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Abstract—Fast and accurate analysis of fluorescencein-situ hy-
bridization (FISH) images for signal counting will depend mainly
upon two components: a classifier to discriminate between artifacts
and valid signals of several fluorophores (colors), and well discrim-
inating features to represent the signals. Our previous work has
focused on the first component. To investigate the second compo-
nent, we evaluate candidate feature sets by illustrating the proba-
bility density functions (pdfs) and scatter plots for the features. The
analysis provides first insight into dependencies between features,
indicates the relative importance of members of a feature set, and
helps in identifying sources of potential classification errors. Class
separability yielded by different feature subsets is evaluated using
the accuracy of several neural network (NN)-based classification
strategies, some of them hierarchical, as well as using a feature se-
lection technique making use of a scatter criterion. The complete
analysis recommends several intensity and hue features for repre-
senting FISH signals. Represented by these features, around 90%
of valid signals and artifacts of two fluorophores are correctly clas-
sified using the NN. Although applied to cytogenetics, the paper
presents a comprehensive, unifying methodology of qualitative and
quantitative evaluation of pattern feature representation essential
for accurate image classification. This methodology is applicable
to many other real-world pattern recognition problems.

Index Terms—Color image segmentation, feature representa-
tion, fluorescence in-situ hybridization, image analysis, neural
networks, signal classification.

I. INTRODUCTION

F LUORESCENCEin-situ HYBRIDIZATION (FISH) al-
lows the detection of specific DNA sequences in intact cell

chromosomes. It enables selective staining of various sequences
in interphase nuclei and therefore the detection, analysis, and
quantification of specific numerical and structural chromosomal
abnormalities within these nuclei. FISH is a widespread and
diversely applied technology. The fields of biology in which
FISH is employed include prenatal diagnosis, gene mapping,
DNA replication and recombination, clinical diagnosis, and
monitoringofdisease and radiationdosimetry [1].
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Fig. 1. Example (in black and white) of a FISH image used for dot counting.

Dot counting, the enumeration of signals (also called dots
or spots) within the nuclei, is considered one of the most im-
portant applications of FISH, as the dots in the image repre-
sent the inspected chromosomes (see Fig. 1). Unfortunately,
dot counting has to be performed in a dark laboratory room
viewing the biological samples uncomfortably through a mi-
croscope in a time-consuming procedure. In addition, the ex-
pertise required for the completion of dot counting is gained
through extended and expensive training. Digital microscopy in
FISH allows the application of image analysis techniques for
the automation of dot counting. The conventional approach [2]
to automatic dot counting relies on an auto-focusing mechanism
to select the “clearest” image for the analysis. However, basing
dot counting on auto-focusing has some shortcomings [3], such
as high cost, a long analysis period, and counting errors. Re-
cently, it has been proposed [3] to base FISH dot counting on a
neural network (NN) classifier discriminating between in-focus
and out-of-focus images taken at different focal planes of the
same field-of-view (FOV), as an alternative to the use of auto-fo-
cusing mechanism. Images at different focal planes are ana-
lyzed, and signals of each image are classified by the NN as
valid data or artifacts, which are the result of out-of-focusing.
Following the discrimination of valid signals and artifacts in
each image, the image that contains no artifacts is selected as
the in-focus image to represent that FOV, whereas the other
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out-of-focus images are rejected. When the required number of
(in-focus) images (or nuclei) is collected, proportion estimation
of the number of cells having specific numbers of signals can be
performed [4] as in auto-focusing-based dot counting methods.
The suggested method overcomes most of the shortcomings of
auto-focusing and when combined with multispectral analysis
(which will be discussed in Section III) it shortens the length
of image acquisition. Moreover, the classifier can be integrated
into any existing dot counting system as it only replaces the
auto-focusing mechanism. Also, the NN classifier can be re-
placed by any other classifier.

However, as the suggested system is required to classify both
valid signals and artifacts of several fluorophores, its ability
to discriminate between focused and unfocused signals should
be more accurate than that of the discriminating element of a
system employing an auto-focusing mechanism, as the latter en-
counters only (in-focus) valid signals. Therefore, the proposed
system depends upon two components: a highly-accurate clas-
sifier to distinguish between valid and artifact signal data of
several fluorophores, and well-discriminating signal represen-
tation. A hierarchical NN trained by a scaled conjugate gradient
algorithm was found [3] to be an accurate classifier of FISH sig-
nals into real (valid) signals and artifacts of two fluorophores.
In this paper, we aim to find well-discriminating feature rep-
resentations of FISH signals of both in-focus and out-of-focus
images that ensure an efficient and even more accurate signal
(and thereby image) classification. Together, the two compo-
nents provide a reliable methodology of fully automatic signal
classification for dot counting in FISH images. Moreover, this
methodology incorporates qualitative and quantitative evalua-
tion techniques of pattern feature representation, making it both
complete and generic for application to problems in other do-
mains as well.

