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Abstract. In recent years several techniques have been proposed for modelling
the low-dimensional manifolds, or ‘subspaces’, of natural images. Examples in-
clude principal component analysis (as used for instance in ‘eigen-faces’), inde-
pendent component analysis, and auto-encoder neural networks. Such methods
suffer from a number of restrictions such as the limitation to linear manifolds
or the absence of a probablistic representation. In this paper we exploit recent
developments in the fields of variational inference and latent variable models
to develop a novel and tractable probabilistic approach to modelling manifolds
which can handle complex non-linearities. Our framework comprises a mixture
of sub-space components in which both the number of components and the ef-
fective dimensionality of the sub-spaces are determined automatically as part of
the Bayesian inference procedure. We illustrate our approach using two classical
problems: modelling the manifold of face images and modelling the manifolds of
hand-written digits.

1 Introduction

Interest in image subspace modelling has grown considerably in recent years in contexts
such as recognition, detection, verification and coding. Although an individual image
can be considered as a point in a high-dimensional space described by the pixel values,
an ensemble of related images, for example faces, lives on a (noisy) non-linear manifold
having much a much lower intrinsic dimensionality. One of the simplest approaches to
modelling such manifolds involves finding the principal components of the ensemble
of images, as used for example in ‘eigen-faces’ [15].

However, simple principal component analysis suffers from two key limitations.
First, it does not directly define a probability distribution, and so it is difficult to use
standard PCA as a natural component in a probabilistic solution to a computer vision
problem. Second, the manifold defined by PCA is necessarily linear. Techniques which
address the first of these problems by constructing a density model include Gaussians
and mixtures of Gaussians [12]. The second problem has been addressed by consid-
ering non-linear projective methods such as principal curves and auto-encoder neural
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networks [11]. Bregler and Omohundro [5] and Heap and Hogg [9] use mixture rep-
resentations to try to capture the non-linearity of the manifold. However, their model
fitting is based on simple clustering algorithms (related toK-means) and lacks the fully
probabilistic approach as discussed in this paper.

A central problem in density modelling in high dimensional spaces concerns model
complexity. Models fitted using maximum likelihood are particularly prone to severe
over-fitting unless the number of free parameters is restricted to be much less than the
number of data points. For example, it is clearly not feasible to fit an unconstrained
mixture of Gaussians directly to the data in the original high-dimensional space us-
ing maximum likelihood due to the excessive number of parameters in the covariance
matrices. Moghaddam and Pentland [12] therefore project the data onto a PCA sub-
space and then perform density estimation within this lower dimensional space using
Gaussian mixtures. While this limits the number of free parameters in the model, the
non-linearity of the manifold requires the PCA space to have a significantly higher
dimensionality than that of the manifold itself, and so again the model is prone to over-
parameterization.

One important aspect of model complexity concerns the dimensionality of the man-
ifold itself, which is typically not known in advance. Moghaddam [11], for example,
arbitrarily fixes the model dimensionality to be 20.

In this paper we present a sophisticated Bayesian framework for modelling the man-
ifolds of images. Our approach constructs a probabilistically consistent density model
which can capture essentially arbitrary non-linearities and which can also discover an
appropriate dimensionality for modelling the manifold. A key feature is the use of a
fully Bayesian formulation in which the appropriate model complexity, and indeed the
dimensionality of the manifold itself, can be discovered automatically as part of the
inference procedure [2]. The model is based on a mixture of components each of which
is a latent variable model whose dimensionality can be inferred from the data. It avoids
a discrete model search over dimensionality , involving instead the use of continuous
hyper-parameters to determine an effective dimensionality for the components in the
mixture model.

Our approach builds on recent developments in latent variable models and varia-
tional inference. In Section 2 we describe the probabilistic model, and in Section 3 we
explain the variational framework used to fit it to the data. Results from face data and
from images of hand-written digits are presented in Section 4 and conclusions given in
Section 5.

