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Abstract-Studies of the propagation of heat pulses. launched by a sawtooth collapse or by modulated 
auxiliary heating. yield information on transport properties in the Tokamak. Corresponding values of the 
thermal conductivity are often found to be significantly larger than values obtained from power balance 
calculations. A full treatment of thc heat pulse must. however, include possible coupling to an associated 
density pulse. Such effects are discussed in the context both of neoclassical transport theory and of a model 
of anomalous transport due to drift waves. It is found that the discrepancies between hcat pulse and power 
balance measurements could arise from coupling between density and temperature perturbations due to 
the presence of off-diagonal terms in the transport matrix. 

I ,  I N T R O D U C T I O N  
THE SAWTOOTH COLLAPSE in the central region of a Tokamak plasma can launch a 
heat pulse which propagates radially outwards. By fitting solutions of heat conduction 
equations to the observed shape of the pulse, information about the thermal con- 
ductivity can be obtained (CALLEN and JAHNS, 1977). It is often found that the thermal 
conductivity deduced from heat-pulse measurements (x”’) is about a factor 2 greater 
than that obtained from power balance calculations (x”). Similar experiments can 
also be performed using modulated ECRH (ASHRAF et al.: 1988). The sawtooth also 
launches a density pulse which can yield information on the particle diffusion 
coefficient (K.IM er al., 1988). Again, the density-pulse value is found to be about a 
factor 2-5 larger than that obtained from gas-puff measurements, which are indicative 
of the equilibrium value. GOEDHEER (1986) has shown that neglect of perturbed source 
and sink terms can lead to an overestimate of transport coefficients, though not all of 
the discrepancy can be explained in this way. 

In this paper we consider the effects on heat-pulse (and density-pulse) measurements 
of possible “off-diagonal” terms in the transport equations ; that is, terms in which a 
density gradient drives a heat flux, or a temperature gradient drives a particle flux. A 
pure temperature perturbation is then no longer a normal mode of the system (HOSSAIN 
et al., 1987), and it is necessary instead to consider the eigenvectors of the transport 
matrix. These involve some combination of density and temperature perturbations, 
so that even a source of pure temperature perturbations would generate density 
perturbations at some distance from the source. If the propagation of a heat pulse in 
such a system were to be modelled by a simple heat conduction equation, the value 
xHP of the thermal conductivity so obtained could differ substantially from the value 
xPB corresponding to the equilibrium temperature gradient. The presence of off- 
diagonal terms therefore provides a possible explanation for the discrepancy between 
equilibrium and perturbation transport coefficients. 

In Section 2 we consider a model transport matrix with constant coefficients in 
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order to demonstrate the basic mechanisms. We then illustrate these ideas with two 
examples : in Section 3 we consider neoclassical transport theory for which off- 
diagonal terms are known to exist and have been calculated, and in Section 4 we 
consider a model of anomalous transport due to the dissipative trapped electron mode 
for which off-diagonal terms are also present. Some concluding remarks are presented 
in Section 5.  

2 .  M O D E L  S Y S T E M  
The evolution of temperature and density profiles is governed by the coupled 

transport equations 

an 1 B 
Bt r 2r - + - - ( r r )  = s,? 

Here n and T denote density and temperature, r and Q are the particle and heat 
fluxes, and S, and SfZ are the corresponding source terms. The heat flux Q can be 
decomposed into diffusive and convective terms : 

The particle and diffusive heat fluxes can be expressed in terms of transport coefficients 
as follows : 

an BT 
Br Br q = - M 2 , T -  -Xon----, ( 5 )  

and we shall neglect thermal and particle pinch terms. In steady state the time 
derivative terms in equations (1) and (2) vanish, and thus the diffusion terms balance 
the source terms. Suppose the resulting temperature profile were to be modelled by a 
simple heat equation of the form : 

i.e. one in which off-diagonal terms have been neglected. The value of xPB so obtained 
depends on the density profile ; if we assume 
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(7) 

then we obtain 

and we see that the presence of off-diagonal terms implies xPB # xo. 
Information about transport coefficients can also be obtained by studying the 

propagation of temperature and density pulses. When the time-dependent source 
terms are localized in space, we can study the propagation in the region where the 
source terms are small, in which case the time derivative terms balance the diffusion 
terms. This has the considerable advantage that models for the source terms, which 
are often complex and uncertain, are not needed (TANG, 1988. private communi- 
cation). We begin by writing the density and temperature as the sum of steady state 
and perturbed quantities : 

