
Building Bing Developer Assistant
MSR-TR-2015-36

Yi Wei · Nirupama Chandrasekaran · Sumit Gulwani · Youssef Hamadi
Microsoft Research

{yiwe, niruc, sumitg, youssefh}@microsoft.com

May 12, 2015

Abstract

Software developers heavily rely on code snippets and API usage examples searched
on the Internet. This paper presents Bing Code Search, a Visual Studio extension
that allows developers to write, within an IDE, free-form natural language questions,
and get C# code snippets answering those questions. Bing Code Search automati-
cally adapts the suggested snippets into the user’s programming context via variable
renaming, and records users’ interactions to improve its suggestions. Compared to
prior related research, Bing Code Search provides a complete automation of the full
search-paste-adapt process. Three weeks after we released this free extension, more
than 20,000 users downloaded it; and they issue on average 3,000 queries per day.
We believe that Bing Code Search is the most widely used tool in its category. In
the following, we fully describe our framework, and draw clear empirical evidence
of the benefits of Bing Code Search: (1) From our evaluation benchmark, compared
with Bing’s result, Bing Code Search delivers more relevant snippet solutions. (2) In a
controlled experiment, it was able to save developers 28% of time on completing API
related tasks. (3) Telemetries collected from thousands of users show some users al-
ready built up the habit of using the tool: they issue multiple queries to solve a complex
task, or use it as a fast auto-completion.

0.1 Introduction
Today, developers rely on programming resources found on the Internet, such as tuto-
rials, API usage examples, or other code samples, to complete their daily tasks. The
search-paste-adapt approach that they follow has the following drawbacks:

• The developer loses productivity: she has to switch from IDE to browser and
back, keep focus while searching the web for relevant pages, scan these pages to
find snippets, copy selected text fragments into the IDE, and adapt them to her
specific problem and context.

• The search misses some signal: the browser does not have access to the contex-
tual information available in the IDE, resulting in less precise search results.

We developed a framework called Bing Code Search that aims to address these
issues. Bing Code Search is a plugin in Visual Studio; it works as follows: developers
describe the task they want to complete in natural language within the IDE. Bing Code
Search performs the search-paste-adapt process automatically and suggests relevant
and adapted snippets: specifically, it searches through the web for candidate snippets,
re-ranks the result using code-specific features, then adapts the snippets to the user’s
programming context by renaming variables before presenting them to the user. It
further monitors snippet selection by users, and improves suggestion quality based on
this feedback.

There is significant recent research on integrated code search. Our principal contri-
bution is a widely used1, fully automated pipeline to improve search-paste-adapt oper-
ations in a programming environment. Our secondary contributions are the following:

• A set of language-independent features to re-rank code snippets.

• A language-independent algorithm for code adaptation through variable renam-
ing.

We thoroughly evaluated Bing Code Search. Before shipping the extension to a
large public, we performed internal experiments and user studies. Three highlights are:

• Our re-ranking and integrated pipeline results in a 4.6% increase over Bing’s
search result in precision, measured by NDCG at rank 1 and 15.8% increase at
rank 10. This improvement over a commercial search engine is significant, and
results in a noticeably more relevant snippet list. We are working with Bing to
transfer the code ranking technique into their infrastructure.

• The variable renaming algorithm is able to propose correct renaming in 71% of
the situations.

• In a user study we found Bing Code Search was able to save users 28% time on
completing API-related tasks.

1http://visualstudiogallery.msdn.microsoft.com/
a1166718-a2d9-4a48-a5fd-504ff4ad1b65

1

Three weeks after the release, more than 20,000 users have downloaded this free
extension and they issue on average 3,000 queries per day. We believe that Bing Code
Search is the most widely used tool in its category. Telemetry data coming from this
large users base allowed us to explore the practical benefits of integrating code search
in an IDE. We came with the following general findings:

• Users immediately understand the benefit and usage of the extension. This is
important to grow a large user commuity.

• Users are excited about this feature in their IDEs. Many users left positive feed-
back; many request us to support more languages and different IDEs.

• Some users already formed using habits: we observe some users issue a set of
related queries in a short period of time, trying to solve a complex task in multiple
steps. We also observe some other users issue the same query on different days,
showing they are using the tool as a faster, task-level auto-completion.

