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Abstract

Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling.
Several satellite systems used operationally by meteorological agencies utilise scatterometers to
infer wind vectors over the oceans. In this paper we present the results of using novel neural
network based techniques to estimate wind vectors from such data. The problem is partitioned into
estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron
(MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-
valued function for a given set of inputs; a conventional MLP fails at this task, and so we model
the full periodic probability density of direction conditioned on the satellite derived inputs using
a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting
MDNs is shown to improve the results.

Keywords: Conditional Probability Density Estimation, Mixture Density Network, Multi Layer
Perceptron, Periodic Variables, Wind vectors, Scatterometer.
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1 Introduction

Obtaining wind vectors over the ocean is important to Numerical Weather Prediction (NWP)
since the ability to produce a forecast of the future state of the atmosphere depends critically on
knowing the current state accurately [Haltiner and Williams, 1980], particularly since the system
is non-linear. However, the observation network over the oceans (especially in the southern hemi-
sphere) is very limited [Daley, 1991]. Thus it is hoped that the global coverage of ocean wind
vectors provided by satellite borne scatterometers will improve the accuracy of numerical weather
forecasts by providing better initial conditions [Harlan and O’Brien, 1986; Lorenc et al., 1993].
The scatterometer data also offers the ability to improve wind climatologies over the oceans [Levy,
1994] and the possibility of studying, at high resolution, interesting meteorological features such
as cyclones [Dickinson and Brown, 1996].

Figure 1: Schematic illustration of the geometry of the ERS-1 satellite showing the footprints
of the three radar scatterometers.

The ERS-1 satellite was launched in July 1991 by the European Space Agency [Offiler, 1987]. The
on-board microwave radar operates at 5.3 GH z and measures the amount of backscatter generated
by small ripples on the ocean surface of around 5 cm wavelength, although this depends on the
incidence angle of the radar beam. Measured backscatter from the ocean surface is given as the
Normalised Radar Cross Section, and generally denoted by ¢°, which has units of decibels. A 500
km wide swathe is swept by the satellite along the track of its polar orbit, with nineteen cells
sampled across the swathe, each cell having dimensions of roughly 50 by 50 km (see Figure 1).
Thus there is some overlap between cells. Also, each cell is sampled from three different directions
by the fore, mid and aft beams respectively giving a triplet of observations, (0%, 07,,07). This o©
triplet, together with the incidence angle of the mid-beam (which varies across the swathe) can be
used to determine the average wind vector within the cell [Offiler, 1994].

Many methods to compute wind vectors from scatterometer data exist. Most have considered
model based techniques [Offiler, 1994; Wentz, 1991; Stoffelen and Anderson, 1992; Stoffelen and
Anderson, 1997] where a physically based mapping from wind vectors to o° is formulated. In
[Thiria et al., 1993] the mapping from o to wind vectors was modelled using simulated data and
a neural network based classifier, which gave probabilities of the wind direction being in each of
thirty-six intervals. Simulated data was used since real o® measurements were not available at the
time the work was undertaken.

While the outputs of the networks in [Thiria et al., 1993] were interpreted as probabilities they are
not strictly such since they can take negative values and are not required to sum to one. The wind
direction network has 30 inputs, 2 hidden layers each of 25 units and 36 output units giving a total
of 2361 weights. With a training set of size approximately 6000 observations there is considerable
danger of over-fitting [Bishop, 1995]. Despite this the networks in [Thiria et al., 1993] appear
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to have performed very well on the simulated data. In this study we use a neural network to
estimate the full local conditional probability density of the wind direction given o° in a simple
and well-founded manner [Bishop and Nabney, 1996].

