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Background: Previous systems for dot (signal) counting
in fluorescence in situ hybridization (FISH) images have
relied on an auto-focusing method for obtaining a clearly
defined image. Because signals are distributed in three
dimensions within the nucleus and artifacts such as debris
and background fluorescence can attract the focusing
method, valid signals can be left unfocused or unseen.
This leads to dot counting errors, which increase with the
number of probes.

Methods: The approach described here dispenses with
auto-focusing, and instead relies on a neural network (NN)
classifier that discriminates between in and out-of-focus im-
ages taken at different focal planes of the same field of view.
Discrimination is performed by the NN, which classifies
signals of each image as valid data or artifacts (due to out of
focusing). The image that contains no artifacts is the in-focus
image selected for dot count proportion estimation.

Results: Using an NN classifier and a set of features to
represent signals improves upon previous discrimination
schemes that are based on nonadaptable decision bound-
aries and single-feature signal representation. Moreover,
the classifier is not limited by the number of probes. Three
classification strategies, two of them hierarchical, have
been examined and found to achieve each between 83%
and 87% accuracy on unseen data. Screening, while per-
forming dot counting, of in and out-of-focus images based
on signal classification suggests an accurate and efficient
alternative to that obtained using an auto-focusing
mechanism. Cytometry 43:87-93, 2001.
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In recent years, fluorescence in situ hybridization
(FISH) has emerged as a significant new development in
the analysis of human chromosomes. FISH offers numer-
ous advantages compared with conventional cytogenetic
techniques because it detects numerical chromosome ab-
normalities during normal cell interphase. One of the
most important applications of FISH is dot counting, i.e.,
the enumeration of signals (also called dots or spots)
within the nuclei. Dot counting is used for studying nu-
merical chromosomal aberrations in hematopoietic neo-
plasias, various solid tumors, prenatal diagnosis, and for
demonstrating disease-related chromosomal transloca-
tions (1).

However, a major limitation of the FISH technique for
dot counting is the large numbers of cells that are needed.
This is required for an accurate estimation of the distribu-
tion of chromosomes over cell populations, especially in
applications involving a relatively low frequency of abnor-

mal cells. As visual evaluation of large numbers of cells and
enumeration of hybridization signals are tedious, labori-
ous, and time-consuming, FISH analysis for dot counting
can be expedited by using an automatic procedure (1-5).

To perform dot counting, an automatic system exploits
three-dimensional (3D) information of cells contained in
the specimen. The system uses an auto-focus control that
obtains the sharpest image along the Z-axis, similar to that
obtained by manual adjustment of the microscope stage.
Moreover, this mechanism has to be activated for each
and every field of view (FOV). However, an auto-focusing
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Fic. 1. Two FISH images used in dot counting taken at the same FOV but at different planes: (a) in-focus image and (b) out-of-focus image.

mechanism has a number of problems. First, automatic
acquisition is dependent upon finding the sharpest image.
It can fail, however, if the mechanism focuses on a source
of noise such as debris or background fluorescence or if
the FOV is empty (4,5). Therefore, subsequent manual
inspection for discarding such images is sometimes inev-
itable. Second, even if the sharpest image is found, it only
represents a section of a 3D image. Signals in other sec-
tions that are above or below that section do not partici-
pate in the analysis. Third, auto-focusing is time consum-
ing. It takes almost 10 s to complete auto-focusing of one
FOV (5), which is 50-75% of the total time needed to
analyze that FOV. Finally, research (5) shows that auto-
focusing contributes about 3% of the total 11% error rate
of the analysis.