Automatic FISH image analysis in this paper is compiled
of several ingredients. First, the analysis is multispectral uti-
lizing color in both image processing, segmentation, feature de-
scription, and classification. Second, emphasis is placed on fea-
ture representation using vast and independent families of fea-
tures, e.g., size, shape, intensity, color, and features projected
on the data principal axes. Third, feature selection employing
both qualitative and quantitative evaluation mechanisms is ex-
tensively applied to assure compact and accurate feature rep-
resentation. Finally, classification is based on hierarchical NNs
partitioning the feature space sequentially ensuring speedy, ef-
ficient, and precise discrimination.

Section II of this paper describes the procedure used to ac-
quire FISH images, while Section III discusses the advantages
of multispectral FISH image analysis. Section IV depicts the ex-
traction of representative features of FISH signals, while feature
selection is addressed in Section V. Section VI presents three
NN-based classification strategies of signals into valid and ar-
tifact signals of two colors. A complete evaluation of feature
representations of FISH signals by visual analysis of scatter
plots and probability density functions (pdfs), as well as by two
class separability criteria: a scatter criterion and the probability
of misclassification, is given in Section VII. Section VIII con-
cludes the paper.

II. BIOLOGICAL MATERIALS AND METHODS

A. Slide Preparation

The interphase nuclei preparations from amniotic fluid were
made using the method by Klingeret al. [5] with minor modi-
fications: 1–2 ml of amniotic fluid was centrifuged and the cell
pellet washed in PBS warmed to 37C. The cells were resus-
pended in 75 mM Potassium Chloride (KCl) and put directly
onto slides coated with APES (Sigma) and incubated at 37C
for 15 min. Evaporation of PBS was compensated with filtered
distilled water. Excess fluid was carefully removed and replaced
with 100 ml of 3% Carnoys fixative, 70% 75 mM KCl at room
temperature for 5 min. The excess fluid was carefully removed
and five drops of fresh fixative were dropped onto the cell area.
Slides were briefly dried on a 60C hotplate, and then either
used immediately for hybridization or dehydrated through an al-
cohol series and stored at20 C until required.

B. Hybridization

Target areas were marked on the slides using a diamond-
tipped scribe. Target DNA was denatured by immersing in 70%
formamide: 30% 2 SSC at 73 C for 5 min. Then, 10 L
of probe mix containing spectrum orange LSI 21 and spectrum
green LSI 13 (Vysis UK) was applied to the target area and a
coverslip was placed over the probe solution. Coverslips were
sealed using rubber cement and slides placed in a prewarmed
humidified container in a 37 C incubator for 16 h. Cover-
slips were removed and slides washed in 0.4SSc/0.3% NP-40
solution at 73 C for 2 min. Slides were then placed in 2
SSC/0.1% NP-40 solution at room temperature for 1 min. When
completely dried, 10 L of DAPI II counterstain (Vysis UK)
was applied to the target area and sealed under a coverslip.

C. Fluorescence Microscopy and Screening Procedure

Slides were screened under a Zeiss axioplan epifluorescence
microscope using Zeiss 100 objective. Signals were viewed
using Vysis DAPI/Green/Orange triple bandpass filter set and
images acquired using a CCD camera (Photometrics CH250/A)
and SmartCapture software (Vysis UK). Red and green sig-
nals, corresponding to chromosomes 21 and 13, respectively,
were seen on blue DAPI stained nuclei. Slides were scanned
by starting in the upper left corner of the coverslip and moving
from top to bottom. A total of 400 in-focus and out-of-focus im-
ages were collected from five slides, stored in tagged image file
format (TIFF) format, and used in the feature evaluation exper-
iments (see Section VII).

III. M ULTISPECTRAL FISH IMAGE ANALYSIS

A. Motivation

Color systems such as color television and color photography
usually follow the human visual system and describe and syn-
thesize color images using the three primary colors—red, green,
and blue (RGB). Similarly, a tricolor digital image can be con-
sidered as a two-dimensional (2-D) image having three intensity
levels (red, green, and blue) at each pixel. By analyzing each of
the three color channels of the RGB image separately and in
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various combinations, preprocessing and segmentation of mul-
tispectral images can be facilitated.

In FISH preparation, multiple probes, labeled by different flu-
orophores, are frequently employed in combination. In the cur-
rent study, for instance, chromosomes 13 and 21 are detected as
green and red signals, respectively, whereas the nuclei are indi-
cated by blue. Although the position in the image and the char-
acteristics of the fluorophores are of importance, previous anal-
ysis [2] converts color information into a grey-intensity scale,
and FISH image analysis is then based on brightness contrast.
However, difficulties encountered during the analysis of inten-
sity-based FISH images can be avoided if color information is
maintained and used [3], [4]. Nuclei can be analyzed using the
blue channel of the RGB image, whereas red and green signals
using the red and green channels, respectively. Multispectral
FISH image analysis is beneficial not only to facilitate prepro-
cessing and segmentation, but also to yield color-based features
that may contribute to efficient signal classification. Finally, the
advantages of using multispectral analysis compared with the
conventional intensity-based analysis are expected to increase
with the complexity of the specific FISH application and the
number of fluorophores employed.