I Z ( T :  t )  = no(r)  + f i ( r ,  t ) ,  

T (T ,  t )  = T0(r) + F(T, t )  

We now linearize the transport equations (1)-(5) with the assumption 

This gives a set of coupled transport equations which can be written in matrix notation 
as 

where 

For simplicity we take the elements of P to be constants ; more realistic examples will 
be given in the next two sections. The general solution of equation (1 3) is given by 
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where the U, are the two solutions of the eigenvalue equation 

P * u ,  = ;-,U,. 

and x ,  are given by 

x,(r, r )  = A(z,) exp (ior). 

where A ( z , )  satisfies the Bessel equation 

d2A 1 dA 
-- + - ~ + A  = 0 
dz: zJ dz, 

with 

Away from the source, the term with the smaller eigenvalue %, decays more rapidly, 
leaving a pure eigenmode U > .  If the resulting heat pulse were to be fitted by a solution 
of a simple heat equation of the form 

the value of xHP would be given from the eigenvalue i2 by xHP = 3i.2/2 and thus 

The presence of off-diagonal terms therefore implies xHP # xPB. If iM, = M z  , = 0. 
however. we obtain xHP = xpB = xo. Thus the existence of off-diagonal terms can 
provide an explanation for the apparent discrepancy between xpB and xHP. 

3 .  NEOCLASSSICAL T R A N S P O R T  
We next consider neoclassical transport theory as an illustration of the results of 

the previous section. The fluxes r and Q can be written as (HINTOX and HAZELTINE, 
1976) 

r = --f(r)n[l.O4A’+ 1.20T’/T], 

Q = -f(r)nT[1.20A’+ 2.55T’/T], 

where primes denote derivatives with respect to r ,  and we have set T, = T, = T and 
neglected ion gradients and electric field terms. Here 
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f ( r )  = ~ o n s t - r - ~  2q2nT-’ ’. (25) 

In these canonical variables ( A .  T) the Onsager Symmetry of the fluxes (23) and (24) 
is explicit. For simplicity we shall approximate f ( v )  by Clr2 where C is a constant. 

If the equilibrium temperature profile were to be fitted by a simple heat equation 
of the form given in equation (6). and we again assume q = 1, we would obtain 

To study heat-pulse propagation we again linearize the transport equations with the 
assumptions (1 1) and (12). The resulting coupled equations can be written as 

where x = r2/2, and 

M=( 1.04 -0.36 

These equations can again be written in terms of the eigenvectors of M, giving 

U = x , ( x , t ) u ,  +%*(I, t)u2, (31) 

where 

Ma U, = Aiu,, 

The solution with frequency w and bounded as x 3 x can be written as 

(32) 

(33) 

x i  = exp (-k,x){u,cos ( w r - k p )  +b,  sin ( w l - k , . ~ ) ) ,  ( 3 5 )  

k ,  = (0/2Ci,)’  *, (36) 
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where the coefficients {U,, h,)  are determined by the boundary conditions. We consider 
the case of a &function heat source at r = 0 varying like cos (wt) ,  and no source of 
particles. This gives b, = U,, and a , , a l  = - 1.80. Thus close to the source (the "near 
field") there are density fluctuations even though there is no (fluctuating) particle 
source. This is a consequence of the presence of off-diagonal terms in the transport 
matrix. From equation (31) and (35) we have 

- n F 
__ - z 0.19 - 
no To 

(near field). (37) 

