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Abstract

Variational methods are becoming increasingly
popular for the approximate solution of com-
plex probabilistic models in machine learning,
computer vision, information retrieval and many
other fields. Unfortunately, for every new ap-
plication it is necessary first to derive the spe-
cific forms of the variational update equations for
the particular probabilistic model being used, and
then to implement these equations in application-
specific software. Each of these steps is both
time consuming and error prone. We have there-
fore recently developed a general purpose infer-
ence engine called VIBES [1] (‘Variational In-
ference for Bayesian Networks’) which allows a
wide variety of probabilistic models to be imple-
mented and solved variationally without recourse
to coding. New models are specified as a directed
acyclic graph using an interface analogous to a
drawing package, and VIBES then automatically
generates and solves the variational equations.
The original version of VIBES assumed a fully
factorized variational posterior distribution. In
this paper we present an extension of VIBES in
which the variational posterior distribution cor-
responds to a sub-graph of the full probabilistic
model. Such structured distributions can produce
much closer approximations to the true posterior
distribution. We illustrate this approach using an
example based on Bayesian hidden Markov mod-
els.

1 Introduction

Variational methods [2] have been used successfully for a
wide range of models, and new applications are constantly
being explored. In many ways the variational framework
can be seen as a complementary approach to that of Markov
chain Monte Carlo (MCMC), with different strengths and

weaknesses. The variational approach finds a deterministic
approximation to the posterior distribution by optimization
over an analytical family of distributions.

For many years there has existed a powerful tool for tack-
ling new problems using MCMC, called BUGS (‘Bayesian
inference Using Gibbs Sampling’) [3]. In BUGS a new
probabilistic model, expressed as a directed acyclic graph,
can be encoded using a simple scripting notation, and then
samples can be drawn from the posterior distribution (given
some data set of observed values) using Gibbs sampling in
a way that is largely automatic. Furthermore, an extension
called WinBUGS provides a graphical front end to BUGS
in which the user draws a pictorial representation of the di-
rected graph, and this automatically generates the required
script.

We have been inspired by the success of BUGS to produce
an analogous tool for the solution of problems using vari-
ational methods. The challenge is to build a system which
can handle a wide range of graph structures, a broad vari-
ety of common conditional probability distributions at the
nodes, and a range of variational approximating distribu-
tions. All of this must be achieved whilst also remaining
computationally efficient.

The VIBES software uses a graphical interface analogous
to that used in WinBUGS in order to specify the probabilis-
tic model in terms of a directed acyclic graph. A subset of
the nodes of this graph represent observed variables (the
‘data’) and the remainder represent hidden variables. We
are interested primarily in models for which exact infer-
ence is intractable.

In the original version of VIBES [1] the variational pos-
terior distribution was assumed to be fully factorized with
respect to the nodes of the graph. This already represents a
powerful and practical framework for approximate infer-
ence that has been widely applied. However, by allow-
ing more structure in the variational posterior we can ac-
cess a much richer class of approximations and hence ob-
tain better approximations to the true posterior distributions
[4, 5, 6]. In this paper we describe an extended version of



VIBES which uses variational distributions given by sub-
graphs of discrete and/or continuous (Gaussian) nodes ob-
tained by deleting links from the original graph.

In Section 2 we discuss the framework of variational infer-
ence in some generality, and review the fully factorized ap-
proximation used in the original form of VIBES. Tractabil-
ity in VIBES is achieved by considering the conditional
probability distributions which form the graph to be drawn
from the exponential family, as reviewed in Section 3, with
conjugacy imposed between all parent-child pairs in the
graph. The VIBES software implementation is described
in Section 4. In Section 5 we then discuss the general struc-
tured variational distribution and derive the corresponding
variational update equations. This is illustrated by applying
VIBES to a Bayesian hidden Markov model in Section 6.
Some directions for future development are discussed in
Section 7.

2 Variational Inference

In this section we briefly review the general variational
framework, and then we derive the variational update equa-
tions for the case of a fully factorized variational posterior
distribution.

