
GTM Through Time

Christopher M. Bishop

Microsoft Research

7 J J Thomson Avenue

Cambridge, CB3 0FB, U.K.

cmbishop@microsoft.com

http://research.microsoft.com/∼cmbishop

Geoffrey E. Hinton

Dept. of Computer Science

University of Toronto, Canada.

hinton@cs.toronto.edu

Iain G. D. Strachan

AEA Technology, Harwell, U.K.

iain.strachan@aeat.co.uk

Published as: GTM Through Time, Proceedings IEE Fifth International Conference on

Artificial Neural Networks, Cambridge, U.K., (1997) 111–116.

Abstract

The standard GTM (generative topographic mapping) algorithm assumes that the
data on which it is trained consists of independent, identically distributed (i.i.d.)
vectors. For time series, however, the i.i.d. assumption is a poor approximation. In
this paper we show how the GTM algorithm can be extended to model time series
by incorporating it as the emission density in a hidden Markov model. Since GTM
has discrete hidden states we are able to find a tractable EM algorithm, based on
the forward-backward algorithm, to train the model. We illustrate the performance
of GTM through time using flight recorder data from a helicopter.

c©1997 The Institution of Electrical Engineers

1 Introduction

Latent variable models provide a representation for the distribution of data in a multi-dimensional
space in terms of a reduced number of latent, or hidden, variables (Everitt 1984). A well-known
example of a latent variable algorithm is factor analysis which is based on a linear transformation
between latent space and data space. The technique of principal component analysis can also be
understood within the same framework and again involves a linear transformation from the hidden
variables to the data variables. Recently there has been considerable interest in non-linear latent
variable models in applications such as pattern recognition and data visualization. In particular,
the Generative Topographic Mapping algorithm (Bishop, Svensén, and Williams 1997; Bishop,
Svensén, and Williams 1998) has been introduced as a non-linear latent variable model which
provides a principled alternative to the self-organizing map (SOM) algorithm of Kohonen (1982).
Unlike the SOM, the GTM model defines a genuine probability density and thereby overcomes
many of the limitations of the SOM.

In common with many models for density estimation, the GTM algorithm treats the data as
independent, identically distributed (i.i.d.). While this is a valid assumption for some applications,
there are many situations in which we need a more general framework. In particular, the i.i.d.
assumption is clearly inappropriate for time series data, for which we typically expect data values
at neighbouring time steps to be highly correlated and hence far from independent. In this paper
we show how the GTM algorithm can be extended to deal with time series. We illustrate the
technique using flight recorder data taken from a helicopter operating in a variety of different
flight regimes. Finally, we discuss some extensions of the algorithm.

2 The Generative Topographic Mapping

We begin by reviewing the GTM algorithm for the standard case of i.i.d. data. The goal of GTM
is to model the probability distribution of data living in a d-dimensional space in terms of L
latent variables where L < d and where the transformation from latent variables to data variables
can be non-linear. In applications involving data visualization it is convenient to consider a two-
dimensional latent space, and we shall assume that L = 2 throughout this paper.

We denote the coordinates of the data space by t = (t1, . . . , tD)T and those of the latent space by
x = (x1, . . . , xL)T. The mapping from latent space to data space takes the form

y(x;W) = Wφ(x) (1)

where φ = (φ1, . . . , φM)T represents a set of M fixed non-linear basis functions, and W is a D×M
matrix of parameters. This mapping defines a non-Euclidean manifold embedded in data space, as
illustrated in Figure 1. The form of the mapping (1) is chosen to simplify the training algorithm
as discussed below. Note that (1) can approximate any continuous mapping to arbitrary accuracy
provided we have sufficiently many basis functions φj(x) of an appropriate form.