Note that several authors have explored the use of non-linear warping of the im-
age, for example in the context of face recognition, in order to take account of changes
of pose or of interpersonal variation [4, 6, 7]. In so far as such distortions can be ac-
curately represented, these transformations should be of significant benefit in tackling
the subspace modelling problem, albeit at increased computational expense. It should
be emphasised that such approaches can be used to augment virtually any sub-space
modelling algorithm, including those discussed in this paper, and so they will not be
considered further.



5

2 Models for Manifolds

Our approach to modelling the manifolds of images builds upon recent developments
in latent variable models and can be seen as a natural development of PCA and mixture
modelling frameworks leading to a highly flexible, fully probabilistic framework. We
begin by showing how conventional PCA can be reformulated probabilistically and
hence used as the component distribution in a mixture model. Then we show how a
Bayesian approach allows the model complexity (including the number of components
in the mixture as well as the effective dimensionality of the manifold) to be inferred
from the data.

2.1 Maximum likelihood PCA

Principal component analysis (PCA) is a widely used technique for data analysis. It can
be defined as the linear projection of a data set into a lower-dimensional space under
which the retained variance is a maximum, or equivalently under which the sum-of-
squares reconstruction cost is minimized.

Consider a data set D of observed d-dimensional vectors D = {tn} where n ∈
{1, . . . , N}. Conventional PCA is obtained by first computing the sample covariance
matrix given by

S =
1

N

N∑

n=1

(tn − t)(tn − t)T (1)

where t = N−1
∑

n tn is the sample mean. Next the eigenvectors ui and eigenvalues
λi of S are found, where Sui = λiui and i = 1, . . . , d. The eigenvectors corresponding
to the q largest eigenvalues (where q < d) are retained, and a reduced-dimensionality
representation of the data set is defined by xn = U

T
q (tn−t) where Uq = (u1, . . . ,uq).

A significant limitation of conventional PCA is that it does not define a probability
distribution. Recently, however, Tipping and Bishop [14] showed how PCA can be re-
formulated as the maximum likelihood solution of a specific latent variable model, as
follows. We first introduce a q-dimensional latent variable x whose prior distribution is
a zero mean Gaussian P (x) = N (0, Iq) and Iq is the q-dimensional unit matrix. The
observed variable t is then defined as a linear transformation of x with additive Gaus-
sian noise t = Wx + µ + ε where W is a d × q matrix, µ is a d-dimensional vector
and ε is a zero-mean Gaussian-distributed vector with covariance τ−1

Id (where τ is an
inverse variance, often called the ‘precision’). Thus P (t|x) = N (Wx + µ, τ−1

Id).
The marginal distribution of the observed variable is then given by the convolution of
two Gaussians and is itself Gaussian

P (t) =

∫
P (t|x)P (x) dx = N (µ,C) (2)

where the covariance matrix C = WW
T + τ−1

Id. The model (2) represents a con-
strained Gaussian distribution governed by the parameters µ, W and τ .
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It was shown by Tipping and Bishop [14] that the stationary points of the log like-
lihood with respect to W satisfy

WML = Uq(Λq − τ−1
Iq)

1/2 (3)

where the columns of Uq are eigenvectors of S, with corresponding eigenvalues in the
diagonal matrix Λq . It was also shown that the maximum of the likelihood is achieved
when the q largest eigenvalues are chosen, so that the columns of Uq correspond to the
principal eigenvectors, with all other choices of eigenvalues corresponding to saddle
points. The maximum likelihood solution for τ is then given by

1

τML
=

1

d− q

d∑

i=q+1

λi (4)

which has a natural interpretation as the average variance lost per discarded dimension.
The density model (2) thus represents a probabilistic formulation of PCA. It is easily
verified that conventional PCA is recovered by treating τ as a parameter and taking the
limit τ → ∞.