2 The Geophysical Model

Much effort has been put into understanding the theoretical relationship between ¢° and wind
direction [Wentz, 1991; Stoffelen and Anderson, 1997]. This has been based on studies of the
physical processes that govern backscattering from water surfaces [Ebuchi et al., 1993] together
with a statistical analysis of the relation between wind vectors (both buoy observed and NWP
derived) and scatterometer measurements [Offiler, 1994]. From these studies empirical forward
models between single ¢°’s and relative wind direction (¢) have been established of the general
form

0° ~ by + bicos(V) + bacos(29) (1)

where the coefficients are complicated functions of the scatterometer incidence angle (6) and the
wind speed (||u||). The most widely used, and currently operational, forward model is known as
CMOD/4 [Offiler, 1994; Stoffelen and Anderson, 1997]. There are three 0° measurements for each
cell and these together define a self-intersecting cone-like manifold in 3 dimensional space, which
has been shown to approximate a Lissajous curve [Thiria et al., 1993]. For most o° triples, which
are observed with noise, there is ambiguity over the optimal direction to select (see Figure 2).
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Figure 2: Sketch of a cross section (at constant wind speed) of the 2D manifold (embedded in
a 3D space) of the mapping from (of,035,0%) to direction (). The solid line gives
the empirical forward model § — o° (e.g. CMOD4) while the grey area gives an
estimate of the uncertainty due to instrument error and geophysical noise. Exam-
ple observations are plotted as black dots, with one labelled to show that there is
generally more than one possible wind direction for a given ¢° triplet.

This is typical of many inverse problems in the geophysical sciences, where the forward model
output (i.e. ° as a function of wind direction) is uni-valued for a given set of inputs but the
inverse model (i.e. wind direction as a function of ¢°) is multi-valued. It is known that the
relation between wind speed and ¢° is uni-valued [Thiria et al., 1993]. Since the wind speed is
largely uncorrelated with the wind direction relative to the satellite azimuth! angle, the problem

IThe azimuth angle gives the clockwise angle from North of the scatterometer beam incident on the cell.
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of modelling wind vectors can be split into modelling the speed and direction separately.
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Figure 3: Two scenes showing the target wind vectors for (a) a gradient in wind speed and
direction and (b) a cyclonic circulation.

Operationally, the problem of obtaining local wind directions from scatterometer data is resolved
using the CMOD4 forward model and minimising some cost function (which is typically a mean
square error) between the observed o° triplets and the manifold defined by CMODA4. In general
up to four valid solutions are obtained (although there are often two dominant modes with approx-
imately 180 degree ambiguity — the true and alias solutions). Disambiguation methods [Chelton
et al., 1989; Schultz, 1990; Shaffer et al., 1991] (such as smoothing filters) are then applied globally
to decide which local direction is to be selected, often based on the spatial correlation present in
wind fields (see examples in Figure 3). Ambiguity removal is not discussed in this paper but will be
addressed in future work?. An advantage of our probabilistic models is that this allows Bayesian
methods to be applied to the disambiguation problem. Here we consider only the local prediction
of wind speed and direction given the local & observation.

3 Neural Networks for Modelling Scatterometer Data

Many applications of neural networks can be formulated in terms of a multivariate non-linear map-
ping from an input vector @ to a target vector ¢t. A conventional neural network approach, based
on a least squares error function, for example, leads to a network mapping which approximates
the regression (i.e. the conditional average) of t given &. However, for mappings which are multi-
valued, such as wind direction in this application, this approach breaks down, since the average of
two solutions is not necessarily a valid solution.

This problem can be resolved by recognising that the conditional mean is just one aspect of a
more complete description of the relationship between input and target, obtained by estimating
the full conditional probability density of ¢ conditioned on x, written as p(t|z). The least squares
approach then corresponds to maximum likelihood for the special case in which p(t|z) is modelled
by a Gaussian distribution which is spherically symmetric in ¢-space and which has an x-dependent
mean and constant variance. The mapping from o to direction will typically be multi-valued and
thus our model of p(?¥|e®) cannot be modelled by a uni-modal distribution; instead we show how

2More details of  the project this work forms  part of can be found at
http://www.ncrg.aston.ac.uk/Projects/NEUROSAT/.
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mixtures of uni-modal distributions can be used. The wind speed mapping, on the other hand, is
uni-valued and can be sensibly modelled using a regression approach, as outlined below. Thus we
address prediction in (||u||,?9) space rather than using the Cartesian vector components.