A latent variable density model is defined by specifying a prior distribution p(x) over latent space,
together with a conditional distribution p(t|x) in data space, conditioned on the latent variables.
The resulting density model is then obtained from the sum rule of probability by the convolution
of these densities in the form

p(t) =

∫

p(t|x)p(x) dx. (2)

For non-linear mappings this integral will in general be analytically intractable. In the GTM
algorithm we therefore choose a specific form for the prior consisting of a superposition of delta

2

t1

t2t3

y(x;W)

x1

x2

Figure 1: The non-linear mapping y(x;W) from the L-dimensional latent space x to the D-
dimensional data space t defines an L-dimensional non-Euclidean manifold. A regular
grid of points in latent space will then be mapped to an array of points on the
manifold, with each point forming the centre of one of the Gaussian components in
the density model.

functions given by

p(x) =
1

K

K
∑

l=1

δ(x − xl) (3)

where {xl} is a set of points on a regular grid in latent space (analogous to the ‘feature-space’
nodes in the SOM). This choice allows the integral in (2) to be evaluated analytically. It also has
important implications for the extension to time-varying data discussed in Section 4.

From (2) and (3) we obtain a density model given by

p(t) =
1

K

K
∑

l=1

p(t|xl). (4)

We now choose the conditional density p(t|x) to be a radially symmetric Gaussian of the form

p(t|x) =

(

β

2π

)D/2

exp

{

−
β

2
‖y − t‖2

}

(5)

where y = y(x;W). The density (4) then represents a Gaussian mixture model in which the
centres of the Gaussians are constrained to lie on a non-Euclidean manifold embedded in data
space. Each latent space point is mapped to a corresponding point y(xl;W) lying on the manifold
in data space which forms the centre of one of the components. Changes to the centres can only
be made indirectly through changes in the parameters W describing the manifold. The model
is also constrained in that the mixing proportions are fixed at 1/K (this is easily generalized if
desired) and the Gaussian components have a common variance β−1. For the standard GTM
model trained on i.i.d. data, the parameter values can be determined using the EM algorithm.

3 GTM Through Time

For data vectors tn which take the form of a time series it is no longer appropriate to assume that the
vectors are independent. Typically, vectors corresponding to nearby times will be highly correlated.
Such effects can be captured using the hidden Markov model (HMM) formalism (Rabiner 1989).
Here we show how GTM can be extended within the HMM framework to represent temporal data.

3

Figure 2: The temporal version of GTM consists of a hidden Markov model in which the hidden
states are given by the latent points of the GTM model, and the emission probabilities
are governed by the GTM mixture distribution. Note that the parameters of the
GTM model, as well as the transition probabilities between states, are tied to common
values across all time steps.

The structure of the model is illustrated in Figure 2, in which the hidden states of the model at
each time step are labelled by the index l corresponding to the latent points {xl}. We introduce a
set of transition probabilities pij corresponding to the probability of making a transition to state j
given that the current state is i. The emission density for the hidden Markov model is then given
by the GTM density model (4). It should be noted that both the transition probabilities pij and
the parameters W and β governing the GTM model are common to all time steps, so that the
number of adaptive parameters in the model is independent of the length of the time series. We
also allow separate prior probabilities πl on each of the latent points at the first time step of the
algorithm.

If we allow a fully connected matrix of independent transition probabilities connecting every state
at time n to every state at time n + 1, then the number of independent parameters would be
prohibitively large. If we have, for example, 100 hidden states in the GTM model (a relatively small
number) then we would have 104 independent transition probability parameters to be determined
(slightly less in fact due to the constraint that probabilities must sum to one). This would require
an excessive amount of training data.

Also it fails to capture any prior knowledge which we might possess about the nature of the
transitions between different time steps. In many applications we expect different regions of the
latent space to correspond to different regimes. We also expect smooth changes in latent space
within a regime and relatively rare jumps to other regimes. An approximate way to capture this
prior knowledge is to allow groups of transitions to be governed by a common parameter. We
denote the kth group from state i by Gik and we introduce indicator variables Cikj which equal
1 if state j is in group Gik and 0 otherwise. The transition probability from state i to a state in
group k will be denoted ηik, and these satisfy

∑

k ηik = 1. The transition probability from state i
to state j is then given by

pij =
∑

k

ηikCikjN
−1

ik (6)

where Nik denotes the number of states in group Gik.