B. Color Specification

Using the RGB color format, which is the most basic quan-
titative description of a color image, we represent color by the
scaled red, green, and blue intensities of each image pixel. In
the hue, saturation, intensity (HSI) format, which is more suit-
able for approximating human color judgments, the color of a
pixel is represented by its hue and saturation, whereas the inten-
sity indicates the pixel overall brightness regardless of its color.
The RGB format is useful to facilitate preprocessing and nu-
cleus and signal segmentations (see Section III-C). However,
as valid signals have intensity components in only one channel
(red signals in the red channel and green signals in the green
channel), channel intensities of different color signals are very
similar to each other. Therefore, only the hue parameter () of
the HSI color format can detect differences in color, and hence
be employed for measuring multispectral signal features.

To convert RGB to HSI format, we use [6]

arctan (1)

(2)

and

(3)

where , , and
, and R, G, and B are the intensities in

the three channels, respectively.

C. Color Image Segmentation

Special multistage (usually TopHat-based) procedures that
rely on heuristically-derived thresholds and parameters are con-
ventionally employed to segment FISH nuclei and signals [2].
Color image segmentation, however, avoids the use of these pro-
cedures. It is performed separately on each of the three dif-
ferent channels of the RGB image using global thresholds. In

this paper, threshold values of 0.5 and 0.8 of the maximum
channel intensity are found suitable for the segmentation of sig-
nals and nuclei, respectively. Finding “good” global thresholds
in the RGB image is straightforward compared with thresh-
olding an intensity image since the channels contain no back-
ground and only blue (red, green) objects are found in the blue
(red, green) channel. For these reasons, moderate changes in the
threshold values barely affect the overall classification accuracy
or the results of feature evaluation. Moreover, computationally
speaking, the red and green channels of a color image are rep-
resented by sparse matrices (to see this, note that the area of a
typical signal of, for example, ten pixels, is less than 0.01% of a
typical image area, for example, pixels ). Therefore,
special algorithms for sparse matrices can be exploited to enable
faster performance of multispectral analysis compared with the
intensity-based analysis that requires the full matrices.

Thereafter, the blue, red, and green thresholded objects are
used as candidates for nuclei and red and green signals, respec-
tively. Noise reduction, boundary smoothing of the nuclei by
morphological operations, and spatio-spectral correlation be-
tween nuclei and signals are then implemented to complete the
segmentation.

IV. SIGNAL MEASUREMENT

A set of features is measured for each of the segmented sig-
nals to be classified. The set includes area (a size measure) and
eccentricity (a shape measure), which have been previously sug-
gested [2]. In addition, we measure a number of spectral fea-
tures. We compute at each of the relevant RGB channels three
intensity-based measurements: the total and average channel in-
tensities and the channel intensity standard deviation. We also
compute four HSI hue-based measurements: maximum hue, av-
erage hue, hue standard deviation, and Delta Hue. Delta Hue is
the difference between the maximum and average hue normal-
ized by the average hue. This last feature has been added to the
set because it was observed that the difference between values
of the average and maximum hue of real signals is usually near
zero, whereas for some kinds of artifacts (e.g., overlap of sig-
nals of two different fluorophores) this difference is substan-
tially large.

In the next subsection, we will elaborate the feature set in
order to enhance signal representation.

A. Spectral Feature Extraction

A compact feature representation can be obtained by linear
feature extraction of signal channel intensities using principal
component analysis (PCA). Applying PCA [7, pp. 400–403], we
can represent signal intensity using a lower-dimensional linear
combination of projections of that intensity. Intensity is pro-
jected onto principal axes that maximize the data variance. Let

be a linear mapping of a random (intensity) vector
, , , and . The approximation

(4)
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with the minimum mean-square error
is obtained when ( ) satisfy

(5)

The most effective principal axes are those eigenvectors
associated with the largest eigenvalues of the covariance
matrix of the mixture density . are the projected
values of the intensity vector on .

PCA is applied here to signal channel intensities. Red and
green signals have intensity components also in the blue channel
of the RGB image, as the signal is part of a nucleus. To find pro-
jections which are capable of discriminating between red and
green signals, we apply the PCA to 2-D vectors representing the
intensities in only the red and green channels of the signal pixels.
We would expect that the principal axes of red and green real
signals will coincide with the R- and G-axes, since the signals
have intensities in only one channel (either R or G). However,
overlap between signals of different fluorophores, or between a
signal and background fluorescence due to other fluorophores,
leads to artifacts for which the principal axes are expected to be
between the R and G axes. Using the eigenvectors as features
can hence improve the ability to distinguish between real sig-
nals and artifacts of different colors, and we therefore include
the two coordinates of of the signal red and green intensity
components in our feature set (see Section IV).