We denote the set of all variables in the model by W =
(V,X) where V are the visible (observed) variables and
X are the latent (hidden) variables. Throughout this pa-
per we focus on models which are specified in terms of
an acyclic directed graph, although the treatment of undi-
rected graphical models is equally possible and indeed
is somewhat more straightforward. The joint distribution
P (V,X) is then expressed in terms of conditional distri-
butions P (Wi|pai) at each node i, where Wi denotes the
variable, or group of variables, associated with node i, and
pai denotes the set of variables corresponding to the par-
ents of node i. The joint distribution of all variables is then
given by the product of the conditionals

P (V,X) =
∏

i

P (Wi|pai). (1)

Our goal is to find a variational distributionQ(X|V ) which
approximates the true posterior distribution P (X|V ). To
do this we note the following decomposition of the log
marginal probability of the observed data, which holds for
any choice of distribution Q(X|V )

lnP (V ) = L(Q) + KL(Q‖P ) (2)

where

L(Q) =
∑

X

Q(X|V ) ln
P (V,X)

Q(X|V )
(3)

KL(Q‖P ) = −
∑

X

Q(X|V ) ln
P (X|V )

Q(X|V )
(4)

and the sums are replaced by integrals in the case of
continuous variables. Here KL(Q‖P ) is the Kullback-
Lieber divergence between the variational approximation
Q(X|V ) and the true posterior P (X|V ). Since this satis-
fies KL(Q‖P ) ≥ 0 it follows from (2) that the quantity
L(Q) forms a rigorous lower bound on lnP (V ).

We now choose some family of distributions to represent
Q(X|V ) and then seek a member of that family which
maximizes the lower bound L(Q). If we allow Q(X|V )
to have complete flexibility then we see that the maximum
of the lower bound occurs for Q(X|V ) = P (X|V ) so that
the variational posterior distribution equals the true poste-
rior. In this case the Kullback-Leibler divergence vanishes
and L(Q) = lnP (V ). However, working with the true
posterior distribution is computationally intractable (other-
wise we wouldn’t be resorting to variational methods). We
must therefore consider a more restricted family of Q dis-
tributions which has the property that the lower bound (3)
can be evaluated and optimized efficiently and yet which is
still sufficiently flexible as to give a good approximation to
the true posterior distribution.

2.1 Factorized Distributions

In the original version of VIBES [1] we focussed on distri-
butions which factorize with respect to disjoint groups Xi

of variables
Q(X|V ) =

∏

i

Qi(Xi). (5)

This is already a powerful approximation which has been
successfully used in many applications of variational meth-
ods [7, 8, 9]. Substituting (5) into (3) we can maximize
variationally with respect to Qi(Xi) keeping all Qj for
j 6= i fixed, which leads to the solution [1]

lnQ?i (Xi) = 〈lnP (V,X)〉{j 6=i} + const. (6)

where 〈·〉k denotes an expectation with respect to the dis-
tribution Qk(Xk). Taking exponentials of both sides and
normalizing we obtain

Q?i (Xi) =
exp〈lnP (V,X)〉{j 6=i}∑
Xi

exp〈lnP (V,X)〉{j 6=i}
. (7)

Note that these are coupled equations since the solution
for each Qi(Xi) depends on expectations with respect to
the other factors Qj 6=i. The variational optimization pro-
ceeds by initializing each of the Qi(Xi) and then cycling
through each factor in turn replacing the current distribu-
tion with a revised estimate given by (7). The original ver-
sion of VIBES was based on a factorization of the form
(5) in which each factor Qi(Xi) corresponds to one of the
nodes of the graph.

An important property of the variational update equations,
from the point of view of VIBES, is that the right hand



side of (7) does not depend on all of the conditional distri-
butions P (Wi|pai) which define the joint distribution but
only on those which have a functional dependence on Xi,
namely the conditional P (Xi|pai), together with the con-
ditional distributions for any children of node i since these
have Xi in their parent set. Thus the expectations which
must be performed on the right hand side of (7) involve
only those variables lying in the Markov blanket of node i,
in other words the parents, children and co-parents of i, as
illustrated in Figure 1(a). This is a key concept in VIBES
since it allows the variational update equations to be for-
mulated in terms of local operations which can therefore be
expressed in terms of generic code which is independent of
the global structure of the graph.