Probabilistic PCA has been successfully applied to problems in data compression,
density estimation and data visualization, and has been extended to mixture and hierar-
chical mixture models [13, 14, 3]. As with conventional PCA, however, the model itself
provides no mechanism for determining the value of the latent-space dimensionality q.
For q = d− 1 the model is equivalent to a full-covariance Gaussian distribution1, while
for q < d− 1 it represents a constrained Gaussian in which the variance in the remain-
ing d− q directions is modelled by the single parameter τ . Thus the choice of q corre-
sponds to a problem in model complexity optimization. In principal cross-validation to
compare all possible values of q offers a possible approach. However, maximum likeli-
hood estimation is highly biased (leading to ‘overfitting’) and so in practice excessively
large data sets would be required and the procedure would become computationally
intractable.

2.2 Bayesian PCA

The issue of model complexity can be handled naturally within a Bayesian paradigm.
Armed with the probabilistic reformulation of PCA defined in Section 2.1, a Bayesian
treatment of PCA is obtained by first introducing prior distributions over the param-
eters µ, W and τ . A key goal is to control the effective dimensionality of the latent
space (corresponding to the number of retained principal components). Furthermore,
we seek to avoid discrete model selection and hence we introduce continuous hyper-
parameters to determine automatically an appropriate effective dimensionality for the
latent space as part of the process of Bayesian inference. This is achieved by intro-
ducing a hierarchical prior P (W|α) over the matrix W, governed by a q-dimensional

1 This follows from the fact that the q−1 linearly independent columns of W have independent
variances along q−1 directions, while the variance along the remaining direction is controlled
by τ .
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vector of hyper-parameters α = {α1, . . . , αq}. Each hyper-parameter controls one of
the columns of the matrix W through a conditional Gaussian distribution of the form

P (W|α) =

q∏

i=1

(αi

2π

)d/2

exp

{
−

1

2
αi‖wi‖

2

}
(5)

where {wi} are the columns of W. This form of prior is motivated by the framework of
automatic relevance determination (ARD) introduced in the context of neural networks
by Neal and MacKay (see MacKay, 1995). Each αi controls the inverse variance of the
corresponding wi, so that if a particular αi has a posterior distribution concentrated at
large values, the corresponding wi will tend to be small, and that direction in latent
space will be effectively ‘switched off’. The dimensionality of the latent space is set to
its maximum possible value q = d− 1.

We complete the specification of the Bayesian model by defining the remaining
priors to have the form

P (µ) = N (µ|0, β−1
I) (6)

P (α) =

q∏

i=1

Γ (αi|aα, bα) (7)

P (τ) = Γ (τ |cτ , dτ ). (8)

Here N (x|m,Σ) denotes a multivariate normal distribution over x with mean m and
covariance matrix Σ. Similarly, Γ (x|a, b) denotes a Gamma distribution over x given
by

Γ (x|a, b) =
baxa−1e−bx

Γ (a)
(9)

where Γ (a) is the Gamma function. We obtain broad priors by setting aα = bα = aτ =
bτ = 10−3 and β = 10−3.

As an illustration of the role of the hyperparameters in determining model complex-
ity, we consider a data set consisting of 300 points in 10 dimensions, in which the data
is drawn from a Gaussian distribution having standard deviation 1.0 in 3 directions and
standard deviation 0.5 in the remaining 7 directions. The result of fitting both maximum
likelihood and Bayesian PCA models is shown in Figure 1. (The Bayesian model was
trained using the variational approach discussed in Section 3.) In this case the Bayesian
model has an effective dimensionality of qeff = 3 as expected.

2.3 Mixtures of Bayesian PCA Models

Given a probabilistic formulation of PCA we can use it to construct a mixture distri-
bution comprising a linear superposition of principal component analyzers. If we were
to fit such a model to data using maximum likelihood we would have to choose both
the number M of components and the latent space dimensionality q of the components.
For moderate numbers of components and data spaces of several dimensions it quickly
becomes computationally costly to use cross-validation.
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Fig. 1. Hinton diagrams of the matrix W for a data set in 10 dimensions having m = 3 directions
with larger variance than the remaining 7 directions. The area of each square is proportional to the
magnitude of the corresponding matrix element, and the squares are white for positive values and
black for negative values. The left plot shows WML from maximum likelihood PCA while the
right plot shows the posterior mean 〈W〉 from the Bayesian approach, showing how the model is
able to discover the appropriate dimensionality by suppressing the 6 surplus degrees of freedom.