PCA-based features are very effective, yet their computa-
tion may become demanding. However, projection of a typ-
ical, natural image along the eigenvector which corresponds to
the largest eigenvalue captures most of the variance (informa-
tion) contained in the image. For these images, this eigenvector
has a value of around (1/3, 1/3, 1/3), which remains similar
across different natural images [6]. Therefore, projecting a typ-
ical color image onto its first eigenvector is equivalent to com-
puting , which is the average grey in-
tensity of the image. This intensity is an effective color feature,
and the load involved in its computation is negligible compared
with that required to perform PCA. Therefore,is added to the
signal feature set.

In summary, the nine features of Section IV as well as the ad-
ditional three features presented here are all evaluated for FISH
signal representation. The 12 features are listed and numbered
in Table I to facilitate their identification in the rest of the paper.

V. FEATURE SELECTION

Classification based on a large feature set may be complex,
costly to compute, and because of the “curse of dimensionality”
even inaccurate. Moreover, even for a feature set of a moderate
size, like the one employed here, some of the features can be
found to contribute very little to the classification accuracy and
others to be correlated to each other. The exclusion of redun-
dant features from the set simplifies and shortens training of a
classifier, and frequently also improves its accuracy [8]. Hence,
the purpose of feature selection is to select a (small) subset of
the feature set yielding accurate classification in minimal com-
putational cost. In practical problems and for a not very large
feature set, we can search among all the possible feature subsets
and evaluate each one of them using a criterion of class separa-

TABLE I
SET OF FEATURESSTUDIED IN THE WORK. NUMBERS AREUSED IN THE REST

OF THE PAPER TOIDENTIFY THE FEATURES. TEXTURE INDICATES STANDARD

DEVIATION OF CHANNEL INTENSITY (5) OR HUE (8). EIG. 1 AND 2 ARE

ABBREVIATIONS FOR THETWO COORDINATES OF THEEIGENVECTOR

CORRESPONDING TO THELARGESTEIGENVALUE OF THE RED AND GREEN

INTENSITY COMPONENTS OF THESIGNAL

bility. The subset that achieves the highest value of the criterion
is then selected to represent the patterns to the classifier.

The criterion of separability that is considered here, called,
is based on the within-class scatter matrix [7, pp. 446–447]

(6)

and the between-class scatter matrix

(7)

where

(8)

is the mean pattern of the mixture distribution. are patterns
of class ( ) with mean , covariance matrix , and
a priori probability . The criterion

(9)

where is the trace of matrix A, is expected to be larger
when the between-class scatter matrix is larger and/or the
within-class scatter matrix is smaller, thus indicating strong
class separability.

VI. SIGNAL CLASSIFICATION

Recently [3], we have demonstrated the feasibility of auto-
matic signal classification in in-focus and out-of-focus FISH
images. The signal classification methodology employed in the
current work is based on this demonstration and briefly summa-
rized as follows. Signals (representing the red and green fluo-
rophores) are classified into four classes: “real red,” “artifact
red,” “real green,” and “artifact green.” Within the “artifact”
classes we expect to find unfocused and overlap signals, and
signals which are the result of background fluorescence. These
signals will have patterns with different values of features than
those of real signals, and hence will be classified as artifacts. La-
bels for the patterns, as belonging to one of the four classes, are
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needed to train and evaluate the classifier, and they are obtained
by an expert cytogeneticist using a custom-built graphical user
interface for labeling FISH images [9].

Following the normalization of the features to zero mean and
unit variance, patterns of signals extracted from all the images
are divided randomly into training and test sets and classifica-
tion into one of the four classes is implemented using cross-val-
idation. A validation set which is drawn from the training set
assures that the classifier is not over-trained, and the “optimal”
configuration is selected. This guarantees rapid training and im-
proved generalization capability of the classifier.

Three NN-based classification strategies are examined here.
In the first, called the “monolithic strategy,” patterns are clas-
sified into the four classes using a single NN. The two other
strategies are hierarchical and based on the assumption that the
classification problem can be considered as a 2two class
problem rather than a four-class classification problem. In the
second strategy, termed the “independent,” patterns are classi-
fied into “red” and “green” classes using the “color network”
and independently by a second network, the “real network,”
into reals and artifacts. Classification of a pattern into the four
classes is achieved by a common decision of both networks. In
the third strategy, called “combined,” patterns are first classified
into “red” and “green” classes using the “color network” and
then based on the results of this network they are classified by
two other networks, the “real-red network” and the “real-green
network,” into reals and artifacts of the two colors. The building
block of each of the classification strategies examined here is a
two-layer perceptron NN trained by the scaled conjugate gra-
dient algorithm [10, pp. 282–285]. Classification is based on
the approximation of the two-layer perceptron outputs to thea
posterioriprobabilities for the classes. The classification accu-
racy is used here as the second criterion of class separability, in
addition to (see Section V), employed for the evaluation of
feature representation.