These findings indicate that Bing Code Search can benefits different user groups:
beginner and intermediate level developers can use it to program against APIs. Expert
developers can use it as a high level auto-completion tool. Users recently moved from
one language to another can use it to get a quick start.

Figure 1: The code suggestion interface

0.2 Usage Scenario
This section walks through how a user interacts with Bing Code Search. We consider
a user working with the C# language in the Visual Studio environment who wants to
find out how to read a text file line by line.

2

Figure 2: Triggering Bing Code Search.

The user triggers IntelliSenseTMand selects the How do I ... list item. See Figure 2.
This activates the Bing Code Search window, where the user can directly type its “read
file pth line by line” query. This is presented in Figure 1. The query can reference
variables that exist in the scope. Here, the variable pth holds the name of the file to
read. We found that it is natural to reference variables when formulating a query, and
an advantage of these references is that they clearly identify which parts of the current
context are related to the task.

After pressing Enter, the user is exposed with a ranked list of snippets that can be
navigated through. The snippets are retrieved from the web and re-ranked according to
their relevancy to the query and their code quality (Section 0.4).

Each snippet comes with meta information about its origin (Source), and when
available quality (Rating). This is on the bottom right of the window. These informa-
tion are helpful to evaluate the credibility of the snippet.

To make the snippet suggestion easier to understand, Bing Code Search replaces
variables in the snippets with the ones mentioned in the user query through variable
renaming (Section 0.5). For instance, the variable pth in the above query is used in
the third line of the suggested snippet. After the user identifies a desirable snippet, she
can press Enter to insert the code into the editor.

Bing Code Search records which snippet is selected.This feedback is used to im-
prove the results for future similar queries and integrate in its ranking the user selections
(Section 0.6). For example, if in the future some user asks a query similar to “read file
one line at a time”, she will be exposed with snippets where previously selected ones
will be pushed to the top of the list.

We provided an online version of Bing Code Search at http://codesnippet.
research.microsoft.com. A video from the same page shows the extension in use.

3

0.3 Related work
There is substantial recent research on answering queries from programmers. We dis-
cuss four areas related to work in this paper.

0.3.1 IDE-based auto-completion systems
The Blueprint [1] tool by Brandt et al. suggests snippets from users’ natural language
queries. The authors showed that by integrating web search into the Adobe Flex Builder
IDE, users could perform tasks faster. Blueprint harvests snippets from the web and
uses Adobe Community Help search APIs and a Google Custom Search engine to offer
suggestions. One essential metric of such a recommender system is the precision of the
suggestions (Recall is not as important in such a setting because a suggestion list shown
to the developer does not aim to include all relevant snippets). The Blueprint paper does
not report any metric of the suggestion list. Since the snippets are from web pages, in
case there are several snippets from the same page, deciding their display order is non-
trivial. If the tool displays all the snippets, the suggestion list would include many
irrelevant snippets since it is common that only a small amount of snippets from a
web page are relevant to the user query. Another question that is not answered in this
prior work is a comparison against commercial search engines. These are all practical
questions that we solved during the design of Bing Code Search. Blueprint does not
perform context adaptation of the suggested snippets; users need to select relevant lines
from the suggested snippets and copy-paste them into their editors. Bing Code Search,
on the other hand, offers context adaptation through variable renaming and user edit
collection, all of which are fully automated.

The SnipMatch tool [28] by Wightman et al. goes beyond the Blueprint tool to
suggest snippets with variable renaming from user queries. It does so by requiring
users to provide the snippets. Those curated snippets contain descriptions used for
matching against user queries and placeholder variable specifications used for variable
renaming. SnipMatch requires much higher user involvement than Bing Code Search.
We think this high involvement limits its usability. The variable renaming algorithm
in SnipMatch only relies on variable types. The algorithm does not support the case
where there are several variables of the same type in either the query or the snippet.
In such cases, further distinctions are needed to decide which variables to rename.
The variable renaming algorithm in Bing Code Searchstarts with type-correct bindings,
and uses other information, such as variable concept and variable def-use relations to
perform the renaming.

