
Does Distributed Development Affect Software Quality?
An Empirical Case Study of Windows Vista

Christian Bird1, Nachiappan Nagappan2, Premkumar Devanbu1, Harald Gall3, Brendan Murphy2

1University of California, Davis, USA
2Microsoft Research

3University of Zurich, Switzerland
{cabird,ptdevanbu}@ucdavis.edu {nachin,bmurphy}@microsoft.com gall@ifi.uzh.ch

Abstract

It is widely believed that distributed software develop-
ment is riskier and more challenging than collocated de-
velopment. Prior literature on distributed development in
software engineering and other fields discuss various chal-
lenges, including cultural barriers, expertise transfer dif-
ficulties, and communication and coordination overhead.
We evaluate this conventional belief by examining the over-
all development of Windows Vista and comparing the post-
release failures of components that were developed in a dis-
tributed fashion with those that were developed by collo-
cated teams. We found a negligible difference in failures.
This difference becomes even less significant when control-
ling for the number of developers working on a binary.
We also examine component characteristics such as code
churn, complexity, dependency information, and test code
coverage and find very little difference between distributed
and collocated components. Further, we examine the soft-
ware process and phenomena that occurred during the Vista
development cycle and present ways in which the develop-
ment process utilized may be insensitive to geography by
mitigating the difficulties introduced in prior work in this
area.

1. Introduction

Globally distributed software development is an increas-
ingly common strategic response to issues such as skill
set availability, acquisitions, government restrictions, in-
creased code size, cost and complexity, and other resource
constraints [5, 10]. In this paper, we examine develop-
ment that is globally distributed, but completely within Mi-
crosoft. This style of global development within a single
company is to be contrasted with outsourcing which in-
volves multiple companies. It is widely believed that dis-
tributed collaboration imposes many challenges not inher-

ent in collocated teams such as delayed feedback, restricted
communication, less shared project awareness, difficulty of
synchronous communication, inconsistent development and
build environments, lack of trust and confidence between
sites, etc. [22]. While there are studies that have examined
the delay associated with distributed development and the
direct causes for them [12], there is a dearth of empirical
studies that focus on the effect of distributed development
on software quality in terms of post-release failures.

In this paper, we use historical development data from
the implementation of Windows Vista along with post-
release failure information to empirically evaluate the hy-
pothesis that globally distributed software development
leads to more failures. We focus on post-release failures
at the level of individual executables and libraries (which
we refer to as binaries) shipped as part of the operating sys-
tem and use the IEEE definition of a failure as “the inability
of a system of component to perform its required functions
within specified performance requirements” [16].

Using geographical and commit data for the developers
that worked on Vista, we divide the binaries produced into
those developed by distributed and collocated teams and ex-
amine the distribution of post-release failures in both popu-
lations. Binaries are classified as developed in a distributed
manner if at least 25% of the commits came from locations
other than where binary’s owner resides. We find that there
is a small increase in the number of failures of binaries writ-
ten by distributed teams (hereafter referred to as distributed
binaries) over those written by collocated teams (collocated
binaries). However, when controlling for team size, the dif-
ference becomes negligible. In order to see if only smaller,
less complex, or less critical binaries are chosen for dis-
tributed development (which could explain why distributed
binaries have approximately the same number of failures),
we examined many properties, but found no difference be-
tween distributed and collocated binaries. We present our
methods and findings in this paper.

In section 2 we discuss the motivation and background

1

of this work and present a theory of distributed development
in the context of the Windows Vista development process.
Section 3 summarizes related work, including prior empiri-
cal quantitative, qualitative, and case studies as well as the-
oretical papers. An explanation of the data and analysis as
well as the quantitative results of this analysis is presented
in section 4. We discuss these results, compare with prior
work, and give possible explanations for them in section 5.
Finally, we present the threats to the validity of our study
in section 6 and conclude our paper with further avenues of
study in section 7.

2. Motivation and Contributions

Distributed software development is a general concept
that can be operationalized in various ways. Development
may be distributed along many types of dimensions and
have various distinctive characteristics [9]. There are key
questions that should be clarified when discussing a dis-
tributed software project. Who or what is distributed and
at what level? Are people or the artifacts distributed? Are
people dispersed individually or dispersed in groups?

In addition, it is important to consider the way that de-
velopers and other entities are distributed. The distribu-
tion can be across geographical, organizational, temporal,
and stakeholder boundaries [15]. A scenario involving one
company outsourcing work to another will certainly dif-
fer from multiple teams working within the same company.
A recent special issue of IEEE Software focused on glob-
ally distributed development, but the majority of the papers
dealt with offshoring relationships between separate com-
panies and outsourcing, which is likely very different from
distributed sites within the same company [2, 6, 7]. Even
within a company, the development may or may not span
organizational structure at different levels. Do geographi-
cal locations span the globe, including multiple time zones,
languages, and cultures or are they simply in different cities
of the same state or nation?

We are interested in studying the effect of globally dis-
tributed software development within the same company
because there are many issues involved in outsourcing that
are independent of geographical distribution (e.g. expertise
finding, different process and an asymmetric relationship).
Our main motivation is in confirming or refuting the no-
tion that global software development leads to more failures
within the context of our setting.

To our knowledge, this is the first large scale distributed
development study of its kind. This study augments the cur-
rent body of knowledge and differs from prior studies by
making the following contributions:

1. We examine distributed development at multiple levels
of separation (building, campus, continent, etc.).

2. We examine a very large scale software development
effort, composed of over 4,000 binaries and nearly

3,000 developers.
3. We examine many complexity and maintenance char-

acteristics of the distributed and collocated binaries
to check for inherent differences that might influence
post-release quality.