Xi

Y1 YK

Z1 Zj

cpj

( )i

{ }

Figure 1: A central observation is that the variational up-
date equations for node Xi depend only on expectations
over variables appearing in the Markov blanket of Xi,
namely the set of parents, children and co-parents.

3 Conjugate Exponential Models

It has already been noted [1, 7, 8] that important simplifi-
cations to the variational update equations occur when the
distributions of variables, conditioned on their parameters,
are drawn from the exponential family and are conjugate
with respect to the prior distributions of the parameters.
Here we adopt a somewhat different viewpoint in that we
make no distinction between latent variables and model pa-
rameters. In a Bayesian setting these both correspond to
unobserved stochastic variables and can be treated on an
equal footing. This allows us to consider conjugacy not just
between variables and their parameters, but hierarchically
between all parent-child pairs in the graph.

Thus we consider models in which each conditional distri-
bution takes the standard exponential family form

lnP (Xi|Y ) = φi(Y )Tui(Xi) + fi(Xi) + gi(Y ) (8)

where Y = {Y1, . . . , YK}, and the vector φ(Y ) is called
the natural parameter of the distribution. Now consider a
node Zj with parent Xi and co-parents cp

(i)
j , as indicated

in Figure 1(a). As far as the pair of nodes Xi and Zj are
concerned, we can think of P (Xi|Y ) as a prior overXi and

the conditional P (Zj |Xi, cp
(i)
j ) as a (contribution to) the

likelihood function. Conjugacy requires that, as a function
of Xi, the product of these two conditionals must take the
same form as (8). Since the conditional P (Zj |Xi, cp

(i)
j ) is

also in the exponential family it can be expressed as

lnP (Zj |Xi, cp
(i)
j ) = φj(Xi, cp

(i)
j )Tuj(Zj)

+fj(Zj) + gj(Xi, cp
(i)
j ). (9)

Conjugacy then requires that this be expressible in the form

lnP (Zj |Xi, cp
(i)
j ) = φ̃j→i(Zj , cp

(i)
j ) Tui(Xi)

+λ(Zj , cp
(i)
j ). (10)

Since this must hold for each of the parents of Zj it fol-
lows that lnP (Zj |Xi, cp

(i)
j ) must be a multi-linear func-

tion of the uk(Xk) for each of the parents Xk of node
Xi. Similarly, we observe from (9) that the dependence
of lnP (Zj |Xi, cp

(i)
j ) on Zj is again linear in the function

uj(Zj). We can apply a similar argument to the conju-
gate relationship between node Xj and each of its par-
ents, showing that the contribution from the conditional
P (Xi|Y ) can again be expressed in terms of expectations
of the natural parameters for the parent node distributions.
Hence the right hand side of the variational update equation
(6) for a particular node Xi will be a multi-linear function
of the expectations 〈uk〉 for each node in the Markov blan-
ket of Xi.

The variational update equation then takes the form

lnQ?j (Xj) = φ̂Tui(Xi) + const. (11)

where we have defined

φ̂ ≡ 〈φi(Y )〉Y +
M∑

j=1

〈φ̃j→i(Zj , cp
(i)
j )〉

Zj ,cp
(i)
j

. (12)

This involves summation of bottom up ‘messages’
〈φ̃j→i〉Zj ,cp

(i)
j

from the children together with a top-down

message 〈φi(Y )〉Y from the parents. Note that since all
of these messages are expressed in terms of the same basis
ui(Xi), we can write compact, generic code for updating
any type of node, instead of having to take account explic-
itly of the many possible combinations of node types in
each Markov blanket.

As an example, consider the Gaussian N (X|µ, τ−1) for a
single variable X with mean µ and precision (inverse vari-
ance) τ . The natural coordinates are uX = [X,X2]T and
the natural parameterization is φ = [µτ,−τ/2]T. Then
〈u〉 = [µ, µ2 + τ−1]T, and the function fi(Xi) is simply
zero in this case. Conjugacy allows us to choose a distri-
bution for the parent µ which is Gaussian and a prior for τ
which is a Gamma distribution. The corresponding natural



parameterizations and update messages are given by

uµ =

[
µ
µ2

]
, φ̃X→µ =

[
〈τ〉〈X〉
−〈τ〉/2

]

uτ =

[
τ

ln τ

]
, φ̃X→τ =

[
−〈(X − µ)2〉

1/2

]
.