Here Bayesian PCA offers a significant advantage in allowing the effective dimen-
sionalities of the models to be determined automatically. Furthermore, we also wish
to determine the appropriate number of components in the mixture. We do this by
Bayesian model comparison [1] as an integral part of the learning procedure as dis-
cussed in the next section.

To formulate the probabilistic model we introduce, for each data point tn, an addi-
tional M -dimensional binary latent variable sn which has one non-zero element denot-
ing which of the M components in the mixture is responsible for generating tn. These
discrete latent variables have distributions governed by hyperparameters π = {πm}
where m = 1, . . . ,M ,

P (s = δm|π) = πm (10)

where δm denotes a vector with all elements zero except element m whose value is 1.
The parameters π are given a Dirichlet distribution

P (π) = Dir(π|u) =
1

Z(u)

M∏

i=1

πui−1
i δ

(
M∑

i=1

πi − 1

)
(11)

with u are parameters of the distribution, and Z(u) is the normalization constant.
In a simple mixture of Bayesian PCA models, each component would be free to

determine its own dimensionality. A central goal of this work, however, is to model a
continuous non-linear manifold. We therefore wish the components in the mixture to
have a common dimensionality whose value is a-priori unknown and which should be
inferred from the data. This can be achieved within our framework by using a single set
of α hyper-parameters which are shared by all of the components in the mixture. The
probabilistic structure of the resulting model is displayed diagrammatically in Figure 2.
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Fig. 2. Representation of a Bayesian PCA mixture as a probabilistic graphical model (directed
acyclic graph) showing the hierarchical prior over W governed by the vector of shared hyper-
parameters α. The boxes denote ‘plates’ comprising N independent observations of the data
vector tn (shown shaded) together with the corresponding hidden variables xn and sn, with a
similar plate denoting the M copies of the parameters associated with each component in the
mixture.

3 Variational Inference

In common with many complex probabilistic models, exact computation cannot be
performed analytically. We avoid the computational complexity, and difficulty of con-
vergence assessment, associated with Markov chain Monte Carlo methods by using
variational inference [10]. For completeness we first give a brief overview of varia-
tional methods and then describe the variational solution for the Bayesian Mixture PCA
model.

In order to motivate the variational approach, consider a general probabilistic model
with parameters θ = {θi} and observed data D, for which the marginal probability of
the data is given by

P (D) =

∫
P (D,θ) dθ. (12)

We have already noted that integration with respect to the parameters is analytically
intractable. Variational methods involve the introduction of a distribution Q(θ) which,
as we shall see shortly, provides an approximation to the true posterior distribution.
Consider the following transformation applied to the log marginal likelihood

lnP (D) = ln

∫
P (D,θ) dθ (13)

= ln

∫
Q(θ)

P (D,θ)

Q(θ)
dθ (14)

≥

∫
Q(θ) ln

P (D,θ)

Q(θ)
dθ = L(Q) (15)

where we have applied Jensen’s inequality. We see that the function L(Q) forms a rig-
orous lower bound on the true log marginal likelihood. The significance of this trans-
formation is that, through a suitable choice for the Q distribution, the quantity L(Q)
may be tractable to compute, even though the original log likelihood function is not.
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From (15) it is easy to see that the difference between the true log marginal likelihood
lnP (D) and the bound L(Q) is given by

KL(Q‖P ) = −

∫
Q(θ) ln

P (θ|D)

Q(θ)
dθ (16)

which is the Kullback-Leibler (KL) divergence between the approximating distribution
Q(θ) and the true posterior P (θ|D). The relationship between the various quantities is
shown in Figure 3.

ln ( )P D

L( )Q

KL( || )Q P

Fig. 3. The quantity L(Q) provides a rigorous lower bound on the true log marginal likelihood
ln P (D), with the difference being given by the Kullback-Leibler divergence KL(Q‖P ) between
the approximating distribution Q(θ) and the true posterior P (θ|D).