As an alternative to the use of an auto-focusing mecha-
nism, we suggest basing FISH dot counting on a neural
network (NIN) classifier that discriminates between in and
out-of-focus images taken at different focal planes of the
same FOV (Fig. 1). Images at different focal planes of a
specific FOV compose a stack of images that represents
this FOV. Each stack image is analyzed and its signals are
classified by the NN as valid data or artifacts, which are the
result of out of focusing. Following the discrimination of
valid signals and artifacts in each stack image, the image
that does not contain artifacts is selected as the in-focus
image to represent the stack (FOV), whereas the other
stack out-of-focus images may be rejected. The procedure
is then repeated for other FOVs until the entire slide is
covered or the required number of (in-focus) images (or
nuclei) are collected (Fig. 2). Proportion estimation of the
number of cells having specific numbers of signals can
then be performed using these images as in auto-focusing-
based dot counting methods (3,5). The suggested method
overcomes most of the shortcomings of auto-focusing
because it does not necessarily depend on a single image
but on a stack of images. Moreover, the method shortens
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Fig. 2. A flow chart of a dot counting system based on a classifier,
instead of an auto-focusing mechanism, that discriminates between in and
out-of-focus images.
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the length of image acquisition, as stack images are cap-
tured coarsely without the necessity of finding the exact
location of the in-focus image. Combined with multispec-
tral analysis, the suggested methodology also shortens the
length of image analysis. Finally, the proposed method
enables flexibility because the NN classifier can be inte-
grated into any existing dot counting system. It replaces
the auto-focusing mechanism and can be replaced by any
other classifier.

However, as the system is required to classify valid
signals and artifacts, its ability to discriminate between
focused and unfocused signals should be more accurate
than that of the discriminating element of a system em-
ploying an auto-focusing mechanism. This is because the
latter encounters only valid signals. Therefore, the pro-
posed system depends on two components: a highly ac-
curate classifier to distinguish between valid and artifact
signal data and well-discriminating multifeature signal rep-
resentation.

We have previously investigated (6) the second compo-
nent of feature representation for FISH signals. In the
present study, we examine the use of a classifier to dis-
criminate between valid and artifact signals. Focused sig-
nals are valid signals and they are classified as “reals.”
Unfocused signals and signals created by background flu-
orescence or due to overlap between different fluoro-
phores located in different focal planes are classified as
“artifacts.” A two-layer perceptron NN trained using large
numbers of examples of these two classes is employed for
the classification.

MATERIALS AND METHODS
Slide Preparation

The interphase nuclei preparations from amniotic fluid
were made using the method of Klinger et al. (7) with
minor modifications. Amniotic fluid (1-2 ml) was centri-
fuged and the cell pellet washed in phosphate-buffered
saline (PBS) warmed to 37°C. The cells were resuspended
in 75 mM KCI and placed directly on slides coated with
APES (Sigma, St. Louis, MO) and incubated at 37°C for 15
min. Evaporation of PBS was compensated with filtered
distilled water. Excess fluid was carefully removed and
replaced with 100 ml of 3% Carnoys fixative and 70% 75
mM KCI at room temperature for 5 min. The excess fluid
was carefully removed and five drops of fresh fixative
were dropped on the cell area. Slides were briefly dried on
a 60°C hotplate. They were either used immediately for
hybridization or dehydrated through an alcohol series and
stored at —20°C until required.

Hybridization

Target areas were marked on the slides using a dia-
mond-tipped scribe. Target DNA was denatured by im-
mersing in 70% formamide:30% 2 X SSC at 73°C for 5 min.
Probe mix (10 pD) containing spectrum orange LSI 21 and
spectrum green LSI 13 (Vysis, UK) was applied to the
target area and a coverslip placed over the probe solution.
Coverslips were sealed using rubber cement and slides

were placed in a prewarmed humidified container in a
37°C incubator for 16 h. Coverslips were removed and
slides washed in 0.4 X SSC/0.3% NP-40 solution at 73°C
for 2 min. Slides were then placed in 2 X SSC/0.1% NP-40
solution at room temperature for 1 min. When completely
dried, 10 wl of DAPI II counterstain (Vysis) was applied to
the target area and sealed under a coverslip.

Instrumentation and Screening Procedure

Slides were screened under a Zeiss axioplan epifluores-
cence microscope using a Zeiss X100 objective. Signals
were viewed using a Vysis DAPI/green/orange triple band
pass filter set and images were acquired using a CCD
camera (Photometrics CH250/A) and SmartCapture soft-
ware (Vysis). Red and green signals, corresponding to
chromosomes 21 and 13, respectively, were seen on blue
DAPI-stained nuclei. Because acquiring stacks of images
for the different FOVs is a relatively demanding task, we
use a simpler procedure in this study. Slides were scanned
by starting in the upper left corner of the coverslip and
moving from top to bottom. The focus and color ratios
were adjusted for the first captured image from each slide.
Those values were kept for all the following images from
that particular slide. Images were captured by stopping at
random intervals along the slide. Utilizing this acquisition
procedure and assuming uniform distribution of signals
along the Z-axis, we captured an arbitrary mix of in and
out-of-focus images without literally collecting stacks of
images. For evaluating the classification of focused and
unfocused signals, this procedure provides the desired
images cheaply and quickly. However, for testing the
entire system in dot counting (Fig. 2), stacks of images will
be acquired. A total of 400 in and out-of-focus images were
collected from five slides, stored in TIFF (Tagged Image
File Format), and used in the signal classification experi-
ments.

