is a function of the values of w and 6. Backpropagation is a recursive
procedure for evaluating the derivatives of E with respect to these parameters. A
detailed account of the backpropagation procedure can be found in RUMELRART and
McCLELLAND (1986). Knowledge of these derivatives allows E to be minimized
using standard optimization procedures. We have compared a variety of techniques

e e mha adiant Aa nt ~Aaninonta aoradisnte anrl aus JC17NA it rmothndc
l[lbluull]b Cllllau\auu El aul\glll, \..I\gablylll,’ UUllJI-ls Lo BLAHWIILG Gl Ay U LN VY LU LI LIV,

The memoryless BFGS (Broyden—Fletcher—Goldfarb-Shanno) technique (SHANNG,
1978) was found to be both robust and relatively fast and was used to obtain the
results presented in Section 4. It is described in the neural network context in BATTITI
and MasuLci (1990).

The training of an MLP using a set of exemplar vectors can be regarded as analogous
to the fitting of a polynomial curve through a set of data points. The coefficients of
the polynomial correspond to the weights and thresholds in the network. In effect, the
MLP represents an efficient generalization of curve fitting to allow for an arbitrary
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number of independent (input) and dependent (output) variables together with a
very general class of functional forms (BisHOP and RoacH, 1992). One of the penalties
to be paid for this generality is that the determination of the weights and threshoids
in the network (i.e. the training of the network) is a nonlinear optimization problem
which js computationally intensive, and which can sometimes exhibit sub-optimal
solutions (corresponding to local minimia in the error function).

In practical applications of neural networks it is necessary to restrict the class of
functions which is fitted in order to obtain satisfactory generalization to new data
which was not included in the training data set. The usual procedure for achieving
this is to restrict the number of hidden units. This is analogous to limiting the number
of terms (and hence the number of degrees of freedom) in polynomial curve fitting.
An alternative approach is to impose directly some constraint on the functional form
which the network can generate, for instance that it should not have large curvature
{BisHor, 1950). In this paper we have chosen to limii the number of hidden units, and
a suitable procedure for determining the appropriate value for this number is dis-
cussed in the next section.

3. ENERGY CONFINEMENT SCALING IN TOKAMAKS
In seeking empirical scaling laws it is convenient to consider expressions for 7, in
terms of appropriate dimensionless parameters (CONNOR, 1988 ; THOMAS, 1987). Thus,
for auxiliary heated plasmas, we would typically consider the form

Tg = TEUF(Qa V*, ﬁpa pc/a) (6)

where g is the safety factor, R is the major radius, v, = v.g/wy, vy is the effective
electron collisionality for trapped electrons, w, is the trapped electron bounce
frequency, f, is the poloidal beta, p, is the electron Larmor radius, 4 is the minor
radius and 1 = Rg/T.?, where T, is the electron temperature in keV (note that
T o vy, where vy, 18 the electron thermal velocity, and thus 1z, can be considered
to have the same dimensions as 1,). Since many of these regressor variables have
spatial variations, appropriale profile-averaged quantities should be used. The func-
tion F( ) is to be determined using an experimental database.

The conventional approach to this problem is to choose a form for F( ) which is
the product of powers of the independent variables, so that

1 = 1 Cq v 3 (pefa)™ (7)
in which C,u,,...,2s are unknown parameters. This functional form is com-

putationally convenient since by taking logarithms of both sides we obtain an
expression which is linear in € and «;:

In(tg/tpe) =In C+oyln g+az lnvet+os In i+, In (p/a). (8)

Given an experimental dataset containing sets of values of (g, vy, §,, p./@), and the
corresponding values of 1y, it is then straightforward to determine the values of € and



1296 L. ALLEN and C. M. BisHOP

a; which minimize the RMS error between the experimental values of 1 and those
predicted by equation (8). Note that this corresponds to the solution of a set of linear
equations. We shall refer to this approach as linear regression (LR).

The functional form in equation (7) is, however, largely arbitrary and is not the
result of any known physics constraint. Neural networks of the multilayer perceptron
type represent a powerful technique for exploring a much wider class of functions
£( ). We shall consider network functions with four inputs Ing, In oy, In f, and
In{p./a), and a single output In (tz/y). The corresponding neural network archi-
tecture is shown in Fig. 3. The use of logarithms compresses the dynamic range of
the variables and alse allows a closer comparison of the neural network technique
with LR. Indeed, if we consider a network whose transfer function f( ) in equation
(4) is replaced by the identity function, then the network mapping reduces to a simple
matrix multiplication and the network approach is then equivalent to LR.