3.1 Neural Networks for Modelling Wind Speed

Our model for predicting wind speed is a fully connected two layer multi-layer perceptron with
sigmoidal activation functions in the hidden layer and exponential units in the output layer, to
ensure that only positive speeds are generated:

d
z =g (Z w;.;u,.) : (2)
=0

with the output layer:

H
2
lupl| = ezp | S wiPz |, 3)
Jj=0

where ||u,|| is the predicted wind speed, H is the number of hidden (sigmoidal) units z;, d is the
number of inputs z; (for our networks this was four - the o° triplet and the mid-beam incidence
angle). The w’s represent the weights of the network with wﬁ) being the first layer weights from
the ¢th input to the jth hidden unit and w§-2) being the second layer weight from the jth hidden
unit to the output (wind speed). w%) and w(()2) are the bias parameters for the hidden and output
units respectively. The function g is the sigmoid function:

1
=V 4
9(a) 1+ exp(—a) (4)
The network was trained using a sum of squares error function:
1 & 5
Ejpuy = 5 O (luslle = llulle) 5)

k=1

where n is the number of observations in the training set, ||up||; is the output of the network for
the kth example for the training set and ||u||x is the kth target value; that is the observed speed
for the kth example for the training set. Back-propagation (to determine the gradient of the error
function with respect to the network weights) together with a conjugate gradient optimisation
algorithm was applied to determine the optimal weights in the networks. Only 500 iterations of
this algorithm were required for convergence for all numbers of hidden units investigated. Early
stopping using independent training and validation sets [Bishop, 1995, Section 9.2.4] reduced the
possibility of over-fitting and different numbers of hidden units were investigated.

In order to assess the degree of non-linearity in the wind speed retrieval problem, linear and
quadratic regression models of the form

P d
lupll = exp | wo + Y > wijal |, (6)

j=1i=1

where P is the order of the polynomial (1 or 2) and d is as before, were also tested on the same
datasets. The parameters were computed using standard least squares estimation on the training
set [Press et al., 1992].
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3.2 Neural Networks for Modelling Wind Direction

When modelling wind direction some care must be taken since not only is the target variable
multi-valued, it is also periodic. This section describes one method of estimating the conditional
(probability) density of periodic variables: see also [Bishop and Nabney, 1996] for computational
details.

3.2.1 Density Estimation for Periodic Variables

A commonly used technique for unconditional density estimation is based on mixture models of
the form

!
= Zaz¢z(t)7 (7)

where a; are the mixing coefficients, and the [ component functions, or kernels, ¢;(t), are typically
chosen to be Gaussians [Titterington et al., 1985; McLachlan and Basford, 1988]. In order to turn
this into a model for conditional density estimation, the mixing coefficients, as well as any adaptive
parameters in the component densities, are set to be functions of the input vector x:

p(tlx) = Zaz V@i (t|z). (8)

These functions are likely to be non-linear, so we set the mixing coefficients and kernel parameters
from the outputs of a neural network which takes x as input. This underlies the ‘mixture of
experts’ model [Jacobs et al., 1991] and has also been considered by a number of other authors
[Bishop, 1994; Liu, 1994].

In this section two methods for modelling the conditional density p(¥|x) of a periodic variable 9
conditioned on an input vector & are reviewed. Both methods use the same kernel functions (and
output error function) but allow different sets of parameters to be varied.

3.2.2 Circular Normal Densities

By using a mixture of kernel functions in (8) which are periodic themselves the overall conditional
density function will be periodic. The kernel function of the wind direction ¥ is given by:

¢i(0) = exp{m; cos(¥ — ¢i)}, (9)

27rI0(m,~)

which is known as a circular normal or von Mises distribution [Mardia, 1972]. The normalisation
coefficient is expressed in terms of the zeroth order modified Bessel function of the first kind,
Iy(m;), and the parameter m; is analogous to the inverse variance parameter in a conventional
normal distribution. The parameter 1); is the mean of the density function.