IMAGE ANALYSIS
Multispectral Analysis

Multiple probes, labeled by different fluorophores, are
often used in conjunction in FISH preparation. For exam-
ple, in our study, chromosomes 13 and 21 are indicated by
green and red signals, respectively, and the nuclei are
colored in blue (Fig. 1). The position in the image and the
characteristics of each of these fluorophores have signifi-
cant meaning to the researcher or clinician. Nevertheless,
in most of the previous research of automatic FISH image
analysis (4,5), color information is converted into gray-
level scale. FISH image analysis is then based on intensity
and not on color information, which is lost in the process.

However, much of the difficulties encountered during
the analysis of intensity images can be avoided if color
information is maintained and used. This is especially true
for nucleus and signal segmentation. Many user-defined
thresholds and heuristics are needed to segment signals
from nuclei and nuclei from background when intensity-
based analysis is employed.

In this study, color is kept and specified by the RGB
(red, green, blue) format, in which each image pixel is
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represented by the normalized red, green, and blue bright-
ness values. DAPI nuclei are analyzed in the blue channel
of the RGB image, whereas red (spectrum orange; chro-
mosome 21) and green (spectrum green; chromosome 13)
signals are analyzed separately in the red and green chan-
nels, respectively. Multispectral image analysis does not
only facilitate preprocessing and segmentation (3), it also
yields hue-based features, which are found very efficient
for FISH signal representation and classification (6). Fur-
thermore, it allows the analysis of multiple probes.

Color Image Segmentation

Special multistage (usually TopHat-based) procedures
that rely on heuristically derived thresholds and parame-
ters are conventionally applied to the intensity image in
order to segment nuclei and signals (4,5). Color image
segmentation, however, avoids the use of these proce-
dures. It is performed separately on each of the three
different channels of the RGB image using global thresh-
olds. Finding optimal global thresholds in the RGB image
is almost trivial compared with thresholding an intensity
image because the channels contain no background and
only blue (red, green) objects are found in the blue (red,
green) channel. Also, for these reasons, moderate changes
in the threshold values barely affect the overall accuracy
of image analysis. In this study, threshold values of 0.5 and
0.8 of the maximum channel intensity are suitable for the
segmentation of signals and nuclei, respectively. In addi-
tion, when performing the analysis, the red and green
channels of the color image can be represented by sparse
matrices (note that the area of a typical signal of 10 pixels
is less than 0.01% of a typical image area, i.e., 400 X 400
pixels?). Therefore, special algorithms for sparse matrices
can be exploited to enable fast performance of multispec-
tral analysis, which cannot be exploited while analyzing
the full matrices associated with the intensity image.

Following thresholding, noise reduction, boundary
smoothing of the nuclei by morphological operations, and
spatiospectral correlation between nuclei and signals are
implemented to complete segmentation of the nuclei and
signals.

Signal Feature Measurement

Several features are measured for each of the segmented
signals. Features include area (a size measure), eccentric-
ity (a shape measure), total and average channel intensi-
ties (intensity measures), and intensity standard deviation
(texture measure). All but the last feature have been sug-
gested previously (4) to represent signals, albeit measured
using the intensity image. We also measure the maximum
and average hue (color measures) as they are more appro-
priate for signal discrimination than RGB-based features
(6). Hue features can be measured only if color informa-
tion is kept. The RGB image is then converted into the HSI
(hue, saturation, intensity) format.

Several features are representative for signal classifica-
tion when evaluated using scatter plots, probability den-
sity functions, a class separability criterion, and the prob-
ability of misclassification (6). Among these features are

the area, average channel intensity, and average hue of the
signals. These three features are employed here to repre-
sent the segmented signals to the classifier.