We can similarly consider multi-dimensional Gaussian dis-
tributions, with a Gaussian prior for the mean and a Wishart
prior for the inverse covariance matrix.

A generalization of the Gaussian is the rectified Gaussian
which is defined as P (X|µ, τ) ∝ N (X|µ, τ) for X ≥ 0
and P (X|µ, τ) = 0 for X < 0, for which moments can
be expressed in terms of the ‘erf’ function. This corre-
sponds to the introduction of a step function for fi(Xi) in
(8), and so is carried through the variational update equa-
tions unchanged. Similarly, we can consider doubly trun-
cated Gaussians which are non-zero only over some finite
interval.

Another example is the discrete distribution for categori-
cal variables. These are most conveniently represented us-
ing the 1-of-M coding scheme in which S = {Sk} with
k = 1, . . . ,K, Sk ∈ {0, 1} and

∑
k Sk = 1. This has a

distribution

P (S|π) =

K∏

k=1

πSk

k (13)

and we can place a conjugate Dirichlet distribution over the
parameters {πk}.

3.1 Allowable Distributions

We now characterize the class of models which can be
solved by VIBES using the factorized variational distribu-
tion given by (5). This will also be the class of distributions
which will be considered in the context of structuredQ dis-
tributions in Section 5.

First of all we note that, since a Gaussian variable can have
a Gaussian parent for its mean, we can extend this hierar-
chically to any number of levels to give a sub-graph which
is a DAG of Gaussian nodes of arbitrary topology. Each
Gaussian can have Gamma (or Wishart) prior over its pre-
cision.

Next, we observe that discrete variables S = {Sk} can be
used to construct ‘pick’ functions which choose a particu-
lar parent node Ŷ from amongst several conjugate parents
{Yk}, so that Ŷ = Yk when sk = 1, which can be written
Ŷ =

∏K
k=1 Y

Sk

k . Under any non-linear function h(·) we
have h(Y ) =

∏K
k=1 h(Yk)

Sk . Furthermore the expectation
under S takes the form 〈h(Y )〉S =

∑
k〈Sk〉h(Yk). Vari-

ational inference will therefore be tractable for this model
provided it is tractable for each of the parents Yk individu-
ally.

Thus we can handle the following very general architec-
ture: an arbitrary DAG of multi-nomial discrete variables
(each having Dirichlet priors) together with an arbitrary
DAG of linear Gaussian nodes (each having Wishart priors)
and with arbitrary pick links from the discrete nodes to the
Gaussian nodes. This graph represents a generalization of
the Gaussian mixture model, and includes as special cases
the hidden Markov model, Kalman filters, factor analysers
and principal component analysers, as well as mixtures and
hierarchical mixtures of all of these.

There are other classes of models which are tractable under
this scheme, for example Poisson variables having Gamma
priors, although these may be of more limited interest.

We can further extend the class of tractable models by con-
sidering nodes whose natural parameters are formed from
deterministic functions of the states of several parents. This
is a key property of the VIBES approach which, as with
BUGS, greatly extends its applicability. Suppose we have
some conditional distribution P (X|Y, . . .) and we want to
make Y some deterministic function of the states of some
other nodes so that Y = ψ(Z1, . . . , ZM ). In effect we
have a pseudo-parent which is a deterministic function of
other nodes, and indeed is represented explicitly through
additional deterministic nodes in the graphical interface
both in WinBUGS and in VIBES. This will be tractable
under VIBES provided the expectation of uψ(ψ) can be
expressed in terms of the expectations of the correspond-
ing functions uj(Zj) of the parents. The pick functions
discussed earlier are a special case of these deterministic
functions.

Thus for a Gaussian node the mean can be formed from
products and sums of the states of other Gaussian nodes
provided the function is linear with respect to each of the
nodes individually. Similarly, the precision of the Gaussian
can comprise the products (but not sums) of any number of
Gamma distributed variables.

We also wish to be able to evaluate the lower bound (3),
both to confirm the correctness of the variational updates
(since the value of the bound should never decrease), as
well as to monitor convergence and set termination criteria.
This can be done efficiently, largely using quantities which
have already been calculated during the variational updates.

