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Abstract

We consider the problem of enhancing the
resolution of video through the addition of
perceptually plausible high frequency infor-
mation. Our approach is based on a learned
data set of image patches capturing the rela-
tionship between the middle and high spa-
tial frequency bands of natural images. By
introducing an appropriate prior distribution
over such patches we can ensure consis-
tency of static image regions across suc-
cessive frames of the video, and also take
account of object motion. A key con-
cept is the use of the previously enhanced
frame to provide part of the training set for
super-resolution enhancement of the current
frame. Our results show that a marked im-
provement in video quality can be achieved
at reasonable computational cost.

1 Introduction

The term super-resolution has been applied to a wide
variety of problems ranging from blur removal by de-
convolution in single images [5] through to the cre-
ation of a single high resolution image from multiple
low resolution images having sub-pixel relative dis-
placements [3, 7]. In all cases the goal is to increase
the resolution (number of pixels) in the image while
at the same time adding appropriate high frequency
information.

Here we consider the task of spatial resolution en-
hancement in video sequences. Since the typical
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resolution of display devices is often much higher
than that of video, particularly in the case of video
streamed over the internet, there is considerable in-
terest in being able to exploit the high resolution of
modern display devices when rendering video.

Consider first the problem of resolution enhancement
of a single still image. When an image of some given
resolution is to be displayed on a device of higher
resolution, it is a straightforward problem to render
the pixels of the high resolution display through some
form of interpolation, for example using cubic splines.
Unfortunately, this adds no additional information in
the high frequency ranges which the device is capable
of displaying.

Some progress can be achieved by convolving the im-
age with a filter designed to enhance the amplitude
of the frequency spectrum in the higher frequency
ranges, with the aim of sharpening up existing image
details. Unfortunately, this also amplifies any noise
in the image, and is capable of producing only minor
improvements in image quality.

The addition of new high frequency information is
fundamentally an ill-posed problem since there are
many high resolution images which, under any given
smoothing and sub-sampling process, will give rise
to the same low resolution image. In the absence of
additional information, the best we can hope to do is
to find a high resolution image which is perceptually
plausible so as to give the viewer the impression of
viewing an image which is of higher quality than the
original. We wish to apply a similar goal to the prob-
lem of video resolution enhancement.

Our approach builds on that used by [2] for the case
of static images. It involves the assembly of a large
database of patch pairs, in which each pair comprises



a rectangular patch from the high frequency compo-
nent of a high resolution image and a corresponding
patch from a smoothed and down-sampled version of
that image. This dictionary can then be used, via a
search procedure, to augment a new low resolution
image with appropriate high frequency information.
The training images used to construct the dictionary
can be taken from an ensemble of images chosen, so
far as possible, to be representative of the kind of im-
ages to which the algorithm might be applied.

In Section 2 we discuss the generalization of this ap-
proach to the problem of video super-resolution. We
first demonstrate that a simple frame-by-frame appli-
cation of the static image approach leads to unaccept-
able temporal artifacts. In particular, regions of the
video corresponding to static parts of the scene ac-
quire distracting scintillations. These are addressed
in Section 3 through the introduction of a prior en-
couraging temporal continuity in the inferred high fre-
quency information.

For parts of the scene involving moving objects there
are additional artifacts, again taking the form of an-
noying scintillations. These can be mitigated by ap-
plying a motion based prior, as discussed in Section 4.
A key concept here is that, if a given frame has been
successfully super-resolved, then it can provide a tran-
sient source of training data for the solution of the in-
ference problem in the subsequent frame. Our results
demonstrate a significant improvement in the quality
of the video while introducing relatively few artifacts.

2 Independent Reconstruction of Successive
Frames

First consider the super-resolution enhancement of
each frame of a video sequence independently, fol-
lowing the approach of Freeman et al. [2] for static
images. It consists of a training phase, in which a set
of independent training images is used to construct a
dictionary of exemplars expressing the local relation-
ship between the medium and high frequency bands
of typical images, and a subsequent inference phase
in which this dictionary is used to add plausible high
frequency information to a new image containing only
low and medium frequencies.