4. Our study examines a project in which all sites in-
volved are part of the same company and have been
using the same process and tools for years.

There is a large body of theory describing the difficulties
inherent in distributed development. We summarize them
here.

Communication suffers due to a lack of unintended and in-
formal meetings [11]. Engineers do not get to know each
other on a personal basis. Synchronous communication be-
comes less common due to time zone and language barriers.
Even when communication is synchronous, the communi-
cation channels, such as conference calls or instant mes-
saging are less rich than face to face and collocated group
meetings. Developers may take longer to solve problems
because they lack the ability to step into a neighboring of-
fice to ask for help. They may not even know the correct
person to contact at a remote site.

Coordination breakdowns occur due to this lack of commu-
nication and lower levels of group awareness [4, 1]. When
managers must manage across large distances, it becomes
more difficult to stay aware of each person’s task and how
they are interrelated. Different sites often use different tools
and processes which can also make coordinating between
sites difficult.

Diversity in operating environments may cause manage-
ment problems [1]. Often there are relationships between
the organization doing development and external entities
such as governments and third party vendors. In a geo-
graphically dispersed project, these entities will be different
based on location (e.g. national policies on labor practices
may differ between the U.S. and India).

Distance can reduce team cohesion in groups collaborating
remotely [22]. Eating, sharing an office, or working late
together to meet a deadline all contribute to a feeling of be-
ing part of a team. These opportunities are diminished by
distance.

Organizational and national cultural barriers may com-
plicate globally distributed work [5]. Coworkers must be
aware of cultural differences in communication behaviors.
One example of a cultural difference within Microsoft be-
came apparent when a large company meeting was origi-
nally (and unknowingly) planned on a major national holi-
day for one of the sites involved.

Based on these prior observations and an examination of
the hurdles involved in globally distributed development we
expect that difficulties in communication and coordination
will lead to an increase in the number of failures in code pro-

duce by distributed teams over code from collocated teams.
We formulate our testable hypothesis formally.

H1: Binaries that are developed by teams of engineers
that are distributed will have more post-release failures
than those developed by collocated engineers.

We are also interested to see if the binaries that are dis-
tributed differ from the collocated counterparts in any sig-
nificant ways. It is possible that managers, aware of the
difficulties mentioned above, may choose to develop sim-
pler, less frequently changing, or less critical software in
a distributed fashion. We therefore present our second hy-
pothesis.

H2: Binaries that are distributed will be less complex,
experience less code churn, and have fewer dependencies
than collocated binaries.

3. Related Work

There is a wealth of literature in the area of globally dis-
tributed software development. It has been the focus of mul-
tiple special issues of IEEE Software, workshops at ICSE
and the International Conference on Global Software Engi-
neering. Here we survey important work in the area, includ-
ing both studies and theory of globally distributed work in
software development.

There have been a number of experience reports for
globally distributed software development projects at var-
ious companies including Siemens [14], Alcatel [8], Mo-
torola [1], Lucent [11], and Philips [17].

Effects on bug resolution

In an empirical study of globally distributed software de-
velopment [12], Herbsleb and Mockus examined the time to
resolution of Modification Requests (MRs) in two depart-
ments of Lucent working on distinct network elements for
a telecommunication system. They found that when an en-
gineer was blocked on a task due to information needs, the
average delay was .9 days for same site information transfer
and 2.4 days if the need crossed site-boundaries. An MR is
classified as ”single-site” if all of contributors were resided
at one site and ”distributed” otherwise. The average time
needed to complete an ”single-site” MR was 5 days versus
12.7 for ”distributed”. When controlling for other factors
such as number of people working on an MR, how diffused
the changes are across the code base, size of the change, and
severity, the effect of being distributed was no longer sig-
nificant. They hypothesize that large and/or multi-module
changes are both more time consuming and more likely to
involve multiple sites. In addition, these changes require
more people, which introduce delay. They conclude that
distributed development indirectly introduces delay due to
correlated factors such as team size and breadth of changes
required.

They also introduce practices that may mitigate the risks
of distributed development. These include better commu-

nication via instant messaging and group chat rather than
telephones, better ways of identifying experts to ask for in-
formation, and shared calendars and other presence aware-
ness tools to facilitate contact with remote colleagues.

Panjer et al [23] observed a portion of a geographically
distributed team of developers for two months in a com-
mercial setting and interviewed seven developers from the
team. Developers reported difficulty coordinating with dis-
tributed coworkers and sometimes assigned MRs based on
location. They also created explicit relationships between
MRs to capture and manage technical information.

Thanh et al [21] examined the effect of distributed devel-
opment on delay between communications and time to res-
olution of work items in the IBM’s Jazz project, which was
developed by developers at five globally distributed sites.
They categorized work items based on the number of dis-
tributed sites that contributed to their resolution and exam-
ined the mean and median time to resolution and time be-
tween comments on each work item. While Kruskal-Wallis
tests showed a statistically significant difference in the times
for items that were more distributed, the Kendall Tau corre-
lations of time to resolution and time between comments
with number of sites was extremely low (below 0.1 in both
cases). This indicates that the effect of distributed collabo-
ration does not have a strong effect.