4 VIBES: A Software Implementation

Creation of a model in VIBES simply involves drawing the
graph (using operations similar to those in a simple draw-
ing package) and then assigning properties to each node
such as the functional form for the distribution, a list of
which other variables it is conditioned on, and the location
of the corresponding data file if the node is observed. The
menu of distributions available to the user is dynamically
adjusted at each stage to ensure that only valid conjugate



models can be constructed.

As in WinBUGS we have adopted the convention of mak-
ing logical (deterministic) nodes explicit in the graphical
representation as this greatly simplifies the specification
and interpretation of the model. We also use the ‘plate’
notation of a box surrounding one or more nodes to de-
note that those nodes are replicated some number of times
as specified by the parameter appearing in the bottom right
hand corner of the box.

Once the model is completed (and the file or files contain-
ing the observed variables are specified) it is then ‘com-
piled’, which involves allocation of memory for the vari-
ables and initializing the distributions Qi (which is done
using simple heuristics but which can also be over-ridden
by the user). If desired, monitoring of the lower bound (3)
can be switched on (at the expense of slightly increased
computation) and this can also be used to set a termination
criterion. Alternatively the variational optimization can be
run for a fixed number of iterations.

We illustrate VIBES for factorized Q distributions using a
Bayesian model for independent component analysis [10]
shown in Figure 2. Independent component analysis relies

Figure 2: VIBES screen shot for a Bayesian model for inde-
pendent component analysis. Square boxes correspond to
‘plates’ in the usual graphical models notation, and indicate
multiple replicated copies of the nodes therein. The dashed
red links indicates links that will be removed in defining
the Q distribution, which will therefore be fully factorized.

on the use of non-Gaussian latent variable distributions,
which are defined in this model through a Gaussian mix-
ture representation. The node x has a heavy outline indi-
cating that it represents an observed variable, and the node
labelled s · W represents a deterministic function (inner
product) of the variables s and W . In this model τ , β and
α have Gamma distributions, λ is discrete, π is Dirichlet,
while x, W , and s are Gaussians.

5 Structured Variational Distributions

Although the fully factorized variational approximation has
been widely used with great success in many applications,
it nevertheless represents a somewhat restrictive approxi-
mation. It cannot, for instance, capture the posterior cor-
relations between variables. We therefore wish to extend
VIBES to allow for a much broader class of variational dis-
tributions, which will include the fully factorized distribu-
tion as a special case, but which will in general give closer
approximations to the true posterior distribution. However,
we must ensure that this richer family of distributions re-
mains computationally tractable.

We are particularly interested in Q distributions corre-
sponding to sub-graphs of the original graphical model,
since we anticipate that these will capture many of the im-
portant dependencies in the P distribution [6, 4]. Our strat-
egy is therefore to take the original graphical model and to
delete links as required in order to achieve tractability.

We will see shortly that a particular graphical structure
will in general be tractable provided either (1) it comprises
only discrete nodes in which the conditional distribution
of a node given its parents is given by a pick function
over the states of the parents, or (2) it comprises Gaussian
nodes each of whose mean is a multi-linear functions of the
node’s parents. In fact a directed graph of mixed discrete
and Gaussian nodes is also tractable provided there are no
links representing a Gaussian parent with a discrete child
[11], however, we do not consider this more complex case
in this paper.

We shall therefore define the Q distribution by removing
any links from the original graph other than those which
connect two discrete nodes or those which connect two
Gaussian nodes in a linear-Gaussian relationship. Note that
when a link is removed it is replaced by a corresponding
variational parameter. For instance, consider a node rep-
resents a Gaussian variable x ∼ N (µ, τ) with two parent
nodes representing a Gaussian distribution over the mean
µ and Gamma distribution over the precision τ . We delete
the link from τ to x and in so doing the factor in the Q cor-
responding to the variable x takes the form N (µ, λ) where
λ is a variational parameter whose value is to be optimized.
The link from µ to x is left intact.