VII. EXPERIMENTS AND RESULTS

Several experiments were performed to investigate feature
representations of FISH signals as well as to compare feature
evaluation techniques and class separability criteria applied to
the representations. Before the experiments, we had created
a database of 400 in-focus and out-of-focus FISH images
captured from five slides. Following nuclei segmentation, the
system identified 944 objects within these images as nuclei, of
which 613 also contained signals (the remaining 331 objects
were unfocused nuclei that therefore contain no signals).
Following signal segmentation, 3,144 objects within the above
nuclei were identified as potential signals and features were
measured for them. Based on labels provided by expert inspec-
tion (see Section VI), 1,145 of the signals were considered as
“reals” (among them 551 were red) and 1,999 as “artifacts”
(among them 1,224 were red).

A. Visual Analysis Using pdfs

Features have first been evaluated visually using conditional
pdfs. Fig. 2 shows four examples of histogram estimates of

one-dimensional (1-D) conditional pdfs for three features of
Table I —area, average channel intensity, and average hue. In
the first three examples, red signals—reals and artifacts are com-
pared, whereas in the last example real signals—red and green
are evaluated. The first example [see Fig. 2(a)] demonstrates
that the area parameter of real signals is much more confined
than that of artifacts, but that classification of reals and arti-
facts based on the area feature could be inaccurate due to large
overlap of the two distributions. Fig. 2(b) indicates less overlap
between the distributions of reals and artifacts for the average
channel intensity, where the values of the artifact intensities are
usually lower than those of the reals. Average hue is found in
Fig. 2(c) and (d) to be a well-discriminative feature for distin-
guishing between red and green signals [see Fig. 2(d)] and even
between reals and artifacts [see Fig. 2(c)]. Similar graphs have
also been derived for other combinations of classes and features.
The large extent of overlap between distributions for different
classes demonstrates some of the expected difficulties in classi-
fying FISH signals into reals and artifacts of two colors.

B. Class Separability (Single Feature)

To extend the visual evaluation of single features for signal
classification, we have performed additional experiments using
two class separability criteria. In the first experiment, feature
selection (see Section V) was applied to the original set of 12
features. Criterion (9) was computed for each and every fea-
ture to give an indication of the amount of class separability
the feature provides. In the second experiment, the probability
of misclassification estimated by the “monolithic strategy” (see
Section VI) was evaluated for signals represented using each of
the features. For each feature representation, the optimal config-
uration of the NN classifier was determined on a validation set,
and training continued for 200 epochs. Table II shows the value
of , rank according to of the feature among all the features
(“lowest” is “best”), the optimal configuration of the classifier
and the classification accuracy on the training and test sets. Re-
sults are given for each of the features of Table I.

We can draw two main conclusions from Table II. First, there
is a general agreement between criterionand the classifica-
tion accuracy. The three features with the highest values of
[average hue (7), maximum hue (6) and Eig. 2 (11)] are those
responsible for the highest classification accuracy. In addition,
two of the features with the lowest values of [area (1) and
hue texture (8)] also yield very low classification accuracy. For
the rest of the features, the agreement between the two criteria
is weaker, probably since the difference between two classifica-
tion accuracies or two values of is frequently marginal. More-
over, this agreement additionally supports results coming from
the study of the pdfs (see Fig. 2). The results also demonstrate
the benefit of applying a simple class separability criterion such
as to the data as a screening procedure before performing
classification.

The second conclusion drawn from Table II is that in order to
achieve sufficiently accurate classification we would need mul-
tifeature signal representations. Classification based on most
of the single-feature representations failed since the represen-
tations could not lead to sufficient discrimination of signals of
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(a) (b)

(c) (d)

Fig. 2. Histogram estimates of the 1-D conditional pdfs for red signals: (a), (b), and (c): reals versus artifacts and for real signals: (d) red versus green. Density
functions are plotted for the features: (a) area, (b) average channel intensity, and (c) and (d) average hue.

TABLE II
EVALUATION OF SINGLE FEATURES FORSIGNAL CLASSIFICATION BY TWO

CLASS SEPARABILITY CRITERIA. THE TABLE SHOWS THEVALUE OF J (9)
AND RANK ACCORDING TOJ , AS WELL AS THE OPTIMAL CONFIGURATION

OF THE “M ONOLITHIC” NN CLASSIFIER AND THE CORRESPONDING

ACCURACIES ON THETRAINING AND TEST SETS IN CLASSIFYING THE

SIGNALS INTO THE FOUR CLASSESWHEN THE SIGNALS ARE REPRESENTED

BY EACH OF THE FEATURES OFTABLE I

two colors (except maybe for the maximum and average hue
features).