In [13], Herbsleb and Mockus formulate an empirical
theory of coordination in software engineering and test hy-
potheses based on this theory. They precisely define soft-
ware engineering as requiring a sequence of choices for all
of the decisions associated with a project. Each decision
constrains the project and future decisions in some way un-
til all choices have been made and the final product does
or does not satisfy the requirements. It is therefore impor-
tant that only feasible decisions (those which will lead to
a project that does satisfy the requirements) be made. The
presented theory is used to develop testable hypotheses re-
garding productivity, measured as number of MRs resolved
per unit time. They find that people who are assigned work
from many sources have lower productivity and that MRs
that require work in multiple modules have a longer cycle
time than those which require changes to just one.

Unlike the above papers, our study focuses on the ef-
fect of distributed development on defect occurrence, rather
than on defect resolution time.

Effects on quality and productivity

Diomidis Spinellis examined the effect of distributed de-
velopment on productivity, code style, and defect density in
the FreeBSD code base [25]. He measured the geographi-
cal distance between developers, the number of defects per
source file, as well as productivity in terms of number of
lines committed per month. A correlation analysis showed
that there is little, if any, relationship between geographic
distance of developers and productivity and defect density.
It should be noted that this is a study of open source soft-

ware which is, by its very nature, distributed and has a very
different process model from commercial software.

Cusick and Prasad [6] examined the practices used by
Wolters Kluwer Corporate Legal Services when outsourc-
ing software development tasks and present their model for
deciding if a project is offshorable and how to manage it ef-
fectively. Their strategies include keeping communication
channels open, using consistent development environments
and machine configurations, bringing offshore project leads
onsite for meetings, developing and using necessary infras-
tructure and tools, and managing where the control and do-
main expertise lies. They also point out that there are some
drawbacks that are difficult to overcome and should be ex-
pected such as the need for more documentation, more plan-
ning for meetings, higher levels of management overhead,
and cultural differences. This work was based on an off-
shoring relationship with a separate vendor and not collab-
oration between two entities within the same company. We
expect that the challenges faced in distributed development
may differ based on the type of relationship between dis-
tributed sites.

Our study examines distributed development in the con-
text of one commercial entity, which differs greatly from
both open source projects and outsourcing relationships.

Issues and solutions

In his book on global software teams [4], Carmel cate-
gorizes project risk factors into four categories that act as
centrifugal forces that pull global projects apart. These are:

• Loss of communication richness
• Coordination breakdowns
• Geographic dispersion
• Cultural Differences

In 2001, Battin et al [1] discuss the challenges and their
solutions relative to each of Carmel’s categories in a large
scale project implementing the 3G Trial (Third Generation
Cellular System) at Motorola. By addressing these chal-
lenges in this project, they found that globally distributed
software development did not increase defect density, and
in fact, had lower defect density than the industrial aver-
age. Table 1 lists the various locations, the size of the code
developed at those locations, and their defect density. They
summarize the key actions necessary for success with global
development in order of importance:

• Use Liaisons
• Distribute entire things for entire lifecycle
• Plan to accommodate time and distance

Carmel and Agarwal [5] present three tactics for allevi-
ating distance in global software development, each with
examples, possible solutions, and caveats:

• Reduce intensive collaboration

Development Locations Code Size Defect Density
(KLOC C/C++) (defects/KLOC)

Beijing, China 57 0.7
Arlington Heights, US 54 0.8
Arlington Heights, US 74 1.3
Tokyo, Japan 56 0.2
Bangalore, India 165 0.5
Singapore 45 0.1
Adelaide, Australia 60 0.5

Table 1. Locations, code size, and defect density from
Motorola’s 3G trial project for each site

• Reduce national and organizational cultural distance
• Reduce temporal distance

Nagappan et al investigated the influence of organiza-
tional structure on software quality in Windows Vista [20].
They found a strong relationship between how development
is distributed across the organizational structure and number
of post-release failures in binaries shipped with the operat-
ing system. Along with other organizational measures, they
measured the level of code ownership by the organization
that the binary owner belonged to, the number of organiza-
tions that contributed at least 10% to the binary, and the or-
ganizational level of the person whose reporting engineers
perform more than 75% of the edits. Our paper comple-
ments this study by examining geographically, rather than
organizationally distributed development.

4. Methods and Analysis

In this section we describe our methods of gathering data
for our study and the analysis methods used to evaluate our
hypotheses regarding distributed development in Windows
Vista.

4.1. Data Collection

Windows Vista is a large commercial software project in-
volving nearly 3,000 developers. It comprises over 3,300+
unique binaries (defined as individual files containing ma-
chine code such as executables or a libraries) with a source
code base of over 60 MLOC. Developers were distributed
across 59 buildings and 21 campuses in Asia, Europe and
North America. Finally, it was developed completely in-
house without any outsourced elements.

Our data is focused on 3 properties: code quality, ge-
ographical location, and code ownership. Our measure of
code quality is post-release failures, since these matter most
to end-users. These failures are recorded for the six months
following the release of Vista at the binary level as shown
in figure 1.

Geographical location information for each software de-
veloper at Microsoft is obtained from the people manage-
ment software at the time of release to manufacturing of

Time

S
o

ft
w

ar
e

Vista Release

Collect product metrics

(commits, code churn, complexity, etc.)

Windows Vista

6 months to

collect failures

Windows Server 2003 –

SP1

Figure 1. Data collection timeline

Vista. This data includes the building, campus, region,
country, and continent information. While some develop-
ers occasionally move, it is standard practice at Microsoft
to keep a software engineer at one location during an entire
product cycle. Most of the 2,757 developers of Vista didn’t
move during the observation period.