Little et al. [11] presented the keyword programming method, which can expand
a list of user-given tokens into a valid expression that may use variables in context.
Keyword programming focuses on suggesting a single expression, while Bing Code
Searchcan suggest larger snippets as well.

The Codelets tool [17] by Oney et al. can be used to produce interactive documen-
tation. Interactive documentation supplements a piece of code with a dialog interface
for users to adapt the code, for example by specifying actual parameters, and choosing
methods to call. These documentations are only available if someone spends the effort
to produce them; in contrast Bing Code Searchperforms adaptations in a completely

4

automated way, but it is restricted to simpler adaptations.
The Sando tool [22] by Shepherd et al. provides a framework to find code using

a vector space text search engine. It helps programmers create search terms to match
identifiers such as class and method names more easily. Sando focuses on locating
existing code, while Bing Code Searchfocuses on suggesting new code, so there is
no component in Sando to rank code according to code quality or to perform code
adaptation.

0.3.2 Code repository mining
Code repositories represents valuable resource to learn how people program. The Jun-
gloid tool [13], the XSnippet tool [21], the PARSEWeb tool [25] and the MatchMaker
tool [30] focus on mining code for creating objects of a given target type.

The GraPacc [15] tool by Nguyen et al. and the UP-Miner [26] tool by Wang et
al. mine API usage patterns. Similar to them, the TIKANGA tool [27] by Wasylkowski
et al., the PRIME tool [14] by Mishne et al. and the GK-tail tool [12] by Lorenzoli et
al. learn automata from existing code repositories. The mined patterns or automata can
be used to suggest follow-up statements based on the user’s incomplete code, without
requiring the user to type a query. This provides the so called zero-query experience.
Pattern-based code auto-completion tools work when the user knows which API to use,
while Bing Code Searchcan handle the situation when the user does not know the name
of the API to use.

0.3.3 Code search tools
Multiple tools exist for code search, such as Ohloh (originally named Koders) [16], and
the closed-down Google Code Search (GCS) [5]. The usability of such tools is quite
limited because a user needs to know the right keywords.

Reiss et al. [19] developed a tool that allows a user to apply a set of keywords
along with a test suite to search for code: the keywords are used to match snippets
syntactically; the test suite validates the snippets semantically. However, providing a
test suite is a lot of work in the common case where a user simply wants to know about
an API.

The SNIFF tool [3] by Chatterjee et al. suggests code by first translating method
calls in a snippet into their corresponding API documents, and using text-matching
algorithms to relate snippets to user queries.

Most people use a general-purpose search engine when facing programming diffi-
culties. Providing better results than mature commercial search engines, even in spe-
cialized categories such as code, is very difficult. None of the related work reports a
comparison against commercial search engines. Bing Code Searchbuilds its sugges-
tions on top of the Bing search engine and brings significant improvements to both
the Mean Reciprocal Error Rank (MRR) metric and the Normalized Discounted Cu-
mulative Gain (NDCG) metric, both of which are widely used to evaluate information
retrieval systems. Besides, Bing Code Searchprovides an altogether more integrated
search experience.

5

Table 1: Features in snippet ranker
Feature name Type Description
Url position real the rank (the first page has rank 1, and so on) of the web page where the snippet is extracted

First/Second/Third url binary 1 if the snippet is from the web page of rank 1/2/3; 0 otherwise
In-page order real index of the snippet from a web page. The first snippet in a page has index 1, and so on
First in-page binary 1 if the snippet appears as the first snippet from the web page
Clickthrough real larger value indicates the snippet mentions more APIs which correlate to the user query

Tf-idf real larger value indicates the snippet mentions more APIs common to all snippets for the user query
Snippet length real the number of lines of the snippet

API calls real the number of API calls in the snippet
Unknown API calls real the number of API calls that are unknown

Unknown types real the number of types referenced in the snippets that are unknown
Compilation errors real the number of compilation errors for the snippet

Commercial search engines perform query expansion to boost retrieval perfor-
mance. To the best of our knowledge, those query expansion algorithms are not op-
timized for code search. By expanding user queries with more software related words,
which can be calculated by methods such as the one proposed by Yang et al. [29], Bing
Code Searchmay get better results.