C. Scatter Plots

Visual analysis of scatter plots of feature pairs may help in
evaluating the impact of adding more features to the classifi-
cation process and in detecting correlations between features.
Fig. 3 shows scatter plots of four pairs of features. To facilitate
the visual analysis, only 200 patterns of each of the four classes
are randomly selected and presented. In Fig. 3(a), the average
hue reveals good color discrimination, whereas the area is not
able to resolve overlap between reals and artifacts. The linear
dependency of the average channel intensity upon the hue fea-
ture in Fig. 3(b), and the “tendency” of points on the graph to-
ward points of the other color require some explanations. Equa-
tion (1) shows that the hue of a signal depends nonlinearly upon
the channel intensity according to an arctangent function. How-
ever, those signal intensity values which we find in the color
channels of FISH images, fall onto the linear section of the arc-
tangent function. Therefore, in our case, hue changes linearly
with the average intensity. In addition, since artifacts are mostly
the result of unfocused signals, their intensities are weaker than
those of real signals. As the intensity of such an artifact signal,



LERNERet al.: FEATURE REPRESENTATION AND SIGNAL CLASSIFICATION IN FISH 661

(a) (b)

(c) (d)

Fig. 3. Scatter plots of four pairs of features: (a) area versus average hue, (b) average channel intensity versus average hue, (c) average grey intensity (I ) versus
maximum hue, and (d) the two coordinates of the eigenvector corresponding to the largest eigenvalue (Eig. 1 and 2).

e.g., red, decreases, its main component, e.g., R, also decreases
while the other two components remain the same (G and
B in this example). Based on (1), the outcome is that the
signal “changes” its color toward the other color as its intensity
decreases. “Shift” of color is observed for both red and green
signals, and having very weak intensities, signals of two colors
may have almost similar hues [see Fig. 3(b)].

This also explains the dependency in Fig. 3(c) of the average
grey intensity ( ) upon the maximum hue. In this case, how-
ever, lines have different slopes as the average grey intensity
( ) depends on one-third of the specific channel intensity (see
Section IV-A). The two major clusters in Fig. 3(c) are mostly
due to real signals. These signals have almost fixed values of

since all of their three color components are fixed (e.g., for
red real signals , , and ). Artifacts that
are caused by overlap of signals of different colors (or signals
and fluorescence background of the other color) create some
anomaly in the graph, which is not seen in Fig. 3(b). These ar-
tifacts have an additional intensity component of the occluded
signal that increases the average grey intensity () but not the
average channel intensity. However, as the intensity of the top
signal is much stronger than that of the occluded signal, hue is
determined almost entirely by the top signal. These artifacts are

responsible for the two almost “Max Hue” constant-lines in
Fig. 3(c). In addition, within these two lines we can find points
(related to artifacts) that “swap” classes. This interesting phe-
nomenon can be again explained by (1). When one intensity
component, e.g., G, of overlap signals is larger than the second
component, e.g., R, and the two intensities are large, there is
an agreement between visual analysis and analysis based on (1)
about the signal hue, e.g., green. Therefore, both the system and
the expert cytogeneticist will agree on the signal hue. However,
when the two intensity components are small (for ) or
close to 0.5 (for ) the expert will still judge the hue by
the top (stronger) signal, but as (1) predicts, hue will “shift” to-
ward the color of the occluded (weak) signal, and the system
will eventually decide on that latter color.

Finally, in Fig. 3(d), the two coordinates of the eigenvector

corresponding to the largest eigenvalue are plotted against each

other. Real signals have only one color intensity component, ei-

ther R or G, and therefore, are projected onto either (1,0) [or

( 1,0)] or onto (0,1) [or (0, 1)]. Color-mixed artifacts are pro-

jected inbetween. As PCA (see Section IV-A) cannot be applied

to single-pixel signals, these signals (most of them artifacts) are

projected artificially on (0,0).
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TABLE III
ACCURACY OF THETHREE NN-BASED STRATEGIES: “M ONOLITHIC,”
“I NDEPENDENT,” AND “COMBINED” IN CLASSIFYING FISH SIGNALS

REPRESENTED BYDIFFERENTCOMBINATIONS OF FEATURES. FEATURES ARE

DEFINED BY THEIR NUMBERS ACCORDING TOTABLE I. REPORTED ARE THE

NUMBER OF HIDDEN UNITS IN THE NN CLASSIFIER(hid.) AND THE PER CENT

PROBABILITIES OF ACCURACY ON THETRAINING (Tr.) AND TEST (Tst.) SETS

FOR EACH OF THE STRATEGIES. THE TWO VALUES UNDER hid. FOR THE

“I NDEPENDENT” AND “COMBINED” CLASSIFIERS ARE THENUMBERS OF

HIDDEN UNITS OF THE“COLOR” AND “REAL” NETWORKS, RESPECTIVELY,
WHICH MAKE UP THESETWO STRATEGIES

D. Class Separability (Multifeature)

The previous experiments have showed that, in order to
achieve accurate classification we may need multifeature
signal representations. Therefore, we employed the two class
separability criteria, scatter criterion , and the probability of
misclassification of the NN, in evaluating such representations.

Input and output dimensions of each of the NN-based classi-
fication strategies (see Section VI) were set by the feature space
dimension and the number of classes, respectively. The number
of hidden units was determined such that the network had the
highest generalization capability. This was achieved by evalu-
ating networks of different numbers of hidden units on an in-
dependent validation set drawn from the training set. The net-
work which had the lowest error measured on the validation set
was selected for training. Training of each of the networks, in
each of the experiments reported here, was continued for 200
epochs and used three random network initializations. The re-
sults were averaged over these initializations (a committee) as
part of a cross-validation (CV-5) experiment. This procedure
was repeated for each signal feature representation and each
classification strategy (see Section VI).