Finally we gathered the number of commits made by
each engineer to each binary. We remove build engineers
from the analysis because their changes are broad, but not
substantive. Many files have fields that need to be updated
prior to a build, but the actual source code is not modified.
By combining this data with developer geographical data,
we determine the level of distribution of each binary and
categorize these levels into a hierarchy. Microsoft practices
a strong code ownership development process. We found
that on average, 49% of the commits for a particular binary
can be attributed to one engineer. Although we are basing
our analysis on data from the development phase, in most
cases, this is indicative of the distribution that was present
during the design phase as well.

We categorized the distribution of binaries into the fol-
lowing geographic levels. Our reasoning behind this classi-
fication is explained below.
Building: Developers who work in the same building (and
often the same floor) will enjoy more face to face and infor-
mal contact. A binary classified at the building level may
have been worked on by developers on different floors of
the same building.
Cafeteria: Several buildings share a cafeteria. One cafete-
ria services between one and five nearby buildings. Devel-
opers in different, but nearby buildings, may ”share meals”
together or meet by chance during meal times. In addi-
tion, the typically shorter geographical distance facilitates
impromptu meetings.
Campus: A campus represents a group of buildings in one
location. For instance, in the US, there are multiple cam-
puses. Some campuses reside in the same city, but the dis-

tinction is that it is easy to travel between buildings on the
same campus by foot while travel between campuses even
in the same city requires a vehicle.
Locality: We use localities to represent groups of campuses
that are geographically close to each other. For instance,
the Seattle locality contains all of the campuses in western
Washington. It’s possible to travel within a locality by car
on day trips, but travel between localities often requires air
travel and multi-day trips. Also, all sites in a particular lo-
cality operate in the same time zone, making coordination
and communication within a locality easier than between
localities.
Continent: All of the locations on a given continent fall
into this category. We choose to group at the continent level
rather than the country level because Microsoft has offices
in Vancouver Canada and we wanted those to be grouped
together with other west coast sites (Seattle to Vancouver is
less than 3 hours by road). If developers are located in the
same continent, but not the same region, then it is likely that
cultural similarities exists, but they operate in different time
zones and rarely speak face to face.
World: Binaries developed by engineers on different conti-
nents are placed in this category. This level of geographical
distribution means that face to face meetings are rare and
synchronous communication such as phone calls or online
chats are hindered by time differences. Also, cultural and
language differences are more likely.

For every level of geographical dispersion there are more
than two entities from the lower level within that level. That
is, Vista was developed in more that three continents, local-
ities, etc. Each binary is assigned the lowest level in the
hierarchy from which at least 75% of the commits were
made. Thus, if engineers residing in one region make at
least 75% of the commits for a binary, but there is no cam-
pus that accounts for 75%, then the binary is categorized at
the region level. This threshold was chosen based on results
of prior work on development distributed across organiza-

North America

Asia

Hyderabad

Bldg 1

Joe 16

Bob 10

Sarah 9

Cindy 8

Fred 7

Erin 6

Jeff 2

Redmond

Bldg 40

John 67

Tom 10

Zach 3

Bldg 26

Jack 2

Lucy 2

Bldg 30

Matt 2

Charlotte

Bldg AP2

Sal 2

Silicon Valley

Bldg 5

Lynn 2

 cmroute.cpp

 cmroute.h

cmroute.dll

 etc.

Figure 2. Commits to the library cmroute.dll. For clarity, location of anonymized developers is shown only in terms of continents,
regions, and buildings.

tional boundaries that is standardized across Windows [20].
Figure 2 illustrates the geographic distribution of commits
to an actual binary (with names anonymized). To assess the
sensitivity of our results to this selection and address any
threats to validity we performed the analysis using thresh-
olds of 60%, 75%, 90%, and 100% with consistently similar
results.

Note that whether a binary is distributed or not is orthog-
onal to the actual location where it was developed. For in-
stance, some binaries that are classified at the building level
were developed entirely in a building in Hyderabad, India
while others were owned in Redmond, Washington.

World 5.9%

Continent 0.2%

Locality 5.6%

Campus 17%

Cafeteria 2.3%

Building

68%

Figure 3. Hierarchy of distribution levels in Windows
Vista

Levels of distribution

Building Cafeteria Campus Locality Continent World

A B C D E

Figure 4. distribution levels in Windows Vista

Figure 3 illustrates the hierarchy and shows the propor-
tion of binaries that fall into each category. Note that the
majority of binaries have over 75% of their commits com-
ing from just one building. The reason that so few binaries
fall into the continent level is that the Unites States is the
only country which contains multiple regions. Although the
proportion of binaries categorized above the campus level is
barely 10%, this still represents a sample of over 380 bina-
ries; enough for a strong level of statistical power.

We initially examined the number of binaries and distri-
bution of failures for each level of our hierarchy. In addi-
tion, we divided the binaries into ”distributed” and ”col-
located” categories in five different ways using splits A
through E as shown in figure 4 (e.g. split B categorizes
building and cafeteria level binaries as collocated and the
rest as distributed). This was performed to see if there is
a level of distribution above which there is a noticeable in-
crease in failures.

These categorizations are used to determine if there is
a level of distributedness above which there is a significant
increase in the number of failures. The results from analysis
of these dichotomized data sets were consistent in nearly all
respects. We therefore present the results of the first data set
and point out deviations between the data sets where they
occurred.

4.2. Experimental Analysis

In order to test our hypothesis about the difference in
code quality between distributed and collocated develop-

ment, we examined the distribution of the number of post-
release failures per binary in both populations. Figure 5
shows histograms of the number of bugs for distributed
and non-distributed binaries. Absolute numbers are omit-
ted from the histograms for confidentiality, but the horizon-
tal and vertical scales are the same for both histograms. A
visual inspection indicates that although the mass is differ-
ent, with more binaries categorized as collocated than dis-
tributed, the distribution of failures are very similar.