2.1 Training

The starting point is a set of training images of high
resolution. Using bandpass filtering (discussed be-
low) we can decompose each image into the sum of
three images containing respectively high, medium
and low spatial frequencies. A fundamental assump-
tion is that the high frequency content of an image is
independent of the low frequency content, given the
medium frequency component. For each training im-
age, therefore, a large number of rectangular patches
are extracted from the medium frequency component
together with the corresponding patches from the high
frequency component. To assist with generalization
the patch pairs are normalized using a local mea-
sure of the energy in the image. Details of filter-
ing and patch construction are given in the appendix
Each medium frequency patch is a vector of length
3 × 7 × 7 = 147 (allowing for the three colour chan-
nels). In order to reduce this dimensionality we next
perform principal component analysis on the set of
medium frequency patches to reduce their dimension-
ality to 20. This considerably speeds up the nearest
neighbour computations needed to match test patches
into the dictionary.

The dictionary of medium/high resolution patch pairs
is then compiled into a tree, to facilitate fast search,
as Freeman et al do. We have employed a variant of
their technique using a kd-tree in a coordinate system
defined by PCA. We first select the component i of the
20-dimensional space along which the set of medium
frequency patches has greatest variance, and split the
data set in two sets using a cut at the median value m

of that component. This cut is represented by a node
in the graph at which we store the values of i and m.
The partitioning is repeated on each of the subsets re-
cursively until a tree of some given depth is created.
Each leaf node of the tree represents the correspond-
ing sub-set of medium frequency patches (along with
their high frequency counterparts). For the experi-
ments reported in this paper the training data com-
prises N = 200, 000 patches taken from several im-
ages. We use a tree of depth 10, which has 1,024 leaf
nodes each therefore representing roughly 200 patch
pairs.

During the construction of the tree we also build up an
index into the training images, and the location within
those images, from which each patch pair arose, as



well as the corresponding inverse index. We shall de-
note the medium frequency patches from the training
set by the vectors xk where k = 1, . . . , M and M is
the total number of patch pairs in the dictionary. The
corresponding high frequency patches will be denoted
yk. Also zk = (xk,yk) will denote the kth patch pair,
and the complete training dictionary will be denoted
D0 ≡ {zk}.

2.2 Inference

Inference proceeds first by extracting the medium fre-
quency component image from the test image. Then,
for each patch from this intermediate frequency im-
age, the closest matching medium frequency patch
from the training dictionary is found; finally the cor-
responding high frequency patch from the dictionary
is used to add high frequency details to the original
test patch. The criterion for closest match is based on
L2 norm, and modified by a prior encouraging consis-
tency of neighbouring patches.

Consider a patch x from the medium frequency com-
ponent of the test image. The cost function which de-
termines the optimally matching patch pair from the
training dictionary is given by

Lk(x) = ‖x − xk‖
2. (1)

Although this cost function finds plausible high fre-
quency patches at each location in the test image, it
does not ensure spatial consistency between adjacent
patches. To achieve this we consider high frequency
(5× 5) patches on a square, 4-pixel grid , giving over-
lap regions of width 1 pixel. Then an added penalty
term measures the mismatch of y to its neighbours in
the synthesized high frequency image, giving a total
cost function:

E
(α)
k (x) = Lk + αV(yk, {yk′ : k′ ∈ Nx}) (2)

where Nx denotes the set of patch labels correspond-
ing to patches which are neighbours of patch x in the
synthesized high frequency image, and V(·, ·) mea-
sures the sum-squared L2-norm difference of (R,G,B)
values in the overlap regions. The parameter α de-
termines the relative importance of the spatial consis-
tency term compared to the medium frequency match-
ing term and is set using the prescription of [2] which
gives α = 0.6. The total cost function is the sum of

terms of the form (2) for every patch in the test im-
age. The dictionary patch index k is selected as the
one minimizing Ek.

In principle the optimization of (2) is complex due to
the spatial consistency term. This is resolved in prac-
tice by an approximate procedure, in which the high
frequency super-resolution image is built up by raster
scanning the test image, and choosing, at each step, a
dictionary patch based only on those high frequency
patches that have already been filled in. (Where high
frequency patches overlap, the corresponding pixels
of the super-resolution high frequency image are de-
termined by averaging.)

In detail the inference stage comprises the following
steps

• Take the test image and decompose into the sum
of low, medium and high frequency images (as
discussed above).

• Scan over the medium frequency image in a
raster (using a grid spacing of 4 × 4 pixels) and
at each step find the 100 patch pairs from the
training set dictionary which (to a good approx-
imation) have the smallers values (1). This is
achieved using a best bin first approach discussed
below.

• From this sub-dictionary of 100 candidate patch
pairs, select the best matching pair by minimiza-
tion of (2).