A multi-layer perceptron, with a single hidden layer of sigmoidal units (2) and linear output units,
is used to set the parameters in the mixture model (8) and (9). The linear outputs are given by:

H
2= w 'z, (10)
7=0
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where H is the number of hidden units and w,(é.) weight from the jth hidden unit (z;) to the
kth linear output. We divide the network outputs into three classes, corresponding to mixing
coefficients, means and variances and apply a suitable transform to each class of output.

In order to ensure that the mixture model in (8) is a probability density function, it is sufficient
that the mixing coefficients o;(x) satisfy the constraints:

Y@ =1, 0<a@) <1, (1)

for all . This can be achieved by choosing the «; to be related to the corresponding network
outputs by a normalised exponential, or softmaz function [Jacobs et al., 1991]:
exp (2§
. 1 (12)
2 j—1€XP (zj )

where 27 represent the corresponding network outputs (i.e. the component of z{ which represents
the mixing coefficients). The centres 1;(x) of the kernel functions are represented directly by
the network outputs since these may take any value over the reals. This is also motivated by
the corresponding choice of an uninformative Bayesian prior, assuming that the relevant network
outputs have uniform probability distributions [Jacobs et al., 1991; Berger, 1985]. The inverse
variance parameters m;(x) of the kernel functions are scale parameters and so it is convenient to
represent them in terms of the exponentials of the corresponding network outputs. This ensures
that m;(x) > 0 and discourages m;(x) from tending to 0, which corresponds to a pathological
solution. Again, it can be motivated by the concept of an uninformative prior in the Bayesian
framework.

3.2.3 Expansion in Fixed Kernels

The other technique used in this paper involves a conditional density model as in (8) consisting of
a fixed set of periodic kernels, again given by circular normal functions as in (9). In this case the
mixing coefficients alone are determined by the outputs of a neural network (through a softmaz
activation function (12)) and the centres 1; and scale parameters m; are fixed. We selected a
uniform distribution of centres, and set m; = m for each kernel, where the value for m was
chosen to give moderate overlap between the kernel functions. Fixed kernels are only appropriate
for targets from low dimensional spaces since the number needed grows exponentially with the
dimension of the target space.

3.2.4 Computational Details

The o° triple together with the (mid-beam) incidence angle and wind speed predicted by (3) were
used as inputs to the mixture density network (i.e. z = (6,0, ||up||)). The use of incidence angle
as an additional input to our neural network makes our model more flexible than those in [Thiria et
al., 1993] where a separate network was trained for each of the 10 incidence angles (they considered
only every other cell). Wind speed was included as an input since [Thiria et al., 1993] suggested
that the relationship between direction and o is dependent on the wind speed.

For both models the adaptive parameters of the model (the weights and biases in the network) are
optimised by maximising the likelihood of the data given the model. In practice it is convenient to
minimise an error function E given by the negative logarithm of the likelihood function. Derivatives
of E with respect to the network weights can be computed using the rules of calculus [Bishop and
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Nabney, 1996], and these derivatives can then be used with standard optimisation procedures to
find a minimum of the error function. In such non-linear problems care must be taken to ensure
good initialisation of the model parameters to avoid bad local minima. In this case we initialise the
network weights so that the centres are approximately evenly spaced, the scale parameters are large
enough to ensure overlapping of the kernel functions and the mixing coefficients are approximately
equal. These are, however, set with a small random component so that we can investigate the
effect of different initialisations.