Further away from the origin the two eigenmodes decay at different rates so that at 
large distances from the source (the "far field") the solution is dominated by the 
eigenmode U: since this has the largest eigenvalue. From equation (34) we then have 

Note that the far field result is independent of the boundary conditions. If the far field 
temperature profile were to be fitted by a solution of a simple heat equation of the 
form (21) the value of xHP would be determined by the eigenvalue i2 giving 

Comparing equations (27) and (39) we see that the presence of off-diagonal terms in 
this case leads to a large discrepancy between xHP and xPB. This calculation can be 
generalized to allow for a modulated heat source localized away from the axis. 
The far field results remain unchanged, since they are independent of the boundary 
conditions. 

4 .  A N O M A L O U S  T R A N S P O R T  
As a second example of a transport matrix with off-diagonal terms we consider the 

anomalous transport due to the dissipative trapped electron mode, as calculated by 
HORTON (1976). Using the results derived in the Appendix we can write the fluxes in 
the form 

r = - n D  - {  2 - 7 + 6 - - ,  

where 
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and L, is the shear scale length, E is the inverse aspect ratio and the other symbols have 
their usual meaning. Unlike the cases considered so far, the fluxes are non-linear 
functions of the gradients. This can lead to discrepancies between xHP and xPB, in 
addition to those due to the off-diagonal terms (GENTLE, 1988). If we define xPB by 
equation (6), and take y = 1, we obtain 

xPB = 16DT. (43) 

Linearizing the transport equations, again using (1 1 j  and (12), we pick up additional 
terms arising from the V n  terms in D. The resulting equations take the form 

where 

R = ( 2 6  50 14 ") 
The eigenvalue equation for R is given by 

R - U ,  = j,,u,, 

with solutions 

In the far field region we then have 

xHP = $jL2DT = 57.5DT, 

and thus 

(44) 

(47) 
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In this model the discrepancy between xHP and xPB arises partly from the existence of 
off-diagonal terms, and partly from the non-linearity of the fluxes. 

5 C O N C L U S I O N S  
Measurements of transport coefficients in a Tokamak by perturbative (heat-pulse 

and density-pulse) methods often give values which are significantly different from 
those obtained from equilibrium profile measurements. We have shown that such 
apparent anomalies can arise from the presence of off-diagonal terms in the transport 
matrix. Another consequence of off-diagonal terms is that a pure temperature per- 
turbation (or a pure density perturbation) is no longer a normal mode of the system. 
Away from the source region, the ratio of density to temperature perturbations is 
determined by the eigenvector of the transport matrix, and can be compared with the 
experimentally determined ratio (BISHOP et al., 1989). We have illustrated these results 
with the examples of neoclassical transport, and anomalous transport due to the 
dissipative trapped electron mode. 
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A P P E N D I X :  E V A L U A T I O N  O F  F L U X E S  F O R  T H E  D T E  M O D E  
HOKTON (1976) has given the following expressions for the quasilinear fluxes due to the dissipatipe 

trapped electron mode : 

where 

r =  -izD 

T dr  
I dii 

12 dr  
( I inG' )A--+(In iG2)- -  , ( 5 3 )  
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( 5 7 )  

and, in Horton's notation. 

Q = K+ 4rT. ( 5 8 )  

The distinction between 3rT and 2I-T is largely a matter of convention. and is discussed in Ross (1988) ; 
we shall use the 4l-T convention. Only the total heat flux Q has physical significance. Note that, if A = 1 
in equations ( 5 2 )  and ( 5 3 ) ,  the fluxes would satisfy an Onsager symmetry. In fact we shall take A = 112 
since this is a more typical value. In the t ,  > 1 regime the dominant contribution to Im G" comes from 
small t ,  and this allows the following approximate analytic expression to be obtained : 

= 3  . . . (  n = 1 )  

= 2112. . . ( n  = 2). 

Equations (40) and (41) then follow. 