• Build up a super-resolution high frequency im-
age by including the high frequency patch from
the best matching patch pair. Where high fre-
quency patches overlap, use the average pixel
values.

• Once the high frequency image is completed add
it to the low and medium components of the test
image to obtain the desired super-resolution im-
age.

2.3 Efficient search

For this algorithm to be practical it is clearly impor-
tant that the search over the dictionary be performed
efficiently. Freeman et al. [2] use a space slicing
algorithm due to [4]. We adopt a recent approach,
known to be highly efficient in other domains of appli-
cation, based on the kd-tree, whose construction was



Figure 1: Examples of two frames from a test video sequence showing the original frames (left), the low plus medium frequency
components which form the input to the super-resolution algorithm (middle), the output of the super-resolution algorithm (right).

described in Section 2.1, together with the technique
of “best bin first” [1]. This is used to find the 100
candidate patches efficiently. For each new test patch,
the tree is first traversed to find the lead node in which
the test patch belongs. During the traversal a prior-
ity queue is maintained which specifies, at each deci-
sion branch, the distance of the test patch from the cut
boundary associated with the alternative branch. The
test point is then compared exhaustively to all of the
training set patches associated with that leaf node to
find the current 100 best matches. Then the next clos-
est leaf node region is determined using the priority
queue and the corresponding leaf node set examined
exhaustively, revising the list of 100 best candidates in
the process. This repeats until the search terminates
(when the worst of the 100 best candidates is closer
than the nearest remaining leaf node region) or when
some maximum number of leaf nodes have been ex-
amined (we choose this maximum number to be 100).

2.4 Flicker artifacts

As a starting point we take a video sequence and apply
the above algorithm to each frame in the sequence in-
dependently. As can be seen from Figure 1 the super-
resolution algorithm is able to add plausible high fre-
quency details to generate images of improved per-
ceptual quality. However, viewing the entire video

sequence, it is apparent that there are serious percep-
tual artifacts, arising from the lack of temporal con-
sistency in the algorithm. Even slight differences be-
tween successive frames can cause different high fre-
quency patches to be chosen, and although the cor-
responding medium frequency patches may be rela-
tively consistent, the high frequency patches might not
be. The result is shimmering, or scintillation, of the
sequence1.

2.5 Measuring temporal flicker

Since the goal of our framework is the enhancement
of the perceptual quality of video, the ultimate mea-
sure of performance is necessarily a subjective one.
Its objective quantification would therefore involve
extensive, and hence time consuming, user studies.
For research purposes it is convenient to have a sim-
ple quantitative measure of performance that we can
use to compare and optimize our algorithms. We
use high resolution test images, available for evalu-
ation only but hidden to the reconstruction algorithm,
as ground truth against which to compare the perfor-
mance of different super-resolution algorithms. Our
video test-sequences are generated from these orig-

1It is difficult entirely to convey such results in a written pa-
per. Therefore sample video sequences illustrating the results
presented here accompany this paper, and can also viewed at
http://research.microsoft.com/∼cmbishop/super-res.htm.



inal high resolution, uncompressed images, through
smoothing and down-sampling.2 However, we are
not interested simply in the difference of our super-
resolution video from ground truth directly, but in how
well we manage to suppress the scintillation artifacts.
To measure this we apply a high pass filter (accept-
ing only frequencies greater than one quarter of frame
rate) to the difference of the super-resolution video se-
quence and the ground truth, and is achieved using a
windowed Fourier transform applied to the sum of the
RGB channels. This gives a measure of the flicker in
the super-resolution video, that can then be averaged
either over pixels, to give a temporal trace of the aver-
age flicker, or over frames, to give an image showing
the spatial distribution of average flicker. Note that
is is possible for the super-resolution video to be per-
ceptually convincing and yet differ significantly from
the original high resolution source. Nevertheless in
practice we have found this measure of performance
to be useful in comparing algorithms and optimizing
parameters.

In order to emphasize the distinction between static
and moving parts of the video sequence we consider
the evaluation of the flicker measure over two re-
gions denoted by the red and green polygons in Fig-
ure 2. In Figure 3 we show the flicker traces corre-

Figure 2: We evaluate the flicker measure over two regions of
the video, corresponding to a region which shows static back-
ground throughout the sequence (shown in red) and one which
contains substantial movement due to the motion of the head
(shown in green).

sponding to these regions. The red rectangle corre-

2We took care to capture video from a high quality camera and
framestore that eschews compression at every stage.
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Figure 3: Traces of the flicker measure averaged over pixels in
the red region of Figure 2 (red curve) and also averaged over those
in the green region (shown by the green curve).

sponds to a region of the image around the edge of
the whiteboard which is almost static during the video
sequence, while the green rectangle corresponds to a
region near the edge of the face which changes sub-
stantially during the sequence due to motion of the
head.