A conjugate gradient algorithm was used to minimise the mixture density error function. Early
stopping [Bishop, 1995] was used to ensure reasonable generalisation performance. The network
that was used on the test set was the one with the lowest validation set error E,. Generally
after around 1200 iterations the early stopping rule had selected the best fully adaptive Circular
Normal (CN) network, and this was always attained within 2000 iterations. When training the
Fixed Kernel (FK) networks convergence was much quicker, usually occuring within 250 iterations.
Several network architectures were investigated by varying the number of hidden units and the
number of circular normal functions used. When using fixed kernels the scale parameter m was
also varied.

Once the networks were trained, a committee of networks [Bishop, 1995] was constructed which
combined the predictive conditional densities p(d|x) from several models. The networks forming
the committee were weighted equally since all had similar accuracies.

4 Evaluation Function

In order to compare different models a Figure of Merit (FoM) evaluation function has been
proposed by David Offiler of the UK Meteorological Office [Stoffelen and Anderson, 1997]. The
FoM reflects the extent to which the transfer model meets the design specifications of +2 ms™!
for wind speed and £20° for wind direction. The FoM is computed over the 4 — 24 ms~! wind
speed range. A FoM of greater than one indicates the transfer function is performing to within
these specifications, although the exact form is rather ad-hoc. The FoM details can be found
in Appendix I. The FoM is considered in both weighted and unweighted forms, which take into
account the performace of the algorithm at different wind speeds. If we wish to perform well on
the sum of the weighted and unweighted evaluation functions then we must either explicitly adapt
the cost function in the network training (by weighting the error function by a factor depending on
the wind speed class) or carefully select the training set. In this study we chose the latter option.

The wind direction used when computing the FoM was chosen using a very simple disambiguation
algorithm. Initially the most likely direction is selected. If this is more than £90° from the
observed direction the second most likely direction is chosen. If this is still more than £90° from
the observed direction then the third most likely direction is chosen and so on until the first four
modes have been considered. This must be done to allow a sensible value of the direction errors to
be calculated in the absence of a more sophisticated ambiguity removal algorithm. The algorithm
used here is not applicable in practice since it requires knowledge of the target values, and is simply
used to compare the performance of ‘local models’.

5 Data

The data used in this study was compiled by the European Space Agency in collaboration with
the UK Meteorological Office. The database consisted of 115 scenes, each of which contains 19 by
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19 cells, or observation locations, corresponding to a square of area roughly 500 by 500 km. Two
examples can be seen in Figure 3. The scenes were classified into 6 cases:

e low wind speeds (10 scenes)

¢ homogeneous cases (15 scenes)

gradients in speed or direction (59 scenes)

e cyclonic circulations (10 scenes)

anti-cyclonic circulations (11 scenes)

fronts and other ‘difficult’ cases (10 scenes)

This classification was made by meteorologists. Each of the 39,611 observations in this dataset
contained information on its location, the o° triple, incidence and azimuth angles, wind speed
and wind direction. In this work all wind directions were computed relative to the azimuth angle,
so the wind direction in the training data does not give the absolute direction, but rather the
relative direction. The wind speed and direction were obtained from the UK Meteorological Office
Unified Model®, which has a horizontal resolution of approximately 150 km [Milton and Wilson,
1996]. Thus the targets (i.e. wind speed and direction) are interpolated from a model designed to
represent the large scale dynamics of the atmosphere [Haltiner and Williams, 1980]. This means
there is likely to be considerable smoothing of the target values.

We use NWP model wind fields since these are the best estimates of the true winds available over
the ocean surface that are collocated with the scatterometer observations. Care must be taken
since there is a danger in using one model to define the targets for another model. However the
NWP model derived estimates of wind speed and direction are based on assimilated data which
combines those indepedent observations available from bouys and ships with a good forecast from
the previous state of the atmosphere, and represents the best available estimate of the true winds.
Due to the sparsity of observations over the oceans the forecast state dominates the analysis and
the location and intensity of features in the wind fields may be in error, thus the quality of the
targets was improved by matching the position of low pressure centres in the forecast winds with
those observed by the scatterometer by linearly translating the model wind fields.