Thus in general the Q distribution is described by some
number of connected sub-graphs of discrete nodes, along
with some number of connected sub-graphs of linear-
Gaussian nodes, together with isolated nodes representing
Wishart, Dirichlet and other distributions. The user may
choose to delete further links within the connected sub-
graphs in order to improve the speed of inference, at the
expense of some further restriction on the form of the Q
distribution. It would be straightforward to assist the user
in this process by providing guidance on the expected com-



putational time of each update based on clique sizes.

5.1 Variational Inference

We now derive the generalized variational update equations
corresponding to this more complexQ distribution. First of
all we note that the distribution is represented by a product
of factors, one for each disconnected component in the Q
distribution graph. We will denote the disjoint groups of
nodes associated with these factors by Xα and the corre-
sponding factors in the Q distribution by Qα(Xα) so that

Q(X) =
∏

α

Qα(Xα). (14)

For isolated nodes, the analysis of Section 2.1 holds and the
corresponding factor in the Q distribution can be updated
using (7). This requires of course that the appropriate ex-
pectations with respect to other factors in theQ distribution
can be evaluated.

Next consider the update of the factor Qα corresponding
to a connected sub-graph. We would like to perform ex-
act inference over this sub-graph, and this can most con-
veniently be handled by exploiting the junction tree for-
malism [12, 6]. We therefore take this directed subgraph
and moralize it by adding links connecting all pairs of par-
ents for every node, and then dropping the arrows on the
links to obtain an undirected graph. The cluster potentials
have functional forms governed by the corresponding con-
ditional distributions in the original directed graph, with ap-
propriate variational parameters corresponding to deleted
links. We next triangulate the graph and then find a junc-
tion tree. This represents a tree-structured cluster graph
satisfying the running intersection property.

From (3) and (14) we can dissect out the terms which de-
pend on Qα(Xα) to give

L =
∑

Xα

Qα(Xα)
∑

{Xβ 6=α}

∏

β 6=α

Qβ(Xβ)

·



lnP (X) −

∑

β

lnQβ(Xβ)





=
∑

α

Qα {〈lnP 〉β 6=α − lnQα} + const. (15)

where the constant is independent of the variables Xα.

We now write Xα = ∪γCαγ where Cαγ are (in general
non-disjoint) clusters of variables. The corresponding fac-
tor in the Q distribution is written as a normalized product
of cluster potentials

Qα(Xα) =
1

Zα

∏

γ

Ψαγ(Cαγ) (16)

where Zα is the normalization constant. We now substi-
tute (16) into (15) and then pull out the contribution from

potential Ψαγ to give

L =
1

Zα

∑

Cαγ

Ψαγ

∑

Xα\Cαγ

∏

ρ6=γ

Ψαρ {〈lnP (X)〉β 6=α

−
∑

ρ

lnΨαρ + lnZα

}
+ const. (17)

We can enforce the normalization constraint onQα(Xα) by
means of a Lagrange multiplier λ, so we seek to maximize

L̃ = L + λ

(
1

Zα

∑

Xα

∏

γ

Ψαγ(Cαγ) − 1

)
. (18)

In doing so we also note that the distribution P (X) is com-
posed of a product of conditional distributions over the
nodes of the original directed graph

P (W ) =
∏

l

P (Wi|pai). (19)

where W = (X,V ) as before. We therefore obtain the
following stationarity condition

0 =
∑

Xα\Cαγ

∏

ρ6=γ

Ψαρ

{
∑

i

〈lnP (Wi|pai)〉β 6=α

−
∑

ρ

ln Ψαρ + lnZα + 1

}
. (20)

We now solve for Ψαγ which appears as one of the terms
in the sum over ρ. This gives our final results

ln Ψ?
αγ =

〈
∑

i(γ)

〈lnP (Wi|pai)〉β 6=α −
∑

ρα(γ)

ln Ψαρ

〉

(αγ)

+const. (21)

where i(γ) denotes the set of all nodes l from the origi-
nal graph whose conditional distributions P (Wi|pai) have
variables which intersect the cluster Cαγ , and similarly
ρα(γ) denotes the set of clusters Cαρ which have non-zero
intersection with the cluster Cαγ . Thus again we arrive at
a local update scheme, albeit a little more complex than in
the fully factorized case.