4

4 EM Algorithm

The model is trained using a set of N data vectors t1, . . . , tN , in which the parameters W and β,
as well as the transition probabilities, are determined by maximum likelihood. To find the correct
likelihood function we note that the model represents a generative distribution for time series data
as follows. At the first time step we select a latent point i with probability πi and then generate the
first data vector t1 by sampling from the corresponding Gaussian component p(t|xi) of the GTM
model. Next we make a transition to a new state j with probability pij and again generate a data
point from the corresponding component p(t|xj). From this we see that the likelihood function for
a given observed sequence of vectors t1, . . . , tN can be written

∑

i1

· · ·
∑

iN

πi1p(t1|xi1)pi1i2 · · · p(tN |xiN
) (7)

where in denotes the state at step n. The summations correspond to a sum over all possible
trajectories through the hidden states of the model. At first sight it would therefore appear that
the evaluation and optimization of (7) would be an extremely complex undertaking since the
number of paths through the hidden states grows exponentially with N . However, because of the
discrete nature of the hidden states, we can obtain an efficient algorithm for training this model.

We can regard the identity of the component responsible for generating each data point as a
missing variable, and use the EM (expectation-maximization) algorithm to maximize the likelihood
(Dempster, Laird, and Rubin 1977; Bishop 1995). In the context of hidden Markov models this
is generally known as the Baum-Welch algorithm. To obtain the EM algorithm for this model we
first introduce a set of binary indicator variables zni which denote the state i of the system at
step n. We shall regard the zni as missing variables. If the zni were given, then the complete-data
likelihood would take the form

Lc =
N−1
∏

n=1

∏

in

{πi1p(t1|xi1}
z1i1

{

pin,in+1
p(tn+1|xin+1

)
}znin

znin+1 . (8)

The algorithm involves first making an initial guess for the parameters W, β and ηik. We next
take the expectation of the logarithm of the complete-data log likelihood function (8) with respect
to the posterior distribution of the zni (evaluated using the current values of the parameters), and
use 〈zniznj〉 = ξn(i, j), where ξn(i, j) denotes the joint posterior probability of being in state i at
time n and state j at time n + 1, to give

〈ln Lc〉 =

N−1
∑

n=1

∑

in

ξn(in, in+1)

ln
{

pin,in+1
p(tn|xin

)
}

. (9)

The posterior probabilities ξn(i, j) are obtained in the E-step using the standard forward-backward
algorithm (Rabiner 1989). Maximizing (9) with respect to the ηik, and using a Lagrange multiplier
to enforce the constraint

∑

k ηik = 1, we obtain

ηik =

∑

n

∑

j∈Gk
ξn(i, j)

∑

k

∑

n

∑

j∈Gk
ξn(i, j)

. (10)

Similarly we can maximize (9) with respect to W to obtain the M-step equation

ΦTGoldΦWT
new = ΦTRoldT (11)

5

where Rin =
∑

j ξn(i, j) denotes the posterior probability of state i at step n, Φ is a K×M matrix
with elements Φij = φj(xi), T is a N × D matrix with elements tnk, R is a K × N matrix with
elements Rin, and G is a K × K diagonal matrix with elements

Gii =

N
∑

n=1

Rin(W, β). (12)

We can solve (11) for Wnew using standard matrix inversion techniques, based on singular value
decomposition to allow for possible ill-conditioning. Note that the matrix Φ is constant throughout
the algorithm, and so need only be evaluated once at the start.

Finally, maximizing (9) with respect to β gives

1

βnew

=
1

ND

N
∑

n=1

K
∑

i=1

Rin(Wold, βold)

‖y(xi;Wnew) − tn‖
2
. (13)

After a complete M-step, the new parameter values are used in the next E-step to re-evaluate the
posterior probabilities, and so on to convergence.