Instead of averaging the error measure over pixels
we can average over frames, to give an image of the
average flicker. This is shown in Figure 4. Notice

Figure 4: Image of the average absolute error between the
super-resolved video and the ground truth video, averaged over
all frames.

that there are significant errors both in regions of the
videos sequence which are relatively static, such as
the area outlined by the red rectangle in the vicinity of



the whiteboard, and in regions which have moving ob-
jects such as the area indicated by the green rectangle
around the edge of the face. We must again empha-
size, however, that the goal is to produce a perceptu-
ally plausible super-resolved video and not, per se, to
reconstruct the original ground truth.

We conclude that simple application of the static im-
age super-resolution algorithm to each frame of a
video independently gives poor results, since this does
not make any attempt to enforce temporal consistency
between successive frames.

3 Stasis Prior

The obvious problem with the approach described so
far is that it makes no attempt to ensure consistency
in the high frequency information added to adjacent
frames of the video sequence. A simple way to ad-
dress this problem is to modify the cost function used
to select patches so as to favour the re-use, at each spa-
tial location, of the high frequency patch used at that
location in the previous frame. The extent to which
this patch re-use is favoured is governed by a new pa-
rameter β, so that the cost function becomes

E
(α,β)
k (t) = ‖x(t) − xk‖

2

+αV(yk, {yk′ : k′ ∈ N (t)
x

})

−βI(y = yk(t − 1)) (3)

where I(·) is the binary indicator function, and we
have explicitly denoted the frame label with the dis-
crete time variable t.

In order to set a suitable value for β it is useful to
find a natural scale for this parameter. We do this by
evaluating β0 given by

β0 =

〈

Lk(x
(t−1)) − min

x∈D0

Lk(x
(t))

〉

k,t

(4)

where 〈·〉k,t denotes an average over all of the patch
locations and over all frames of the sequence. By em-
pirical optimization we have found that setting β = β0

gives good results.

Visually we find a substantial reduction in the level
of temporal artifacts in relatively static regions of the
video, but only limited improvement, if any, in re-
gions where there is motion. This is reflected in the
flicker traces obtained using this modified cost func-
tion shown in Figure 5. Compared to Figure 3 we
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Figure 5: Flicker traces for super-resolution video obtained us-
ing the cost function (3), again with the solid red curve taken from
a pixel in the red rectangle of Figure 1 and the solid green curve
taken from a pixel in the green rectangle in Figure 1. For compar-
ison, corresponding curves from figure 3 are shown dotted here.

see that there is a substantial improvement in the red
curve (static region) and also noticeable improvement
in the green curve (motion region). This can also be
seen in the temporally averaged error images shown
in Figure 6 which should be compared with those in
Figure 4.

Figure 6: Average flicker image for super-resolved video ob-
tained using the cost function (3) showing the significantly re-
duced level of artifacts in static regions of the video.

In order to address the problem of artifacts in regions
of the video scene where there are moving objects we
need a more sophisticated prior, as discussed in the
next section.



4 Motion Prior

Our goal is to achieve temporal coherence between
adjacent frames of the video sequence even when
there are moving objects. This is difficult to achieve if
objects are moving rapidly, but in such cases the per-
ceptual impact of lack of coherence is relatively small.

The major problem arises with slowly moving ob-
jects, and we seek to address this using a prior which
encourages the added high frequency components to
move coherently with the object. It is not sufficient,
however, simply to use patches preferentially which
were used at nearby locations in the previous frame,
since the patches are located on a rather course grid
for reasons of computational efficiency (4 pixel spac-
ing in the experiments reported in this paper).

Instead when we enhance a particular frame, we shall
consider the previous frame, along with its super-
resolved counterpart, to form a transient training set
from which additional patch pairs can be extracted to
augment the fixed training dictionary D0. Specifically,
for each location in the new frame, we extract patch
pairs of medium and high frequency components from
the previous frame at locations within some rectangu-
lar window centred on that location. This gives rise
to a temporary dictionary D

(t−1)
k . For the results re-

ported here we consider a window of radius r = 2.
Note that the patch from the same location k is not in-
cluded in this transient dictionary since the stasis prior
is already handled using the technique of the previous
section. Our approach has some similarities to that of
[6].