Suppose we consider a completely free-form optimization over Q, allowing for all
possible Q distributions. Using the well-known result that the KL divergence between
two distributionsQ(θ) and P (θ) is minimized byQ(θ) = P (θ) we see that the optimal
Q distribution is given by the true posterior, in which case the KL divergence is zero, the
bound becomes exact and L(Q) = lnP (D). However, this will not lead to any simplifi-
cation of the problem since, by assumption, direct evaluation of lnP (D) is intractable.
In order to make progress it is necessary to restrict the range of Q distributions.

The goal in a variational approach is to choose a suitable form for Q(θ) which is
sufficiently simple that the lower bound L(Q) can readily be evaluated and yet which
is sufficiently flexible that the bound is reasonably tight. We generally choose some
family of Q distributions and then seek the best approximation within this family by
maximizing the lower bound L(Q). Since the true log likelihood is independent of Q
we see that this is equivalent to minimizing the Kullback-Leibler divergence.

One approach is to consider a parametric family of Q distributions of the form
Q(θ;ψ) governed by a set of parameters ψ. We can then adapt ψ by minimizing the
KL divergence to find the best approximation within this family. Here we consider an
alternative approach which is to restrict the functional form of Q(θ) by assuming that
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it factorizes over the component variables {θi} in θ, so that

Q(θ) =
∏

i

Qi(θi). (17)

The KL divergence can then be minimized over all possible factorial distributions by
performing a free-form minimization over each of theQi, leading to the following result

Qi(θi) =
exp

〈
lnP (D,θ)

〉
k 6=i∫

exp
〈
lnP (D,θ)

〉
k 6=i

dθi

(18)

where 〈 · 〉k 6=i denotes an expectation with respect to the distributions Qk(θk) for all
k 6= i. For models having suitable conjugate choices for prior distributions, the right
hand side of (18) can be expressed as a closed-form analytic distribution. Note, how-
ever, that it still represents a set of coupled implicit solutions for the factors Qk(θk). In
practice, therefore, these factors are suitably initialized and are then cyclically updated
using (18).

It is worth emphasizing that, for models such as the one discussed in this paper
for which this framework is tractable, it is also possible to calculate the lower bound
L(Q) itself in closed form. Numerical evaluation of this bound during the optimization
process allows convergence to be monitored, and can also be used for Bayesian model
comparison since it approximates the log model probability lnP (V ). It also provides a
check on the accuracy of the mathematical solution and its numerical implementation,
since the bound can never decrease as the result of updating one of the Qi.

3.1 Variational Solution for Bayesian PCA Mixtures

In order to apply this framework to Bayesian PCA we assume a Q distribution of the
form

Q(S,X,π,W,α,µ, τ) = Q(S)Q(X|S)Q(π)Q(W)Q(α)Q(µ)Q(τ) (19)

where X = {xn}. The joint distribution of data and parameters is given by

[
N∏

n=1

P (tn|xn,W,µ, τ, S)

]
P (X)P (S|π)P (π)P (W|α)P (α)P (µ)P (τ). (20)

Using (19) and (20) in (18), and substituting for the various P (·) distributions, we
obtain the following results for the component distributions of Q(·)

Q(X|S) =

N∏

n=1

Q(xn|sn) (21)

Q(xn|sn = δm) = N (xn|m
(nm)
x

,Σ(m)
x

) (22)

Q(µ) =

M∏

m=1

N (µm|m
(m)
µ ,Σ

(m)
µ ) (23)
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Q(W) =

M∏

m=1

d∏

k=1

N (w̃km|m(km)
w

,Σ(m)
w

) (24)

Q(α) =

M∏

m=1

q∏

i=1

Γ (αmi|ãα, b̃
(mi)
α ) (25)

Q(τ) = Γ (τ |ãτ , b̃τ ) (26)