5 Helicopter Flight Data

We now present simulation results using the temporal GTM model applied to real data derived from
helicopter test flights. The motivation behind this application is in determining the accumulated
stress on the helicopter airframe. Different flight modes, and transitions between flight modes,
cause different levels of stress, and at present maintenance intervals are determined using an
assumed usage spectrum. The ultimate goal in this application would be to segment each flight
into its distinct regimes, together with the transitions between those regimes, and hence evaluate
the overall integrated stress.

The data used in this simulation was gathered from the flight recorder over four test flights, and
consists of 9 variables (sampled every two seconds) measuring quantities such as acceleration, rate
of change of heading, speed, altitude and engine torque. A sample of the data is shown in Figure 3.

Figure 3: Sample of the helicopter data.

6

We consider a GTM model having a 15× 15 grid of states in latent space. For each latent state i,
the transition probabilities to states at the next time step are collected into 10 separate groups, in
which 9 of the groups correspond to those states j which are within a distance of ±1 units in latent
space from state i, while the 10th group consists of all remaining stages j. We expect that, in the
trained model, different regions of the latent space will correspond to different flight regimes. The
first group of transition probabilities then allows evolution of the data vector within a given flight
regime to be modelled, while transitions to distant flight regimes can be represented by the second
group. Note that this does not capture all of the likely behaviour of the time series. For instance,
if transitions between two particular regimes are much more frequent than between some other
pair of regimes, this cannot be represented in the model just described.

Figure 4 shows the posterior probability distribution in latent space for a trained temporal GTM
model, in which the posterior probabilities for a given temporal sequence have been evaluated
using the forward-backward algorithm as described earlier. Currently, we are exploring models

Figure 4: Plots of the posterior probability distribution in latent space at 4 time steps, corre-
sponding to a transition from one flight regime to another.

with a more complex transition probability structure in order to discover the relative probabilities
of different transitions.

6 Discussion

We have presented a latent variable model which can capture temporal dynamics and which also
permits a non-linear transformation from latent to data space.

Since the algorithm is based on GTM, rather than the self-organizing map, it defines a true density
model, which brings a number of important advantages. For example, real data sets frequently
suffer from missing values. Provided the missing values are ‘missing at random’ then we can still
find the optimal maximum likelihood parameter values by extending the EM algorithm to deal
with the missing values.

Similarly, we can consider a mixture of GTM models at each time step and still retain the tractable

7

EM algorithm. In this case there are two classes of transition probability, one governing transitions
within each of the GTM sub-models and one governing transitions between sub-models.

Finally, we can use the model to perform novelty detection by finding sequences of states which
have a small probability under the trained model. This highlights the difference between the i.i.d.
and temporal models, since, if the data passed through a set of familiar states but in an unfamiliar
order, the temporal GTM model would recognise the sequence as novel, whereas an i.i.d. approach
would not.

Acknowledgements

This work was supported by EPSRC grant GR/K51792: Validation and Verification of Neural

Network Systems. We would like to thank Markus Svensén and Christopher Williams for useful
discussions.

References

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

Bishop, C. M., M. Svensén, and C. K. I. Williams (1997). GTM: a principled alternative to
the Self-Organizing Map. In C. von der Malsburg, W. von Selen, J. C. Vorbruggen, and
B. Sendhoff (Eds.), International Conference on Artificial Neural Networks, ICANN’96, pp.
165–170. Springer.

Bishop, C. M., M. Svensén, and C. K. I. Williams (1998). GTM: the Generative Topographic
Mapping. Neural Computation 10 (1), 215–234.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, B 39 (1), 1–38.

Everitt, B. S. (1984). An Introduction to Latent Variable Models. London: Chapman and Hall.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological

Cybernetics 43, 59–69.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77 (2), 257–285.

8