We now select the optimal patch from the combined
dictionary D0 ∪ D

(t−1)
k by minimization of the error

function

E
(α,β,γ)
k (t) = ‖x(t) − xk‖

2

+αV(yk, {yk′ : k′ ∈ N (t)
x

})

−βI(y = y
(t−1)
k )

−γI(y ∈ D
(t−1)
k ). (5)

It should be noted that patches in the transient dictio-
nary D

(t−1)
k will have mid frequency patches that will

tend to be much more highly correlated with the mid
frequency test patch in the new frame compared with
those in the dictionary D0 (since the former are taken
from the previous frame while the latter are taken

from an independent set of training images). This
needs to be reflected in the value of γ. It should be
noted that setting γ = −∞ causes the new synthetic
patches never to be selected, and so in this case the
algorithm reverts to the one presented in the previous
section. Setting γ = 0, however, still leaves a model
which can handle motion effects since the additional
synthetic patches are included in the complete set of
candidate patches and so will sometimes be selected.
Some informal empirical optimization leads to a prac-
tical value of γ = − 1

2β0.

The resulting super-resolved video shows a consider-
able reduction in motion-induced high frequency arti-
facts compared to that obtained using the stasis prior
alone. This is borne out by the error curves shown in
Figure 7. Compared to Figure 5 we see that a mod-
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Figure 7: Flicker traces for super-resolution video obtained us-
ing the cost function (5), again with the red curve taken from a
pixel in the red rectangle of Figure 1 and the green curve taken
from a pixel in the green rectangle. For comparison, correspond-
ing curves from figure 5 are shown dotted here.

est reduction in flicker over the moving region (green
curve) is obtained, and this is in fact greatest at times
of slow motion (eg frames 25–30 in the figure). This
improvement is at the expense of a modest increase of
flicker in static areas (red curve).

5 Discussion

We have shown that techniques developed for super-
resolution of static images can be successfully ex-
tended to the video domain when additional priors are
introduced to take account of temporal consistency



between successive frames. The prior for stasis is
particularly powerful here, with a modest further im-
provement coming from a prior that favours slow mo-
tion.

A different approach to temporal consistency, which
we have also briefly explored, involves priors which
favour patches which are proximate, not in the previ-
ous frame, but in the training image. This can be im-
plemented efficiently using the index compiled during
the construction of the kd-tree. Our results indicate
that this approach is less powerful than the one de-
scribed in detail in this paper.

A related task, to which our approach is also appli-
cable, is that of video compression. In this case the
whole video would be transmitted at some lower res-
olution than the original, and the dictionary of patch
pairs would be taken from one or more representative
high resolution frames of the video. Since the train-
ing data is taken from the video itself, the quality of
the super-resolution enhancement in this case can be
particularly good.

Statistics of patch re-use from this approach show sub-
stantial re-use of patches due to the stasis prior, and
this bodes well for the compression application. We
also note that setting α = 0 has little discernable ef-
fect on the quality of the results in this case, so some
computational speed-up can be achieved by omitting
this term from the error function and this would be
important for any application to real-time decompres-
sion.
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Appendix: Constructing training patches

In summary, the training algorithm requires the fol-
lowing steps for patch construction. For each image
in the training set (treating the R, G and B channels
independently):

1. Perform a local smoothing of the image to re-
move the high frequency information, leaving an
intermediate image which we shall regard as a
sum of low and medium frequencies. This is
achieved by convolution with the kernel







0.0 0.25 0.0
0.25 −1.0 0.25
0.0 0.25 0.0







2. Subtract the smoothed image from the original
image to leave a high frequency image.

3. Take the intermediate image and smooth by con-
volution with a Gaussian kernel to give a low fre-
quency image.

4. Subtract the low frequency image from the in-
termediate image to leave a medium frequency
image. Note that the low, medium and high fre-
quency images all have the same spatial resolu-
tion which is the same as that of the starting im-
age.

5. Take the square of the pixel intensities in the
medium frequency image, smooth and then take
the square root (adding ε = 0.01 to avoid subse-
quent division by zero). Divide both the medium
and high frequency images by this energy image
to achieve local intensity normalization.

6. Extract all possible patches of size 7 × 7 pixels
from the medium frequency image along with the
corresponding (concentric) patches of size 5 × 5
from the high frequency image.