SIGNAL CLASSIFICATION

The main purpose of this study is to investigate the
feasibility of automatic signal classification in in and out-
of-focus FISH images. Although the application of the
research is to dot counting, we are not interested for the
moment in estimating the proportions of cells having
specific numbers of signals, but rather in the ability to
accurately distinguish between valid signals (reals) and
artifacts. This ability forms the basis of the proposed dot
counter (Fig. 2).

In the common procedure of automatic dot counting,
signals whose relative intensity and either total intensity
(4) or area (5) are in specific intervals are classified as
reals, while other signals are rejected. The interval is
defined by the minimum and maximum values of the
features as measured on a training set composed of valid
signals. Signals of out-offocus images are manually ex-
cluded. Such a strategy is not appropriate for the method-
ology we are suggesting here for a number of reasons.
First, even the best one (or two) discriminative features
would fail to provide sufficient classification accuracy
when signals have to be classified as reals or artifacts of
several fluorophores (6). Dealing with a complex multi-
class classification problem usually requires the use of
multivariate patterns. Second, as the training set includes
only valid signals, the classifier is limited in its ability to
model artifacts. Therefore, it may miss the correct deci-
sion boundaries of the artifact classes, which yield the
minimum probability of misclassification. Third, as the
decision boundaries are determined by the minimum and
maximum feature values, they are only a rough approxi-
mation of the real decision boundaries determined by
feature values of the entire training data set. Moreover,
boundaries based on extremes are sensitive to outliers. In
the presence of outliers, the probability density functions
of valid signals and artifacts may overlap to a greater
extent and the probability of misclassification of the clas-
sifier may then be increased.

Therefore, the classification procedure proposed here
is as follows. 3D patterns of signals [or higher-dimensional
patterns as reported by Lerner et al. (6)], which are based
on the signal area, average channel intensity, and average
hue are examined. The patterns (representing the spec-
trum orange and spectrum green probes) are classified
into four classes: real red, artifact red, real green, and
artifact green. Within the artifact classes we expect to find
unfocused and overlap signals, and signals that are the
result of background fluorescence. These signals will have
patterns with different values of features than those of
valid signals, and hence will be classified as artifacts (com-
pare Figs. 1a and 1b). Labels for the patterns, belonging to
one of the four classes, are needed to train and evaluate
the classifier. They are obtained by a cytogeneticist using
a custom-built graphical environment for labeling FISH
images (8).
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Following the normalization of the features to zero
mean and unit variance, patterns of signals extracted from
all the images are divided randomly into training and test
sets and classification into one of the four classes is im-
plemented using cross-validation. In the variant of cross-
validation technique used in this study, the data are par-
titioned into five equal parts. Four fifths of the data are
used for training and the remaining one fifth is kept for the
test. The experiment is repeated five times. Each time,
another four fifths (one fifth) of the data are employed for
the training (test). Classification accuracy is then averaged
over the five experiments (CV-5). The classifier is a two-
layer perceptron NN trained by the scaled conjugate gra-
dient algorithm (detailed descriptions of NNs and learning
algorithms for NNs can be found in ref. 9, Chapters 4 and
7, respectively). Classification is based on the approxima-
tion of the two-layer perceptron outputs to the a posteri-
ori probabilities for the classes. A validation set, which is
drawn from the training set, assures that the classifier is
not overtrained. It also allows the selection of a minimal
network configuration based on only a few hidden units.
Both factors ensure rapid training and improved general-
ization.

Three classification strategies are examined here. In the
first, called the monolithic strategy, patterns are classified
into the four classes using a single NN. In the second,
termed the independent strategy, patterns are classified
into red and green classes using the color network and
independently by a second network, the real network,
into reals and artifacts. Classification of a pattern into one
of the four classes is achieved by a common decision of
both networks. In the third strategy, called the combined,
patterns are first classified into red and green classes using

the color network. Then, based on the results of this
network, they are classified by two other networks, the
real-red network and the real-green network, into reals
and artifacts of the two colors.