The expectation in (21) is taken with respect to the condi-
tional distribution defined by

Q(Cαγ |{Xβ 6=α}, Xα \ Cαγ) =

∏
ρ6=γ Ψαρ∑

Xα\Cαρ

∏
ρ6=γ Ψαρ

.

(22)

Note that in order to implement these variational update
equations we need to be able to compute appropriate ex-
pectations and this requires that the cluster potentials be in-
terpretable as (un-normalized) marginals. We can achieve



this using the standard DistributeEvidence procedure. For
this purpose it is convenient to maintain the separator sets
of the junction tree as distinct cluster potentials, and is the
essential motivation for using the junction tree representa-
tion for the connected sub-graphs. Note that only the clus-
ter potentials, and not the separator potentials, need to be
updated using (21). After each of the clusters has been up-
dated once, using an appropriate ordering [6], we will have
performed exact inference over the connected sub-graph.

Note that, although inference is performed exactly over
the sub-graph, there are situations in which the proce-
dure described so far does not necessarily extract the full
marginals. Consider the graph shown in Figure 3. In up-

X
1

X
5

Y

Figure 3: Example showing the need for additional moral-
ization in order to find optimal variational marginals. The
Q distribution for this example is defined by the subgraph
comprising the Markov chain at the top, with the dashed
links removed.

dating the factorQ(Y ) we need to compute the expectation
of P (Y |X1, X5) with respect to the variational posterior
distribution Q(X1, X5). As it stands, this will be repre-
sented by a product of marginals Q(X1)Q(X5). We can
extend the formalism to capture correctly the correlation
between X1 and X5 by adding a link connecting these two
nodes thereby ensuring that they are in the same cluster of
the junction tree. This can be achieved in general by mor-
alizing nodes such as Y before removing the links.

6 Illustration: Bayesian HMM

We have extended the original VIBES software to imple-
ment the framework described in the Section 5. Currently
we have implemented the case in which any connected sub-
graph comprises purely discrete nodes. The extension to
linear-Gaussian subgraphs, while more complex due to the
presence of multi-linear interactions, is analogous to the
discrete case. Our implementation is also currently limited
to tree-structured sub-graphs, so that the moralization and
triangulation steps are not required, although again the re-
quired extensions are straightforward.

We illustrate the extended VIBES using a Bayesian hid-
den Markov model in which we put prior distributions over
the probabilities for the initial state of the hidden variables
as well as over the transition and emission matrices. This
model was described, and also solved variationally, in [13].

In order to highlight the comparison against the structured
framework we have allowed all of the variables to be unob-
served. The screen shot from VIBES for the directed graph
defining the P (X) distribution is shown in Figure 4. As

Figure 4: VIBES screen shot showing the graphical model
defining the P (X) distribution for a Bayesian hidden
Markov model. Links shown in dashed red are those that
will be removed in defining the structured Q distribution,
while those shown in black will remain.

a point of comparison we first solve this model using the
fully factorized variational approximation.

Next we apply a structured variational approximation as
shown in Figure 5. Here the links along the hidden Markov
chain are retained, leading to a more flexible class ofQ dis-
tributions. The converged value of the lower bound L for

Figure 5: VIBES screen shot of the structured variational
distribution, showing the cluster graph (junction tree) .

the structured distribution of Figure 5 is 3.873 compared to
3.631 for the fully factorized distribution of Figure ??.

7 Discussion

Our early experiences with VIBES have shown that it dra-
matically simplifies the construction and testing of new
variational models, and readily allows a range of alterna-
tive models to be evaluated on a given problem. We aim
to make VIBES freely available to the research community
later this year.



Note that this does not encompass all possible tractable
substructures. For instance, a Gaussian node having a
Gaussian prior for its mean and a Wishart prior for its
inverse covariance (precision) matrix is a tractable sub-
structure described by the Normal-Wishart distribution.
Also, we could consider Q distributions represented by a
tractable graph which is not a sub-graph of the original P
distribution graph. We do not consider such possibilities in
the present paper.

Finally, there are many possible extensions to the basic
VIBES we have described here. For example, in order to
broaden the range of models which can be tackled we can
combine variational with other methods techniques such as
Gibbs sampling or optimization (empirical Bayes) to allow
for non-conjugate hyper-priors, for instance.
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