A Mann-Whitney test was used to quantitatively measure
the difference in means because the number of failures was
not normally distributed [18]. The difference in means is
statistically significant, but small. While the average num-
ber of failures per binary is higher when the binary was dis-
tributed, the actual magnitude of the increase is only about
8%. In a prior study by Herbsleb and Mockus [12], time
to resolution of modification requests was positively corre-
lated with the level of distribution of the participants. After
further analysis, they discovered that the level of distribu-
tion was not significant when controlling for the number of
people participating. We performed a similar analysis on
our data.We used linear regression to examine the effect of dis-
tributed development on number of failures. Our initial
model contained only the binary variable indicating whether
or not the binary was distributed. The number of develop-
ers working on a binary was then added to the model and
we examined the coefficients in the model and amount of
variance in failures explained by the predictor variables. In
these models, distributed is a binary variable indicating if
the binary is distributed and numdevs is the number of de-
velopers that worked on the binary. We show here the re-
sults of analysis when splitting the binaries at the regions
level. The F-statistic and p value show how likely the null
hypothesis (the hypothesis that the predictor variable has no
effect on the response variable) is. We give the percentage
increase in failures when the binaries are distributed based
on the parameter values. As numdevs is only included in
the models to examine effect of distribution when control-
ling for number of developers we do not include estimates
or percentage increase.

In models 1 - 4 we give the percentage increase in fail-
ures when the binaries are distributed based on the parame-
ter values also.

Model 1 F Statistic = 12.43, p < .0005
Variable % increase Std Err. Significance
(Constant) 0.30 p < .0005
distributed 9.2% 0.31 p < .0005

This indicates that on average, a distributed binary has
9.2% more failures than a collocated binary. However, the
result changes then controlling for the number of developers
working on a binary.

We performed this analysis on all five splits of the bina-
ries as shown in figure 4. The estimates for distributed co-

Model 2 F Statistic = 720.74, p < .0005
Variable % increase Std Err. Significance
(Constant) 0.25 p < .0005
distributed 4.6% 0.25 p = .056
numdevs 0.00 p < .0005

efficient for all models were below 17%, and dropped even
further to below 9% when controlling for number of devel-
opers (many were below this value, but the numbers cited
are upper bounds). In addition, the effect of distributed in
models that accounted for the number of developers was
only statistically significant when dividing binaries at the
continents level.

We also used linear regression to examine the effect of
the level of distribution on the number of failures of a bi-
nary. Since the level of distribution is a nominal variable
that can take on six different values, we encode it into five
binary variables. The variable diff buildings is 1 if the bi-
nary was distributed among different buildings that all were
served by the same cafeteria and 0 otherwise. A value of 1
for diff cafeterias means that the binary was developed by
engineers who were served by multiple cafeterias, but were
located on the same campus, etc. The percentage increase
for each diff represents the increase in failures relative to bi-
naries that are developed by engineers in the same building.

Model 3 F Statistic = 25.48, p < .0005
Variable % increase Std Err. Significance
(Constant) 0.09 p < .0005
diff buildings 15.1% 0.50 p < .0005
diff cafeterias 16.3% 0.21 p < .0005
diff campuses 12.6% 0.35 p < .0005
diff localities 2.6% 1.47 p = .824
diff continents -5.1% 0.31 p = .045

The parameter estimates of the model indicate that bi-
naries developed by engineers on the same campus served
by different cafeterias have, on average, 16% more post-
release failures than binaries developed in the same build-
ing. Interestingly, the change in number of failures is quite
low for those developed in multiple regions and continents.
However, when controlling for development team size, only
binaries categorized at the levels of different cafeterias and
different campuses show a statistically significant increase
in failures over binaries developed in the same building.
Even so, the actual effects are relatively minor (4% and 6%
respectively).

Two important observations can be made from these
models. The first is that the variance explained by the pre-
dictor variables (as measured in the adjusted R2 value) for
the built models rises from 2% and 4% (models 1 and 3)
to 33% (models 2 and 4) when adding the number of de-
velopers. The second is that when controlling for the num-
ber of developers, not all levels of distribution show a sig-

CollocatedDistributed

Failures

N
u

m
b

e
r

o
f

B
in

a
ri

e
s

Failures

Post-Release Failures

Figure 5. Histograms of the number of failures per binary for distributed (left) and collocated (right) binaries. Although numbers
are not shown on the axes, the scales are the same in both histograms.

Model 4 F Statistic = 242.73, p < .0005
Variable % increase Std Err. Significance
(Constant) 0.09 p < .0005
diff buildings 2.6% 0.42 p = .493
diff cafeterias 3.9% 0.18 p = .016
diff campuses 6.3% 0.29 p = .019
diff localities 8.3% 1.23 p = .457
diff continents -3.9% 0.26 p = .101
numdevs 0.00 p < .0005

nificant effect, but the increase in post-release failures for
those that do is minimal with values at or below 6%. To put
this into perspective, a binary with 4 failures if collocated
would have 4.24 failures if distributed. Although our re-
sponse variable is different from Herbsleb and Mockus, our
findings are consistent with their result that when control-
ling for the number of people working on a development
task, distribution does not have a large effect. Based on
these results, we are unable to reject the null hypothesis and
H1 is not confirmed.