0.3.4 Program synthesis
Program synthesis accepts specifications and generates code fulfilling those specifica-
tions. It is related to our work: our framework takes user queries as specifications and
suggests snippets. Solar-Lezama et al. [23] used sketches to synthesize programs. A
sketch is a program with placeholders. Their synthesizer takes a sketch along with a ref-
erence implementation and generates an optimized version of the reference implemen-
tation. Srivastava et al. [24] introduced a technique that interprets program synthesis as
generalized program verification. Gulwani [6] proposed a technique that synthesizes
Spreadsheets programs from a set of input-output examples. Compared to our frame-
work, these synthesis tools, which are based on logical reasoning, deliver results of
higher quality: they guarantee a solution if there exists one. But the specification effort
required to use such tools is much higher than just typing a natural language query in
the editor. Recently, Le et al. [9] have described a natural language based interface to
synthesizing smartphone automation scripts based on natural language understanding
and program synthesis. However, all of this prior work in the area of program synthesis
is mostly domain-specific and hence limited in its applicability.

0.4 Re-Ranking snippets
Starting from this section, we describe how Bing Code Searchworks.

Given a user query, Bing Code Searchfirst prepends it with the word “c#” and then
uses the Bing search engine to find web pages related to that query. Upon retrieving the
top 20 web pages, Bing Code Searchextracts text from four kinds of HTML tags: 〈pre〉,
〈code〉, 〈p〉, and 〈div〉. Most text fragments do not contain code. The framework uses
the Microsoft Roslyn C# parser [20] to identify code out of text. The Roslyn parser
can overcome certain syntax errors. This proves convenient when handling code from

6

the web, because many code fragments do not strictly follow the C# grammar syntax.
The parser generates syntax trees for code fragments. The framework uses these syntax
trees to identify various entities such as classes, methods, and variables.

Bing Code Searchneeds to rank the extracted snippets before showing them to the
user. The quality of ranking is essential to the user experience and is a core metric
for such recommendation systems. A first natural idea would be to put on top of our
list all snippets from the most highly ranked web page, in their order of appearance
within the page, then all snippets from the second page, and so forth. We found that
this ordering is not satisfactory. The reason is that search engines focus on document-
level relevancy whereas Bing Code Searchneeds to evaluate the relevancy of individual
snippets. It is common that a web page contains multiple snippets, of which few are
relevant. Therefore, taking all snippets from a page without discrimination typically
results in a low precision.

To improve the quality of snippet ranking, we set out to build a machine learning
based ranker for snippets. The desirable properties of the ranker are:

• It should take into account the search engine ranking: search engines already
integrate sophisticated ranking techniques. Their reported ranking should be
improved upon, but not be discarded.

• It should favour snippets that have a high code relevancy to the user query.

• It should favour snippets that have a high code quality.

Following a traditional machine learning process, we first formalize the relation
between user query and snippets as a set of features and then train a ranker from labeled
data. The features we are using are listed in Table 1; they are designed to address the
three aforementioned properties. Every single feature captures part of the intuition that
we give to the ranker. For a particular snippet, some features may fail to identify good
code, or may even not apply, but collectively, they try to push relevant snippets to the
top.

0.4.1 Original rank preserving features
In the table, the first group of features (Url position to First in-page) captures the
original ranking from the search engine. The Url position feature captures the rank
from the search engine. The First/Second/Third url features are derived features from
Url position; they highlight snippets from top pages returned by a search engine. The
In-page order feature captures the position of the snippet within a web page. The First
in-page feature derives from In-page order feature and gives more weight to snippets
appearing at the beginning of a web page since, empirically, relevant snippets tend to
appear at the top of their containing web pages.

0.4.2 Code relevancy features
The second group of features (Clickthrough and Tf-idf) tries to model code relevancy.
The Clickthrough feature models the mapping from user queries to C# tokens in snip-

7

pets. The Tf-idf feature models C# token popularity among all snippets retrieved for a
particular query.

In addition to these features computed on the documents, search engines tradition-
ally use another indicator of relevance, computed from online usage: they record the
url u that is clicked on for every query Q, gathering pairs 〈Q, u〉 that are called click-
through data. The same idea is used in Bing Code Search, in our case u represents the
selection by a user of a specific snippet.