Despite having nearly 40,000 observations, there are in reality far fewer truly independent obser-
vations, since the within-scene spatial correlations between both wind speed and wind direction
will be very high. This implies that care must be taken when selecting data to train, validate and
test the neural network models. The local models we are training consider only the information
from within the relevant cell to infer wind speed and direction. Thus to retrieve all speeds and
directions well we require a training set with all possible combinations of wind speed, direction and
beam incidence angle represented. In order to retain some totally independent data for testing 13
scenes were selected from the whole dataset and removed from further analysis. The remaining
102 scenes were used for parameter estimation.

Figure 4 shows the distribution of the target values in these 102 scenes. Wind speed has a distribu-
tion strongly skewed towards lower speeds, which reflects the distribution of surface wind speeds in
the atmosphere. We wish to train our networks to learn the transfer function at all speed ranges to
minimise the FoM evaluation function. Thus when selecting a subset of 3,000 observations to train
the networks, 1,500 observations were selected to give as uniform a distribution of wind speed as
possible. A further 1,500 randomly chosen observations were also selected. This implies that equal
weight is given to the weighted and unweighted FoM. The validation set, which was used in the

3See http://www.meto.govt.uk/sec5/NWP/NWP.html.
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Figure 4: Histograms showing the distribution of (a) wind speed and (b) direction.

early stopping procedure, was selected in a similar manner. Finally a test set of 3,000 observations
was chosen randomly from the test scenes. All variables (except wind speed and direction) were
linearly transformed to have zero mean and unit variance, using the mean and standard deviation
derived from the direction training dataset. All results in this paper refer to the test set.

6 Results

6.1 Wind Speed

25¢

= n
3 =]
T T

=
o
T

Predicted Wind Speed (ms ™)

10 15 1 20 25
Observed Wind Speed (ms ™)

Figure 5: Scatter-plot of predicted versus observed wind speeds using the 4 hidden unit multi-
layer perceptron.

The relationship between wind speed and o is the less challenging problem and can be approached
using standard regression techniques. Figure 5 shows a scatter-plot of the results for the 4 hidden
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unit network, demonstrating that a reasonable approximation is made at all wind speeds, although
there are some large residuals. The wind speed results are also computed for different wind speed
bins, as suggested in the section on evaluation functions.

Table 1: Results for the 4 hidden unit multi-layer perceptron, binned by wind speed and a

linear regression model. The regression model included terms up to quadratic in the

variables but no interaction terms. All figures given in ms~'.

Speed Range Bias SD® RMSE’ N¢
<4 1.37 1.71 2.19 512
4-8 0.18 1.43 1.44 1324

8§ —-12 0.05 1.85 1.86 703

12 -16 -0.74 2.13 2.25 324

16 — 20 -0.30 2.17 2.19 126

> 20 -0.94 1.23 1.55 11
whole test set 0.23 1.80 1.81 3000

optimal regression model -0.14 1.85 1.85 3000

“Standard Deviation
bRoot Mean Square Error
‘Number of observations

From Table 1 it is clear that the network is having some difficulty learning the transfer function
for speed at higher and lower wind speeds (shown especially in the large biases). This is a feature
common to all reported transfer models [Offiler, 1994; Wismann, 1992] and the regression model.
The root mean square error of 1.81 ms™! for the full test set is within the design specification of

the instrument of 2 ms~1.

6.2 Wind Direction

15T T T 21T T T

——  FK483606 ——  FK483606
FK 24 180.7 181 FK 241807 - true direction B
— = CNS504 - —-  CN504
--- CN126 --- CN126
——  Committee ———  Committee

\ - alias direction

- true direction | alias direction

Conditional Probability Density
Conditional Probability Density

0 -1 0
Direction (radians) Direction (radians)

Figure 6: Conditional density functions for 2 cells showing the results of 2 circular normal, 2
fixed kernel and the committee of these 4 models. Both the true and aliased (i.e.
incorrect by 180 degrees) targets are shown.