Table III shows the results of this evaluation for several man-
ually-selected feature subsets, which are based on the most dis-
criminative single features found in the previous experiments.
Unseen signals represented by different combinations of fea-
tures are classified as reals or artifacts of two colors with accu-
racies of up to 89.2% depending on the classification strategy.
Feature subsets consisting of hue features [maximum hue (6) or
average hue (7)] and intensity features [average channel inten-
sity (4) or average grey intensity (12)] are found to provide
the best representations of the signals. Closer examination of
the classification accuracies of the “color” and “real” networks

TABLE IV
EVALUATION USING CRITERION J OF COMBINATIONS OF THREE FEATURES

FOR FISH SIGNAL CLASSIFICATION. THE TABLE INCLUDES RESULTS FOR

THE TEN COMBINATIONS WITH THE HIGHEST VALUES OFJ AND FOR

OTHER COMBINATIONS OF THREE FEATURESFROM TABLE III. FOR EACH

COMBINATION THE RANK ACCORDING TOJ AMONG THE 120 SUBSETS IS

ALSO GIVEN. TO BE CONSISTENTWITH PREVIOUS FEATURE NUMBERS, WE

KEEPNUMBER 12 FOR THEAVERAGE GREY INTENSITY (I ), ALTHOUGH ONLY

TEN FEATURES AREINVOLVED IN THE SELECTION (SEE TEXT)

(Section VI), which are responsible for the results of the “inde-
pendent” and “combined” strategies, reveals that hue features
(6, 7) are crucial for separating multicolor signals, where inten-
sity features (4, 12) are essential for separating real signals from
artifacts. Table III also shows that selecting specific subsets of
features from the entire set is useful for FISH signal classifica-
tion, as the accuracy of classification based on these sets is com-
parable with that based on the entire set. For example, classifica-
tion accuracies on the test set based on the feature subset (1, 4, 7,
12) are 86.3%, 86.3%, and 89.2% using the “monolithic,” “in-
dependent,” and “combined” strategies, respectively, compared
with accuracies of 85.1%, 87.0%, and 89.1% when the entire set
is employed. Similar evidence for the benefit of applying feature
selection to pattern classification in other real-world problems
was given in [8], where texture features were used for pixel clas-
sification of synthetic aperture radar images.

We also applied feature selection using criterion (the
second criterion of class separability) to evaluate feature
subsets chosen from the entire set. Before the application,
however, we had removed the two coordinates of the eigen-
vector corresponding to the largest eigenvalue in [Eig. 1 (10)
and Eig. 2 (11) in Table I] from the data. This was done since
the coordinates of single-pixel signals (most of them artifacts)



LERNERet al.: FEATURE REPRESENTATION AND SIGNAL CLASSIFICATION IN FISH 663

TABLE V
PERCENTAGE OFTIMES IN WHICH EACH OF THE TEN FEATURES OFTABLE I

(EXCLUDING FEATURES10 AND 11) APPEARS IN THE“BEST” (A CCORDING TO

J ) 30 COMBINATIONS OF THREE FEATURES

TABLE VI
“BEST” (A CCORDING TOJ ) FEATURE SUBSET FOREACH FEATURE

SUBSET SIZE

were set artificially to be (0,0), as the PCA could not be applied
to single-element vectors [as explained in Section VII-C for
Fig. 3(d)]. This removal prevented the expected bias of values
of criterion toward these two features.

Since only ten features were included in the reduced fea-
ture set, we could allow exhaustive search for the “best” (ac-
cording to criterion ) subset of, for example, three features.
This search was done quickly since it involved the evaluation of
only 120 subsets. The ten combinations of three features with
the highest values of class separability criterion(and thereby
lowest ranks) are presented in Table IV. The table also shows
values of and ranks of the combinations of three features of
Table III. Table V shows the percentage of times each of the ten
single features appears in the 30 “best” (according to) com-
binations of three features. Both Tables IV and V demonstrate
the superiority, regarding criterion , of the features: average
channel intensity (4), maximum hue (6) and average hue (7).
In each of the ten “best” combinations, the average channel in-
tensity and either or both the maximum or average hue were
selected.

Finally, we employed the classification accuracy of the
NN-based “monolithic strategy” as a criterion to determine the
“optimal” size of the subset of “best” features. The “optimal”
size was determined by the highest classification accuracy
and the “best” features for each subset size were selected
using criterion . Table VI presents the “best” features for
each subset size. Fig. 4 shows the classification accuracy of
the “monolithic strategy” obtained using the feature subsets
given in Table VI. For small subset sizes, the classification
accuracy increases almost linearly with size, but employing
larger subsets only improves the accuracy moderately until
the “curse-of-dimensionality” deteriorates the results. The

Fig. 4. Classification accuracy (mean and standard deviation) of the
NN-based “monolithic strategy” for increasing sizes of feature subsets. Each
subset includes the “best” (according toJ ) features (Table VI). The last subset
includes the enture feature set.

effect of the curse-of-dimensionality is even more evident after
comparing the highest accuracy (85.1%) of the “monolithic
strategy” for the entire set (see Fig. 4) with those accuracies
(higher than 86%) obtained using several manually selected
subsets of four and seven features (see Table III). The success
of the latter sets also hints to the inferiority of criterion
compared with the classification accuracy in selecting optimal
feature subsets for classification.