This leads to the surprising conclusion that in the context
in which Windows Vista was developed, teams that were
distributed wrote code that had virtually the same number
of post-release failures as those that were collocated.

4.3. Differences in Binaries

One possible explanation for this lack of difference in
failures could be that distributed binaries are smaller, less
complex, have fewer dependencies, etc. Although the num-
ber of failures changes only minimally when the binaries are
distributed, we are interested in the differences in character-
istics between distributed and non-distributed binaries. This
was done to determine if informed decisions were made

about which binaries should be developed in a distributed
manner. For instance, prior work has shown that the num-
ber of failures is highly correlated with code complexity and
number of dependencies [19, 26]. Therefore, it is possible
that in an effort to mitigate the perceived dangers of dis-
tributed development, only less complex binaries or those
with less dependencies were chosen.

We also gathered metrics for each of the binaries in an
attempt to determine if there is a difference in the nature
of binaries that are distributed. These measures fall into 5
broad categories.
Size & Complexity: Our code size and complexity mea-
sures include number of independent paths through the
code, number of functions, classes, parameters, blocks,
lines, local and global variables, and cyclomatic complex-
ity. From the call graph we extract the fan in and fan out
of each function. For object oriented code we include mea-
sures of class coupling, inheritance depth, the number of
base classes, subclasses and class methods, and the number
of public, protected, and private data members and methods.
All of these are measured as totals for the whole binary and
as maximums on a function or class basis as applicable.
Code Churn: As measures of code churn we examine the
change in size of the binary, the frequency of edits and the
churn size in terms of lines removed, added, and modified
from the beginning of Vista development to RTM.
Test Coverage: The number of blocks and arcs as well as
the block coverage and arc coverage are recorded during the
testing cycle for each binary.
Dependencies: Many binaries have dependencies on one
another (in the form of method calls, data types, registry
values that are read or written, etc.). We calculate the num-
ber of direct incoming and outgoing dependencies as well
as the transitive closer of these dependencies. The depth in

the dependency graph is also recorded.
People: We include a number of statistics on the people and
organizations that worked on the binaries. These include all
of the metrics in our prior organizational metrics paper [20]
such as the number of engineers that worked on the binary.

We began with a manual inspection of the 20 binaries
with the least and 20 binaries with the most number of post-
release failures in both the distributed and non-distributed
categories and examined the values of the metrics described
above. The only discernible differences were metrics rela-
tive to the number of people working on the code, such as
team size.

Metric Avg Value Correlation Significance
Functions 895.86 0.114 p < .0005
Complexity 4603.20 0.069 p < .0005
Churn Size 53430 0.057 p = .033
Edits 63.82 0.134 p < .0005
Indegree 13.04 -0.024 p = .363
Outdegree 9.67 0.100 p < .0005
Number of Devs 21.55 0.183 p < .0005

We evaluated the effect of these metrics on level of dis-
tribution in the entire population by examining the spear-
man rank correlation of distribution level of binaries (not
limited to the ”top 20” lists) with the code metrics. Most
metrics had correlation levels below 0.1 and the few that
were above that level, such as number of engineers never
exceeded 0.25. Logistic regression was used to examine
the relationship of the development metrics with distribu-
tion level. The increase in classification accuracy between a
naive model including no independent variables and a step-
wise refined model with 15 variables was only 4%. When
removing data related to people that worked on the source,
the refined model’s accuracy only improved 2.7% from the
naive model. We include the average values for a repre-
sentative sample of the metrics along with a spearman rank
correlation with the level of distribution for the binaries and
the significance of the correlation. Although the p-values
are quite low, the magnitude of the correlation is small.
This is attributable to the very large sample of binaries (over
3,000).

All of these results lead to the conclusion that there is
no discernible difference in the measured metrics between
binaries that are distributed and those that aren’t.

5. Discussion

We have presented an unexpected, but very encourag-
ing result: it is possible to conduct in-house globalized dis-
tributed development without adversely impacting quality.
It is certainly important to understand why this occurred,
and how this experience can be repeated in other projects
and contexts. To prime this future endeavor, in this section,
we make some observations concerning pertinent practices
that could have improved communication, co-ordination,
team cohesion, etc., and reduced the impact of differences

in culture and business context. These observations come
from discussions from management as well as senior and
experienced employees at many of the development sites.

Relationship Between Sites: Much of the work on
distributed development examines outsourcing relation-
ships [7, 2]. Other work has looked at strategic partner-
ships between companies or scenarios in which a foreign
remote site was recently acquired [11]. All of these create
situations where there the relationships are asymmetric and
engineers at different sites may feel competitive or may for
other reasons be less likely to help each other. In our situ-
ation, each of the sites has existed for a long time and has
worked on software together for many years. There is no
threat that if one site performs better, the other will be shut
down. The pay scale and benefits to employees are equiva-
lent at all sites in the company.

Cultural Barriers: In a study of distributed development
within Lucent at sites in Great Britain and Germany, Herb-
sleb and Grinter [11] found that significant national cultural
barriers existed. These led to a lack of trust between sites
and misinterpreted actions due to lack of cultural context.
This problem was alleviated when a number of engineers
(liaisons) from one site visited another for an extended pe-
riod of time. Battin et al. [1] found that when people from
different sites spent time working together in close prox-
imity, many issues such as trust, perceived ability, delayed
response to communication requests, etc. were assuaged.