Figure 6 illustrates that the different techniques of using adaptive circular normals and expansion
in fixed kernels produces similar conditional densities for the wind direction given the scatterometer
inputs. There is however some variability in the results, suggesting that a committee of networks
might improve performance. In both cases there is good agreement between the observed direction
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Figure T: Scatter-plots of observed versus predicted direction for (a) the most likely and (b)
the second most likely solutions. The lines show perfect fit and 180° alias solutions.

and the predicted conditional densities. Figure 7 shows the results of the committee of networks,
choosing the most likely and second most likely vectors (since generally there are two dominant
solutions; the true one and its 180 degree alias). Also marked on Figure 7 is the line of correct
solutions (observed = predicted) in the centre, and the two lines (observed = predicted +180
degrees) that are the alias solutions. The data clusters around these lines in both figures, although
there is considerable scatter.

Table 2: Results of the network techniques applied to the direction data. Columns give the
percentage of observations within +20° of the target solution considering the most
likely, first and second most likely and the first four most likely directions. For each
example the best fitting solution is chosen.

Network Configuration / Technique 1 solution 2 solutions 4 solutions

FK 24 18 0.72 53.0 72.0 79.0
FK 48 36 0.6 51.7 70.9 86.5
CN 12 6 47.2 70.8 77.5
CN 50 4 45.1 72.9 78.7

4 net committee 53.8 74.2 84.0

“FK = fixed kernel, number of hidden units, number of fixed kernels, scale of kernels relative to inter-kernel
spacing.
bCN = circular normals, number of hidden units, number of adaptive kernels.

Table 2 shows selected results for two of the better fixed kernel and circular normal approaches as
well as the committee results. By considering both first and second solutions and picking the better
one, using the circular normal technique we obtain the correct solution within 20 degrees more
than 70% of the time. The committee of networks outperform all their members when considering
only one or two solutions, however when considering the four most likely solutions some of the
fixed kernel results are marginally better.
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Table 3: Comparison of results using different algorithms (results computed in speed range the
4-24 ms™'). Note that the final CMOD4 result uses a completely different dataset,
and that the other studies used a different ambiguity removal procedure than was
used in this study. All units ms™! (speed) and © (direction).

Method Used Speed Bias Speed SD* Dir. Bias Dir. SD
Neural networks - this study -0.01 1.73 0.73 23.05
CMOD4 - same data 0.3 1.8 - -
Subset of data [26] -0.44 ~2 -1.37 ~20
CMOD4 [8] 0.1 1.9 ‘1.6 17.0
CMOD4 [11] 0.06 1.65 0.76 16.69

“Standard Deviation

7 Discussion and Conclusions

The equivalent results for the operational CMOD4 algorithm are only available for an (unknown)
subset of the dataset we used, excluding those cases with wind speeds < 4 ms~!, and are shown
in Table 3. These may be comparable with our results since we have used a representative sample
of the full (40,000 observation) dataset in testing.

Table 3 shows the limited number of comparable results published; however CMOD4, being the
operational algorithm, can be used as a benchmark. The neural networks used in this study pro-
duced comparable results to CMOD4 on speed, however they did not perform as well on direction.
Given that the estimated noise on the wind speed targets is of the order of 2 ms~! the speed
results may well represent the best that can be achieved given the data available, and fall within
the specification of the instrument, which required less than 2 ms™! root mean square error. It
must be noted that the neural networks trained in this study were trained on a combination of
uniformly and randomly (i.e. as the data) distributed wind speed data, and thus are unlikely to
produce an optimal solution over the observed distribution of wind speeds. This was done so that
the networks would minimise the Figure of Merit evaluation function. However, the almost uni-
form distribution of relative wind direction means there should be no such problems with respect
to wind direction.