Q(Π) =
M∏

m=1

Dir(πm|ũ(m)) (27)

Q(S) =

N∏

n=1

Q(sn) (28)

where w̃k denotes a column vector corresponding to the kth row of W. Here we have
defined

m
(nm)
x

= 〈τ〉Σ(m)
x

〈WT
m〉(tn − 〈µm〉) (29)

Σ(m)
x

=
(
Iq + 〈τ〉〈WT

mWm〉
)−1

(30)

m
(m)
µ = Σ

(m)
µ 〈τ〉

N∑

n=1

〈snm〉 (tn − 〈Wm〉〈xn|m〉) (31)

Σ
(m)
µ =

(
β + 〈τ〉

N∑

n=1

〈snm〉

)−1

Id (32)

m
(km)
w

= Σw〈τ〉
N∑

n=1

〈snm〉〈xn|m〉(tnk − 〈µk〉) (33)

Σ(m)
w

=

(
diag〈αm〉 + 〈τ〉

N∑

n=1

〈snm〉〈xnx
T
n |m〉

)−1

(34)

ãα = aα +
d

2
b̃(mj)
α = bα +

〈‖wmj‖
2〉

2
ãτ = aτ +

Nd

2
(35)

b̃τ = bτ +
1

2

N∑

n=1

M∑

m=1

〈snm〉
{
‖tn‖

2 + 〈‖µm‖2〉 + Tr(〈WT
mWm〉〈xnx

T
n |m〉)

+2〈µT
m〉〈Wm〉〈xn|m〉 − 2tT

n 〈Wm〉〈xn|m〉 − 2tT
n 〈µm〉

}
(36)

ũ(m) = um +
N∑

n=1

〈snm〉 (37)

lnQ(sn = δm) = 〈lnπm〉 −
1

2
〈xT

nxn|m〉 −
1

2
〈τ〉
{
‖tn‖

2 + 〈‖µm‖2〉

+Tr(〈WT
mWm〉〈xnx

T
n |m〉) + 2〈µT

m〉〈Wm〉〈xn|m〉 (38)

−2tT
n 〈Wm〉〈xn|m〉 − 2tT

n 〈µm〉
}

+
1

2
ln |Σ(m)

x
| + const. (39)
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where diag〈α〉 denotes a diagonal matrix whose diagonal elements are given by 〈αi〉.
The constant in lnQ(sn = δn) is found simply by summing and normalizing. Note also
that 〈xn|m〉 denotes an average with respect to Q(xn|sn = δm).

The solution for the optimal factors in theQ(θ) distribution is, of course, an implicit
one since each distribution depends on moments of the other distributions. We can find
a solution numerically by starting with a suitable initial guess for the distributions and
then cycling through the groups of variables in turn, re-estimating each distribution
using the above results. The required moments are easily evaluated using the standard
results for normal and Gamma distributions.

Our framework also permits a direct evaluation of the posterior distribution over
the number M of components in the mixture (assuming a suitable prior distribution,
for example a uniform distribution up to some maximum value). However, in order to
reduce the computational complexity of the inference problem we adopt an alterna-
tive approach based on model comparison using the numerically evaluated lower bound
L(Q) which approximates the log model probability lnP (V ). Our optimization mech-
anism dynamically adapts the value of M through a scheme involving the addition and
deletion of components [16, 8].

One of the limitations of fitting conventional Gaussian mixture models by max-
imum likelihood is that there are singularities in the likelihood function in which a
component’s mean coincides with one of the data points while its covariance shrinks
to zero. Such singularities do not arise in the Bayesian framework due to the implicit
integration over model parameters.

4 Results

In order to demonstrate the operation of the algorithm, we first explore its behaviour
using synthetic data. The example on the left of Figure 4 shows synthetic data in two
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Fig. 4. Examples of Bayesian PCA mixture models fitted to synthetic data.
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dimensions, together with the result of fitting a Bayesian PCA mixture model. The
lines represent the non-zero principal directions of each component in the mixture. At
convergence the model had 8 components, having a common effective dimensionality
of 1. The right hand plot in Figure 4 shows synthetic data from a noisy 2-dimensional
sphere in 3 dimensions together with the converged model, which has 12 components
having effective dimensionality of 2. Similar results with synthetic data are robustly
obtained when embedding low-dimensional non-linear manifolds in spaces of higher
dimensionality.