The optimum value for L, the number of hidden units in the network, cannot be
known in advance since it will depend on the properties of the dataset. In effect L
determines the number of degrees of freedom (i.e. the number of weights and thresh-
olds) which parameterize the functional form. We would expect that increasing this
number would lead to a steadily smaller value of the residual error, This can, however,
result in “over-fitting” in which the network tends to store individual data points
rather than represeuting ihe underlying trends 1 ihe duta. We are inieresied primarily
in obtaining a network mapping with the greatest predictive capability, that is one
which produces the smallest output error when applied to new data which was not
part of the training set. For this reason we divide the experimental dataset into two
{randomly partitioned and therefore nominally equivalent) parts which we shall refer
to as the training and test sets. The training set is used to determine the values of the
weights and thresholds in the network, and the test set is used to assess the predictive
capabilities of the functional form represented by the trained network. We therefore
compare networks with different numbers of hidden units and select the network
giving the lowest RMS error with respect to the test data. For comparison, the same
technique will be applied to linear regression, in which the regression exponents will
be determined using the training data and the error evaluated for the test data.

In(Tz /1)

Ing nv, inp, In(p,/a)

Fig. 3.—The neural network architccture used to implement the scaling relation of
equation (6).
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4. RESULTS FROM JET DATA

Energy confinement data from the JET Tokamak have been used to examine the
capabilities of the network approach to confinement scaling introduced in the previous
section. In this study we are interested primarily in auxiliary heated discharges and
so data were selected for which the total heating power Pror 22 2Py, where Py 18
the QOhmic heating power. Attention was also restricted to limiter or inner wall deu-
terium cases during the current flat top. The resulting dataset consisted of 1,147
observations which were divided into a training set of 574 points and a test set of 573
points. Linear regression gave the following results:

TE/TEOOCq—l.69v*—0.50ﬁé).38(pc/a)—|.49. (9)

Figure 4 shows the training and test error values obtained from the neural network
with various numbers L of hidden units. The results from linear regression are plotted
at L = 0. Each network was trained for 500 cycles of the BFGS algorithm, each of
which consists of .4 line search minimizations, where A" is the total number of
weights and thresholds in the network. For each cycle the search direction starts with
gradient descent and is then updated using the BFGS algorithm.

[t can be seen that the training set error falls as the number L of hidden units is
increased, as would be expected since the number of degrees of freedom increases
with L. The fact that the decrease in error is not strictly monotonic is a consequence
of the fact that (unlike LR) the training of the network corresponds to the solution
of a nonlinear optimization problem and so the solution must be found iterafively,
Insufficient number of iterations, or the presence of local minima in E, can result in
sub-optimal solutions. The test error also decreases with L at first but then begins to
saturate. The smallest test error occurs at L = 22, and is significantly smaller (by

0.008 L.
K
0.007 Test
0.006 1
Training
0.005
0 10 L 20

F16, 4.—Plot of the root-mean-square error for both training and test data sets as a function
of the number of hidden units in the network. The results from linear regression are plotted
at L= 0.
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about 20%) than the corresponding value obtained from linear regression. The error
values from linear regression and from the optimal neural network are summarized
in Table 1.

The RMS error obtained for the test data is about 20% smaller for the neural
network compared with linear regression, corresponding to an increased capability
to predict the confinement time of a new discharge. This suggests that the usual power
law form used for many confinement scaling studies may be inadequate. The reason
that the reduction in error is not larger than this is probably due to the considerable
random errors {noise) associated with energy confinement data.

Untlike linear regression, the neural network does not lead to a simple analytic
expression for the confinement time scaling law. This is hardly surprising since the
point of using neural networks was to permit a very wide class of functional forms.
Although an analytic form can be written down using equations (2) and (4), together
with the values of the weights and thresholds from the trained network, this would
provide little useful insight. Instead, we compare the LR and neural network results
by plotting In (7/t;) versus the regressor variables In ¢, In vy, In f, and In{p./a).