A similar strategy was used during the development of
Vista. Development occurred mostly in the US (predom-
inantly in Redmond) and Hyderabad, India. In the initial
development phases, a number of engineers and executives
left Redmond to work at the Indian site. These people had a
long history, many with 10+ years within Microsoft. They
understood the company’s development process and had
domain expertise. In addition, the majority of these em-
ployees were originally from India, removing one key chal-
lenge from globally distributed work. These people could
therefore act as facilitators, information brokers, recom-
menders, and cultural liaisons [5] and had already garnered
a high level of trust and confidence from the engineers in
the US. Despite constituting only a small percent of the In-
dian workforce, they helped to reduce both organizational
and national cultural distances [5].

Communication: Communication is the single most refer-
enced problem in globally distributed development. Face
to face meetings are difficult and rare and people are less
likely to communicate with others that they don’t know per-
sonally. In addition, distributed sites are more likely to
use asynchronous communication channels such as email
which introduce a task resolution delay [24]. A prior study
of global software servicing within Microsoft has examined
the ways in which distributed developers overcome com-
munication difficulties and information needs through the
use of knowledge bases and requesting help from local and

remote personnel [3].
The Vista developers made heavy use of synchronous

communication daily. Employees took on the responsibility
of staying at work late or arriving early for a status confer-
ence call on a rotating basis, changing the site that needed to
keep odd hours every week. Keeping in close and frequent
contact increases the level of awareness and the feeling of
”teamness” [1, 5]. This also helps to convey status and re-
solve issues quickly before they escalate. In addition, En-
gineers also regularly traveled between remote sites during
development for important meetings.

Consistent Use of Tools: Both Battin [1] and Herbsleb [12]
cite the importance of the configuration management tools
used. In the case of Motorola’s project, a single, distributed
configuration management tool was used with great suc-
cess. At Lucent, each site used their own management tools,
which led to an initial phase of rapid development at the
cost of very cumbersome and inefficient integration work
towards the end. Microsoft employs the use of one config-
uration management and build system throughout all of its
sites. Thus every engineer is familiar with the same source
code management tools, development environment, docu-
mentation method, defect tracking system, and integration
process. In addition, the integration process for code is in-
cremental, allowing problems to surface before making it
into a complete build of the entire system.

End to End Ownership: One problem with distributed de-
velopment is distributed ownership. When an entity fails,
needs testing, or requires a modification, it may not be clear
who is responsible for performing the task or assigning the
work. Battin mentions ownership of a component for the
entire lifecycle as one of three critical strategies when dis-
tributing development tasks. While there were a number
of binaries that were committed to from different sites dur-
ing the implementation phase of Vista, Microsoft practices
strong code ownership. Thus, one developer is clearly ”in
control” of a particular piece of code from design, through
implementation, and into testing and maintenance. Effort
is made to minimize the number of ownership changes that
occur during development.

Common Schedules: All of the development that we ex-
amined was part of one large software project. The project
was not made up of distributed modules that shipped sepa-
rately. Rather Vista had a fixed release date for all parties
and milestones were shared across all sites. Thus all engi-
neers had a strong interest in working together to accom-
plish their tasks within common time frames.

Organizational Integration: Distributed sites in Microsoft
do not operate in organizational isolation. There is no top
level executive at India or China that all the engineers in
those locations report to. Rather, the organizational struc-
ture spans geographical locations at low levels. It is not un-
common for engineers at multiple sites may to have a com-
mon direct manager. This, in turn, causes geographically

dispersed developers to be more integrated into the com-
pany and the project. The manager can act as a facilitator
between engineers who may be familiar with one another
and can also spot problems due to poor coordination ear-
lier than in an organizational structure based on geography
where there is little coupling between sites. Prior work has
shown that organizationally distributed development dra-
matically affects the number of post-release defects [20].
This organizational integration across geographic bound-
aries reconciles the results of that work with the conclusions
reached in this study. In addition, because the same process
has been used in all locations of the company for some time,
organizational culture is fairly consistent across geography.

6. Threats to Validity

Construct Validity
The data collection on a system the size of Windows

Vista is automated. Metrics and other data were collected
using production level quality tools and we have no reason
to believe that there were large errors in measurement.
Internal Validity

In section 5 we listed observations about the distributed
development process used at Microsoft. While we have rea-
son to believe that these alleviate the problems associated
with distributed development, a causal relationship has not
been empirically shown. Further study is required to deter-
mine to what extent each of these practices actually helps.
In addition, although we attempted an exhaustive search of
differences in characteristics between distributed an collo-
cated binaries, it’s possible that they differ in some way not
measured by our analysis in section 4.3.
External Validity

It is unclear how well our results generalize to other sit-
uations. We examine one large project and there is a dearth
of literature that examines the effect of distributed devel-
opment on post-release failures. We have identified simi-
larities in Microsoft’s development process with other suc-
cessful distributed projects, which may indicate important
principles and strategies to use. There are many ways in
which distributed software projects may vary and the par-
ticular characteristics must be taken into account. For in-
stance, we have no reason to expect that a study of an out-
sourced project would yield the same results as ours. It is
also not clear how these results relate to defect fixing in the
distributed world as mentioned in prior work[3].

7. Conclusion

In our study we divide binaries based on the level of ge-
ographic dispersion of their commits. We studied the post-
release failures for the Windows Vista code base and con-
cluded that distributed development has little to no effect.
We posit that this negative result is a significant finding as

it refutes, at least in the context of Vista development, con-
ventional wisdom and widely held beliefs about distributed
development. When coupled with prior work, [1, 12] our
results support the conclusion that there are scenarios in
which distributed development can work for large software
projects. Based on earlier work [20] our study shows that
Organizational differences are much stronger indicators of
quality than geography. An Organizational compact but ge-
ographically distributed project might be better than an ge-
ographically close organizationally distributed project. We
have presented a number of observations about the devel-
opment practices at Microsoft which may mitigate some of
the hurdles associated with distributed development, but no
causal link has been established. There is a strong simi-
larity between these practices and those that have worked
for other teams in the past [1] as well as solutions proposed
in other work [11]. Directly examining the effects of these
practices is an important direction for continued research in
globally distributed software development.