EXPERIMENTS AND RESULTS

We established a database of 400 in and out-of-focus
FISH images captured from five slides. Following nuclei
segmentation, the system identified 944 objects within
these images as nuclei, of which 613 also contained sig-
nals (the remaining 331 objects are unfocused nuclei that
do not contain signals). Following signal segmentation,
3,144 objects within the above nuclei were identified as
signals and features were measured for them. Based on
labels provided by expert inspection, 1,145 of the signals
were considered as reals (among them 551 were red) and
1,999 as artifacts (among them 1,224 were red).

First, experiments to find suitable configurations for the
NNs of each of the three strategies were performed. Input
and output dimensions for the networks were set by the
feature space dimension and the number of classes, re-
spectively. The number of hidden units was determined
such that the network had the highest generalization ca-
pability. This was achieved by evaluating networks of
different numbers of hidden units on an independent
validation set (9) drawn from the training set. The net-
work that had the lowest error measured on the validation
set was selected for training. Figure 3 shows the results of
experiments with the monolithic and the combined strat-
egies for determining the number of hidden units for each
network, and therefore their configurations. Table 1 gives
the configurations selected for the networks of each of the
classification strategies. The number of hidden units is
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Table 1
Configurations and Classification Accuracies on the Training and Test Sets
of the Three Classification Strategies: Monolithic, Independent, and Combined*

Monolithic Real Color Independent Combined
Configuration 3:27:4 3:13:1 3:13:1 3:13:1 3:13:1
Training (%) 84.0 87.5 96.4 84.1 87.9
Test (%) 82.9 87.3 95.7 83.3 87.1

*Configurations are specified by the numbers of units in each layer of the NN
(input:hidden:output). Results for both the real and the color networks are needed
to obtain the overall classification accuracies of the independent and combined
strategies. Signals are represented by their area, average channel intensity, and
average hue. (The slight deviations in classification accuracy of the combined
classifier compared with Figure 3b are attributed to the different experiments using
random classifier initializations and randomly selected data sets.)

selected by the highest classification accuracy on the
validation set. Finally, training of each of the networks
was continued for 100 epochs (presentations of the entire
training set). The results were averaged for each network
over three random initializations.

The classification accuracies of the monolithic strategy,
using its optimal configuration, were 84.0% and 82.9% for
the training and test sets, respectively (Table 1). We also
examined the sensitivity of the classification accuracy of
this strategy against the sample size by repeating the
experiment for training sets of different sizes. The size of
the training set was increased from 10% to 90% of the
data, where the same unseen 10% of the data was used for
the test. The results in Figure 4 demonstrate that the
classification accuracy on the test set follows, as expected,
the increase of the training sample size until its maximum
level. However, the classification accuracy on the training
set has a minimum. The explanation is that for a very small
sample size, training is very simple and classification of a
few training patterns can be very accurate. It is, however,
more difficult to maintain this accuracy as the sample size
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increases and more variants of the training patterns are
added. The classification accuracy decreases until it
reaches a minimum for a critical mass of learned patterns.
After this point, as sample size continues to grow, the
additional patterns are not so different from those of the
critical mass. Thus, learning of the patterns of the (extend-
ed) critical mass is intensified. At the same time, the
fraction of misclassified patterns becomes lower. The re-
sult of both trends is toward the improvement of the
classification accuracy on the training set as shown in
Figure 4.

Experiments with the other two strategies, the indepen-
dent and the combined, reveal that these strategies can
improve the classification accuracy of the monolithic strat-
egy by 0.4% (to 83.3%) and 4.2% (to 87.1%), respectively,
when tested on unseen data (Table 1). Table 1 also dem-
onstrates that classification of signals into their colors is
more accurate than that of signals into reals and artifacts.
Finally, the combined strategy, when tested using an ex-
tended feature set (6), has achieved classification accuracy
of 89.2%.