Bing Code Searchtreats every snippet as a sequence of C# tokens and calculates,
for a token t, the probability that t occurs given the user query, that is, P (t|Q). Let
Q = q1, q2, . . . , qn be the set of a words in a given query. The probability of a C#
token t occurring given the query is defined as

P (t|Q) = P (t|q1, q2, . . . , qn) =
n∑

i=1

P (t|qi) · P (qi|Q) (1)

where P (q|Q) is the unsmoothed unigram probability of the term q in the query Q. It
quantifies how likely the query term q appears in queries:

P (q|Q) =
αq∑

q′∈Q

αq′
(2)

where αq is the appearance frequency of q in all possible queries.
To estimate P (t|q) for each C# token t in any snippet and each query term q,

we used a standard procedure of training statistical word alignment models [2]. The
result model maximizes the probability of generating C# tokens from user queries over
training data. Our training data consists in 15 days of clickthrough records from Bing’s
query log. To estimate αq , we continue using the same query log:

αq =
#times q occurs in query log

total term count in query log
(3)

With P (t|Q) defined, the overall probability of a snippet S occurring given a user query
Q is

P (S|Q) = P (t1, t2, . . . , tm|Q) =

m∏
j=1

P (tj |Q) (4)

where the snippet S consists of tokens t1 to tm and the tokens are treated as indepen-
dent for simplicity. We use log-sum to avoid underflow in calculating the product of
probabilities. This log-sum value is used as the value of the Clickthrough feature.

The Tf-idf feature captures the fact that, for a query, there usually exists a set of
APIs that are used in the solution. This set of APIs are commonly mentioned in various
snippets extracted for that query. We define the value of this feature based on the term
frequency-inverse document frequency (tf-idf) statistic [8] for each C# token (such as
keyword, class name, method name) in the snippets.

Tf-idf gives large values for tokens that appear more often in the extracted snippets
for a given user query, such as StreamReader in the file reading example. At the
same time, it gives small values to tokens that appear often across all snippets, such as

8

new and string. In order to calculate idf values, we collected 2.5 million snippets
from 1.3 million web pages from popular C# websites, and use them to represent the
set of all snippets. The value of the Tf-idf feature is calculated as the average tf-idf of
the tokens appearing in a snippet. A larger relevancy value indicates that the snippet is
more likely to be the solution.

0.4.3 Code quality features
The third group of features (Snippet length to Compilation errors) models code quality
in both syntactical and semantical aspects.

Snippet length is the number of lines of a snippet. According to our experience,
long snippets are less likely to be appreciated by programmers. API calls is the number
of API calls in a snippet. Bing Code Searchfocuses on API related queries, so if a
snippet does not mention any API, it is less likely to be relevant. These two features
are syntax-oriented: their values can be calculated from snippet AST trees.

The features Unknown API calls, Unknown types and Compilation errors are semantic-
oriented: to calculate their values, we need to compile snippets. The most challenging
part in compiling snippets retrieved from the web is to decide proper namespaces for
mentioned types/methods and the needed libraries. The same name can, additionally,
come from multiple libraries, in which case we need to decide which one is more prob-
able.

To recover the link from API names to namespaces, we analyzed source code from
12,000 open-source projects collected from GitHub, CodePlex and BitBucket. This
code corpus contains 357 million lines of code, 3.1 million classes and 17 million
methods. From each class file, we collected imported namespaces and mentioned type
names. We then estimate the probability of the needed namespace N for a type T by
calculating

P (N |T) = P (N,T)

P (T)
=

#files where both N and T occur

#files where T occurs

For each type T , we rank the namespaces by the conditional probability P (N |T) and
choose the first one as the namespace to import to compile the snippet.

Once the namespaces are decided, identifying the library is easy. The library names
almost always appear as the prefix of the namespace. We use the library names to
download the required Dynamically Linked Libraries (DLLs) from Nuget (the online
collection of C# libraries). We always download the most updated version for a library.