E. Classifier Comparison

In the last experiment, we compared the accuracy of the NN
classifier with that of three other state-of-the-art techniques:
Bayesian neural network (BNN), support vector machine
(SVM), and naive Bayesian classifier (NBC). For compu-
tational reasons, we simplified the problem by dividing the
classification task into two tasks: 1) classification of signals
into color (red or green) and 2) classification of signals as
“real” or “artifact.” This simplification determined indirectly
the “independent strategy” as the technique of choice to rep-
resent the NN classifier in the comparison. The configuration
and parameters of each of the classifiers were determined
very carefully to enable peak performance of each of the four
techniques [11]. The entire feature set was employed without
applying feature selection. The comparison shown in Table VII
reveals that the BNN is the most accurate (although not always
significantly) classification technique for both tasks, and the
NN and SVM are comparable and second best. The inferiority
of the NBC compared with the other techniques is attributed
to the relatively large amount of dependency among features
of the set (e.g., average and maximum hue, total and average
channel intensities). This dependency violates the indepen-
dence assumption of the NBC [12], and thereby decreases
its accuracy. This result emphasizes again the vital role of
preliminary feature selection (or feature extraction performed
as part of the classification process) in removing correlated
features in order to facilitate pattern classification.
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TABLE VII
ACCURACY OFFOUR TECHNIQUES ON THEFISH TEST SET WHEN SIGNALS

ARE CLASSIFIED INTO COLOR AND AS “REAL” OR “A RTIFACT”
(REAL/ARTIFACT) AND REPRESENTED BY THEENTIRE FEATURE SET

VIII. D ISCUSSION

This paper has explored suitable feature representations for
FISH signal classification. For this purpose, a family of features,
consisting of measurements of size, shape, intensity, texture, and
color, was examined. In addition, the application of linear fea-
ture extraction to signal intensities provided features which were
capable of improving the accuracy of the classification, mainly
due to the identification of artifacts resulting from signal overlap
of two types of fluorophores. These last features, along with the
average grey intensity, representing the projection of the image
on its major principal axis, were measured as well.

A set of 12 features has been evaluated by different criteria.
Histogram estimates of conditional pdfs and scatter plots
provided preliminary visual insight into the relative merit
of features to the classification procedure, dependencies
between features, and potential causes of misclassification.
Feature selection enabled the choice of feature subsets of
any type and number, which maximized scatter criterion
measuring class separability. However, the ultimate and most
reliable criterion for evaluating features for class separability
in problems with nonparametric class conditional pdfs (see
Fig. 2) is the probability of mis-classification. When evaluated
single features for FISH signal representation, the two class
separability criteria mostly agreed. However, for more complex
feature representations, some mismatches in selecting optimal
subsets by the two criteria were found. These mismatches can
be attributed to several factors. First, the scatter criterion we
have used, , is based on the Euclidean metric, which is useful
for discrimination purposes only when the class patterns have
equal covariance matrices. Second, thecriterion is sensitive
to the relative locations of the classes in the feature space. For
example, the probability of mis-classification of well-separated
classes is not dependent on the distance between the classes (or
their centroids) and is always zero, whereasis changed with
this distance. These two factors deteriorated the ability of
to act as a reliable class separability criterion in classification
tasks. Third, the hidden layer of the NN classifier performed an
additional feature extraction stage, which expanded the clas-
sifier discrimination power beyond that of a scatter criterion.
We have found that the “optimal” subsets recommended by
are not necessarily “optimal” for classification, i.e., they do not
lead to the most accurate classification. Nevertheless, when the

calculation or estimation of the probability of mis-classification
are difficult to be performed, a simple, easy to implement
feature selection technique is of great value, especially as a
preliminary analysis tool.

The extensive analysis has demonstrated the superiority of
hue and intensity-based features for FISH signal classification.
When features of the two families were combined together, even
a single hue feature could separate entirely signals of two flu-
orophores, leaving the task of discriminating real signals from
artifacts to intensity features. Consequently, feature sets con-
sisting of both hue and intensity features enabled an NN-based
hierarchical strategy to classify nearly 90% of FISH signals as
reals or artifacts of two fluorophores. Utilizing the maximum
information contained in the data to accomplish high classifi-
cation accuracy with low computational requirements, the NN
classifier provided performance comparable with those of other
state-of-the-art classification techniques.

Finally, as almost only the measured features are specific to
the classification problem, the methodology presented here for
a complete, qualitative, and quantitative evaluation of feature
representations can also be applied to other real-world pattern
classification problems.
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