References

[1] R. D. Battin, R. Crocker, J. Kreidler, and K. Subramanian.
Leveraging resources in global software development. IEEE
Software, 18(2):70–77, March/April 2001.

[2] J. M. Bhat, M. Gupta, and S. N. Murthy. Overcoming
requirements engineering challenges: Lessons from off-
shore outsourcing. IEEE Software, 23(6):38–44, Septem-
ber/October 2006.

[3] S. Bugde, N. Nagappan, S. Rajamani, and G. Ramalingam.
Global software servicing: Observational experiences at mi-
crosoft. In IEEE International Conference on Global Soft-
ware Engineering, 2008.

[4] E. Carmel. Global Software Teams: Collaborating Across
Borders and Time Zones. Prentice Hall, 1999.

[5] E. Carmel and R. Agarwal. Tactical approaches for allevi-
ating distance in global software development. IEEE Soft-
ware, 2(18):22–29, March/April 2001.

[6] J. Cusick and A. Prasad. A practical management and engi-
neering approach to offshore collaboration. IEEE Software,
23(5):20–29, September/October 2006.

[7] K. C. Desouza, Y. Awaza, and P. Baloh. Managing knowl-
edge in global software development efforts: Issues and
practices. IEEE Software, 23(5):30–37, Sept/Oct 2006.

[8] C. Ebert and P. D. Neve. Surviving global software develop-
ment. IEEE Software, 18(2):62–69, 2001.

[9] D. C. Gumm. Distribution dimensions in software develop-
ment projects: a taxonomy. IEEE Software, 23(5):45–51,
2006.

[10] J. Herbsleb. Global Software Engineering: The Future of
Socio-technical Coordination. International Conference on
Software Engineering, pages 188–198, 2007.

[11] J. Herbsleb and R. Grinter. Architectures, coordination,
and distance: Conway’s law and beyond. IEEE Software,
16(5):63–70, 1999.

[12] J. Herbsleb and A. Mockus. An empirical study of speed
and communication in globally distributed software de-
velopment. IEEE Transactions on Software Engineering,
29(6):481–94, 2003.

[13] J. D. Herbsleb and A. Mockus. Formulation and prelimi-
nary test of an empirical theory of coordination in software
engineering. In ESEC/FSE-11: Proceedings of 11th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pages 138–137, Helsinki, Finland, 2003.

[14] J. D. Herbsleb, D. J. Paulish, and M. Bass. Global software
development at siemens: experience from nine projects. In
Proceedings of the 27th International Conference on Soft-
ware Engineering, pages 524–533. ACM, 2005.

[15] H. Holmstrom, E. Conchuir, P. Agerfalk, and B. Fitzgerald.
Global software development challenges: A case study on
temporal, geographical and socio-cultural distance. Pro-
ceedings of the IEEE International Conference on Global
Software Engineering (ICGSE’06)-Volume 00, pages 3–11,
2006.

[16] IEEE. IEEE Standard 982.2-1988, IEEE Guide for the Use
of IEEE Standard Dictionary of Measures to Produce Reli-
able Software. 1988.

[17] R. Kommeren and P. Parviainen. Philips experiences in
global distributed software development. Empirical Soft-
ware Engineering, 12(6):647–660, 2007.

[18] H. B. Mann and W. D. R. On a test of whether one of two
random variables is stochastically larger than the other. An-
nals of Mathematical Statistics, 18(1):50–60, 1947.

[19] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to pre-
dict component failures. In Proceedings of the International
Conference on Software Engineering, pages 452–461, 2006.

[20] N. Nagappan, B. Murphy, and V. Basili. The influence of
organizational structure on software quality: An empirical
case study. In ICSE ’08: Proceedings of the 30th interna-
tional conference on Software engineering, pages 521–530,
Leipzig, Germany, 2008.

[21] T. Nguyen, T. Wolf, and D. Damian. Global software devel-
opment and delay: Does distance still matter? In Proceed-
ings of the International Conference on Global Software En-
gineering, 2008.

[22] G. M. Olson and J. S. Olson. Distance matters. Human-
Computer Interaction, 15(2/3):139–178, 2000.

[23] L. D. Panjer, D. Damian, and M.-A. Storey. Cooperation
and coordination concerns in a distributed software devel-
opment project. In Proceedings of the 2008 International
Workshop on Cooperative and Human Aspects of Software
Engineering, pages 77–80. ACM, 2008.

[24] M. Sosa, S. Eppinger, M. Pich, D. McKendrick, S. Stout,
T. Manage, and F. Insead. Factors that influence techni-
cal communication in distributed product development: an
empirical study in the telecommunications industry. Engi-
neering Management, IEEE Transactions on, 49(1):45–58,
2002.

[25] D. Spinellis. Global software development in the freebsd
project. In GSD ’06: Proceedings of the 2006 international
workshop on Global software development for the practi-
tioner, pages 73–79, Shanghai, China, 2006.

[26] T. Zimmermann and N. Nagappan. Predicting defects using
network analysis on dependency graphs. In Proceedings of
the 30th International Conference on Software Engineering,
pages 531–540. ACM, 2008.