We now apply our framework to the problem of modelling the manifold of a data set
of face images. The data used is a combination of images from the Yale face database
and the University of Stirling database. The training set comprises 276 training images,
which have been cropped, subsampled to 26 × 15, and normalized pixelwise to zero
mean and unit variance. A test set consisting of a further 100 face images, together with
200 non-face images, taken from the Corel database, all of which were pre-processed
in the same way as the training data.

The converged Bayesian PCA mixture model has 4 components, having a com-
mon dimensionality of 5, as emphasized by the Hinton diagram of the shared α hyper-
parameters shown in Figure 5.

Fig. 5. Hinton diagram showing the inverses of the α hyper-parameters (corresponding to the
variances of the principal components) indicating a manifold of intrinsic dimensionality 5.

In order to see how well the model has captured the manifold we first run the model
generatively to give some sample synthetic images, as shown in Figure 6. Synthetic

Fig. 6. Synthetic faces obtained by running the learned mixture distribution generatively.
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faces generated from a single probabilistic PCA model are less noticeably distinct.
We can quantify the extent to which we have succeeded in modelling the manifold

of faces by using the density model to classify the images in the test set as faces versus
non-faces. To do this we evaluate the density under the model for each test image and
if this density exceeds some threshold the image is classified as a face. The threshold
value determines the trade-off between false negatives and false positives, leading to an
ROC curve, as shown in Figure 7. For comparison we also show the corresponding ROC
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Fig. 7. ROC curves for classifying images as faces versus non-faces for the Bayesian PCA mix-
ture model, together with the corresponding results for a maximum likelihood PCA model with
various values for q the number of retained principal components. This highlights the significant
improvement in classification performance in going from a linear PCA model to a non-linear
mixture model.

curves for a single maximum likelihood PCA model for a range of different q values.
We see that moving from a linear model (PCA) to a non-linear model (a Bayesian PCA
mixture) gives a significant improvement in classification performance. This result also
highlights the fact that the Bayesian approach avoids the need to set parameter values
such as q by exhaustive exploration.

As a second application of our framework we model the manifolds of images of
hand-written digits. We use a data set taken from the CEDAR U.S. Postal Service
database, and comprising 11,000 images (equally distributed over the ten digits) each
of which is 8×8 grayscale, together with a similar independent test set of 2711 images.
Synthetic images generated from a Bayesian PCA mixture model fitted to the training
set are shown in Figure 8.

The learned model achieved 4.83% error rate on the test set. For comparison we
note that Tipping and Bishop [13] used the same training and test sets with a maximum
likelihood mixture of probabilistic principal component analysers. The training set in
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Fig. 8. Digits synthesized from each of the ten trained Bayesian PCA mixture model by running
the models generatively.

this case was itself subdivided into training plus validation sets. For each of the ten
digit models considerable computational effort was expended in finding the optimum
values of M (the number of components in the mixture) and q (the dimensionality of
the latent spaces) by evaluation of performance on the validation set. This approach
achieved 4.61% error rate on the test set, which is comparable with the result obtained
from the single run of the Bayesian PCA mixture model.

5 Discussion

In this paper we have introduced a fully probabilistic approach to modelling the man-
ifolds of images in which an appropriate model complexity, as well as the manifold
intrinsic dimensionality, can be inferred automatically from the data. Preliminary re-
sults on data sets of face images and hand-written digits demonstrate both the practical
feasiblity of the framework as well as improved performance compared to previous
approaches.

An important advantage of our framework is that there are no significant adjustable
parameters in the model to be set by the user. The model complexity is inferred from
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the data, and since no model optimization is required the model can be run once on the
training data, without the need for computationally intensive cross-validation.
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