Principal component analysis applied to the test regressor variables, after first
normalizing the variables by their mean value, gave the following cigenvalues

(0.97, 0.24, 0.03, 0.02)

indicating a significantly nonuniform distribution of input data. Thus, a plot of
In(tz/tz) versus one of the regressor variables, with the other regressor variables
held fixed, would almost certainly lead to significant extrapolations outside the range
of the training data. To ensure that we are interpolating within the range of the
dataset, we plot In (7;/7,) along the first principal axis, given by

g =4.09+1.48 (10)
v = 0.072+0.059 (1n
B, =0.270+0.118y (12)
pefa = 1.72x107°+1.39x 10~ (13)

where the parameter » spans the range (— 1.0, 3.0). Figure 5 shows 1./1,, along the
principal axis for both linear regression (dashed curve) and for the 22-hidden-unit
neural network (solid curve). It is clear that the neural network has found a functional
form which is similar to that of LR. Figure 6 shows the value of In (15/tg,) for each
point in the test data set plotted against the corresponding value as predicted by linear
regression. A similar plot for the neural network prediction is shown in Fig, 7.

TABLE 1.

Error values for JET data

Methed Train RMS Test RMS

Linear regression 0.007995 0.007957
Neural net (22 hidden units} 0.005207 0.006319
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F1G. 5.—Graph of (zrz/tgz,) against the parameter n along the first principal direction. The
solid curve corresponds to the neural network and the dotted curve to linear regression.
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FI1G. 6.—Plot of In {7g/t) from the test dataset versus the corresponding quantity predicted
by linear regression.
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Comparison of Figs 6 and 7 shows the improved predictive capability of the neural

network as compared with linear regression.

5. CONCLUSIONS

In this paper we have described the particular architecture of neural network known
as the multilayer perceptron and we have shown how it goes beyond the method of
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Fi. 7—Plot of In (t/z,) from the test dataset versus the corresponding quantity predicted
by the neural network.

linear regression by allowing a much larger class of functional forms. We have applied
this technique to the problem of energy confinement time scaling in Tokamaks. For
a set of data from neutral beam hcated JET plasmas we found a significant improve-
ment in the confinement time prediction obtained from the neural network as com-
pared with linear regression. The general form of the scaling relation was similar in
the two cases.

One feature of the neural network approach is the lack of a simple analytic
expression for the resulting “scaling law”. This is an unavoidable consequence of
having access to a wide range of functional forms. Visualization of the scaling prop-
erties requires the network mapping to be displayed graphically.

A second difficulty with the use of neural networks in this context concerns the
extrapolation of the results outside the range of values for the regressor variables
spanned by the training data. While any extrapolation is prone to error, the neural
network is much less likely to produce smooth extrapolations than linear regres-
sion as a consequence of the much less tightly constrained functional form, and
also because of the tendency of the hidden units to *‘saturate” for large inputs
(see Fig. 2).

In the present context, however, this problem can be largely circumvented. In
extrapolating from JET results to a large scale fusion reactor many of the dimensional
quantities differ significantly, although the dimensionless parameters g, vy and §, for
a reactor li¢ in the range spanned by the JET data. Thus, for these dimensionless
variables, the extrapolation problem can be avoided. However, the dimensionless
parameter p./a is about a factor 2 smaller in a reactor than in JET, Fortunately, there
are strong theoretical reasons (CONNOR, 1988) to believe that the dependence of the
confinement time on p./a should follow a simple power law. Thus, we are led to
consider a scaling relation having the following functional form
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In (T, /1.,)

Ing nv, inp, In(p./a)

F1G. 8 —The nevral network architecture corresponding to equation (14).

e = Teo(pe/aY G (g, Vas B5) (14)

which can be represented in the form of a neural network as shown in Fig. 8. This
functional form satisfies the power law constraint on p./a, but is otherwise aribtrary.
The weights and thresholds of the corresponding network can be found using the
training algorithms discussed in Section 2, and the network function can be extrapo-
lated to reactor conditions without encountering any of the aforementioned problems.

In addition, if the energy confinement data from a Tokamak follows the functional
form of equation (14), and we fit a standard power law of the form of equation (7),
then the value of a, obtained from (7) will not in general be equal to the value
of v in (14). Therefore, studies which use conventional lincar regression may ob-
tain an incorrect value for the exponent a,. This may obscure the true power law
behaviour of /1, with respect to p./a, and cloud the comparison of theoretically
predicted scalings with experimental data. The neural network architecture of Fig. 8
will not suffer from this problem, and it is hoped to pursue this approach further in
the future,

One situation in which the neural network would be expected to perform sig-
nificantly better than linear regression is where the data spans some threshold for an
additional transport mechanism to switch on or off. Resulting discontinuities in the
derivatives of the confinement time with respect to one or more regressor variables
can easily be represented by the neural network but lie outside the scope of standard
linear regression.
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