DISCUSSION

In dot counting, the application of an auto-focusing
mechanism to the acquisition of FISH images usually en-
ables the analysis of nuclei and signals from focused im-
ages. However, the distributions of signals within a nu-
cleus and nuclei within a specimen are uniform. Because
the auto-focusing mechanism can focus on debris and
background fluorescence, signals are often left unfocused.
Consequently, missing images are analyzed and dot count-
ing suffers from errors. Moreover, errors in the focus
position also cause errors and high variance of the values
of the features that represent the signals (4). The result of
all these errors is enhanced significantly as the number of
probes increases. In addition, auto-focusing requires a
large fraction of the analysis period: around 50 -75% of the
total time needed for analyzing a specific FOV is devoted
to auto-focusing (5). In summary, auto-focusing is a long
and critical step of FISH image analysis. Failure of auto-
focusing will undermine the whole analysis and lead to
unreliable results (3,5).
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An alternative methodology is proposed in this study. It is
based on the employment of a NN classifier to distinguish
between in and out-of-focus images. Signals of images com-
posing a stack are classified as valid data or artifacts due to
out of focusing. The stack image that contains no artifacts is
selected as the in-focus image to represent this stack (FOV).
In-focus images collected and analyzed from the entire slide
(or sample) can be exploited for dot count proportion esti-
mation of the specimen.

Processing of color in FISH images makes nucleus and
signal segmentation, as well as signal classification, easier
and less sensitive to noise. It reduces the employment of
user-defined thresholds and prevents the excessive appli-
cation of heuristics, both of which are necessary in inten-
sity-based image analysis. Furthermore, analyzing the
sparse matrices associated with FISH multispectral images
is much faster than that of the full matrices associated
with FISH intensity images. Compared with the two com-
mon imaging methods, single excitation (SE) and dual
excitation (DE) (5), multispectral image analysis combines
the advantages of both methods. It allows separate pro-
cessing of signals of different fluorophores while captur-
ing only one image. It also suggests an improvement to
current methods (4,5) because it is suitable for use with
more than two fluorophores. Finally, multispectral image
analysis enables richer and more discriminative represen-
tation of signals of several fluorophores, yielding an accu-
rate signal classification.

Classification of multiprobe valid and artifact signals in in
and out-offocus images is a more demanding task than the
detection of single-probe valid signals in in-focus images. For
the former task, we suggest a methodology based on 3D
multispectral image analysis and a trainable, nonlinear, mul-
ticlass classifier such as a NN. This novel methodology when
applied to dot counting has several advantages compared
with that employing intensity-based image analysis and an
auto-focusing mechanism. First, the system is not limited to
signals of one probe. Second, image acquisition and analysis
using the new methodology are performed more quickly and
are less dependent on heuristics. This is because the system
avoids auto-focusing and makes use of the color rather than
the intensity image. Third, the inevitable out-of-focus signals
do not undermine dot counting as in an auto-focusing- based
system. These signals define the artifact classes required for
training the classifier (offline) to reject out-of-focus images
during dot counting. Fourth, the proposed methodology
permits the performance of 3D dot counting, as signals
captured in different focal planes of the same FOV can be
analyzed commonly. In addition, the NN classifier can be
incorporated into any existing dot counting system, as it only
replaces the auto-focusing mechanism, and it can also be
replaced by non-NN classification paradigms.

NN-based hierarchical classification strategies examined
in this study decreased the classification complexity. They
shortened the training session and improved the accuracy
compared with a monolithic NN strategy. Test signals of
two fluorophores extracted from nuclei of in and out-of-
focus images were classified as valid signals and artifacts

with an accuracy of 87.1% [or 89.2% for other feature sets
(6)]. Furthermore, classification of test signals was accom-
plished instantaneously because it only required the mul-
tiplication of 3D feature vectors representing the signals
with two (monolithic strategy), four (independent strate-
gy), or six (combined strategy) small weight matrices of
the previously trained NN classifier.

In summary, the suggested methodology, based on mul-
tispectral image analysis and signal classification, is an
accurate and efficient screening mechanism for obtaining
in-focus images in dot counting.

CURRENT AND FUTURE RESEARCH

Current research has two aims. The first aim is to im-
prove the performance of signal classification by increas-
ing its accuracy while keeping its simplicity. Recent re-
search (10) has stepped on this track.

The second aim is the application of the suggested
system to stacks of images, and thereby the accomplish-
ment of the complete classifier-based multispectral dot
counting system (Fig. 2). Stacks of images have been
already collected for this purpose. Proportion estimation
of cells having different numbers of signals (0, 1, 2,...)
can then be performed and the performance (accuracy
and speed) of the system can be compared with that of
auto-focusing-based dot counters. The suggested dot
counting method, if found accurate in performing propor-
tion estimation as its counterpart, will be advantageous
due to the benefits demonstrated in this study.
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