Results for the neural network approach to wind direction retrieval proposed in [Thiria et al., 1993],
are not directly comparable since they used simulated data as well as a spatial input context. They
obtained 72% of the first solution within 20 degrees and 98.4% of the first two solutions within 20
degrees. Our committee of networks obtained the correct solution to within 20 degrees roughly
75% of the time considering the two most likely directions only. In further work we have performed
using a different training set based on co-located scatterometer o triples and wind vectors from
the ECMWF numerical weather prediction model the same committee produced results of 77.4%
within 20° of the true direction, taking the first two most likely solutions. A more representative
data set, with far more patterns in the training set is likely to improve results. The more simple
CMOD/4 forward model was trained using almost 40,000 observations.

Our techniques produced Figure of Merit scores of 1.08 (weighted average over the speed bins)
and 1.16 (unweighted), which compare with the CMOD4 scores of 1.13 (weighted) and 1.16 (un-
weighted). These scores cannot be directly compared since they were computed from different
data sets, however there is some potential benefit in the neural network approach. It would be
considerably less computer intensive since once the networks are trained, new wind vectors can be
computed using forward propagation in the model, whereas the current operational models require
the minimisation of a complex function or the use of large look-up tables.
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It is clear that the use of the circular normal distribution with all parameters (or just mixing
coefficients) determined by neural networks represents a feasible method for the solution of inverse
problems (i.e. multi-valued mappings) where the target is periodic. The ability to approximate the
conditional probability of wind direction allows us to use sophisticated disambiguation algorithms.
There is some concern that the neural networks were having difficulty in learning the appropriate
mapping because they were being trained on very noisy data which did not cover the full range
of input values. The satellite scatterometer measurements are prone to noise from larger ocean
waves (swell), wave breaking and rainfall [Badran et al., 1991]. Also, the target data from numerical
weather prediction models is over-smooth, particularly in the vicinity of fronts and strong gradients
in wind speed or direction. Many of these problems have yet to be quantified in terms of their
impact on wind retrieval.

Future work will obtain better target data (increased numbers of observations from which to select
a data set which covers a broader input and target range and increased data quality through manual
removal of extreme outliers in o° space) and investigate modelling the conditional distribution in
terms of the Cartesian wind components, where the error model is better understood.
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Appendix I

In order to compare different models a Figure of Merit ‘evaluation function’ has been proposed by
Dayvid Offiler of the UK Meteorological Office (personal communication). This evaluation function
takes the form:

(F1+ F2 + F3)

FoM =
© 3

(13)

where F'1 = 40/(Upias + 10Usqg + Dpias + Dsa), F2 = (2/Upms + 20/ Dypms) /2, F3 = 4/Vems, U
gives the wind speed, D the wind direction and V the wind vector. This reflects the extent to
which the model meets the instrument specifications of +2ms~! and +20°. A FoM of greater
than one indicates the transfer function is performing to within these specifications, although this
is a rather ad-hoc measure. The bias is given by:

1 n
Ubias = E Z Ures(i) (14)
i=1
where the residual wind speed Uyes = Upreq — Uops, the predicted speed (Upreq) coming from the

neural network, the observed speed (U,ps) from the numerical weather prediction model and n is
the number of observations. The standard deviation of the residuals is given by:

Similarly the root mean square error U, is given by:

n

1
Urms = E Z(Ures(i))2 (16)

i=1

The vector residual V,..s is given by:

Ves = /U2, + U2, o = 2UobsUprea €05(Dres) (17)

The wind speed is known to affect the ability of the on-board instruments to resolve wind direction.
Thus the FoM is computed by binning the cases in 5 wind speed classes; 4 —8 ms—1, 8 — 12 ms~1,
12 —16 ms~1, 16 — 20 ms~! and > 20 ms~!. The bias, standard deviation and root mean square
error (of the residuals) are computed for each bin and a final FoM is computed from both weighted
(by the number of observations in each bin) and unweighted means of the binned statistics. The
weighted mean takes into account the distribution of wind speed values in the atmosphere. The
unweighted mean gives much larger importance to performance at higher wind speeds, which are
arguably the cases of greatest interest to atmospheric scientists.