With namespaces and library dlls sorted out, we use the C# compiler from the
Roslyn toolkit [20] to compile snippets. Note that even with the imported libraries, a
snippet may still fail to compile. The Roslyn compiler does its best to compile a snippet
and, when it fails, reports error messages. From the error messages, we calculate values
for the feature Unknown API calls, Unknown types and Compilation errors.

0.4.4 Training the snippet ranker
We use supervised learning to build the snippet ranker. To obtain training data, we sam-
pled 150 queries containing the word “C#” from one month of Bing’s query log. Those

9

queries were then sampled according to their appearance frequency in the query log, so
common queries are more likely to appear in the sample than uncommon queries. This
gives a realistic query population.

For each query, we asked a programmer to create a context by introducing neces-
sary variables. An example context for the query “split string” is shown in Listing 4.
We then used Bing to retrieve the top 20 web pages and then extract snippets from the
returned web pages. For each extracted snippet, we manually annotated whether it is
relevant to the query. The goal was then to train a ranker which ranks snippets that are
annotated as relevant on top of the ones annotated as irrelevant using the designed fea-
tures. Many supervised ranker learners [10] are available, and we used the FaskRank
algorithm [4] (essentially a boosted tree based ranker) to train the ranker. We used 10
fold cross validation in the training to avoid overfitting the training data.

The trained ranker is a function that takes a feature vector representing a snippet
and outputs a real-valued score. Snippets are sorted according to this score.

0.5 Renaming Variables
Snippets from the web rarely fit in a user’s programming context. For one thing, the
retrieved snippets are unlikely to use the proper variables from user’s context. To
make the snippet work, the user will have to rename variables manually. Bing Code
Searchautomates this process through variable renaming.

For instance, the query “how to use the regular expression x to match the string y”
references two string variables x and y in the program context; and we may retrieve a
snippet shown in Listing 1. What the user called x and y in the query is named ptn
and msg in the snippet.

Listing 1: Regular expression usage pattern.
1 void MatchPattern(string msg) {
2 string ptn = "[a-z]+";
3 Regex strRegEx = new Regex(ptn);
4 if(regex.IsMatch(msg)) { }
5 }

Variable renaming replaces some snippet variables by the ones referenced in the
user query. In this context, we generalize the notion of snippet variables to also include
snippet constants and parameters. This is useful in cases like a slight modification of
Listing 1 where a variable that simply holds a constant (namely ptn) is not defined
and the constant is directly used. Let Vq denote the set of variables referenced in the
query, for example {x, y} (those variables can be identified from the user’s context).
Let Vs denote the set of variables mentioned in the snippet, for example, {ptn, msg}.
The renaming finds a mapping m = {(v, u)|v ∈ Vq, u ∈ Vs} with the restriction that a
query variable is only mapped to a snippet variable if they have the same type. In other
words, the variable renaming starts from all type-wise correct mappings and then ranks
those mappings.

Like in the snippet re-ranking case, we follow a machine learning approach to learn
how to select the correct variable mapping. The first step is to formalize the properties
of a mapping into a set of features. The designed features are listed in Table 2; they
capture a variable mapping in conceptual aspect, dataflow aspect and positional aspect.

10

Table 2: Features in variable renaming ranking
Feature name Type Description

Concept real indicates how similar the concepts of two binded variables are
Def-use real percentage of binded variable pairs that obey def-use rules

Method argument real percentage of arguments from the containing method that are binded
Return value binary 1 if the return value in snippet is binded or there is no return value
Loop variable binary 1 if a loop variable is binded

Fill all arguments binary 1 if arguments of a multiple argument method call are either all binded or not binded at all
Appearing order binary 1 if the binded snippet variables appear in the same order as query variables in user’s code

0.5.1 Conceptual feature
The Concept feature estimates whether variables in a query and in a snippet denote
the same “concept”. For example, in the query “how to use the regular expression x
to match the string y”, x denotes a regular expression; as does ptn in the retrieved
snippet of Listing 1. This gives a clear signal that these variables should be paired. We
cannot precisely capture concepts such as “regular expression” semantically, but we
can approximately decide whether two variables denote the same concept: we associate
a list of keywords to each variable from the query and from the snippet. Both lists will,
in our example, contain occurrences of “regular” and “expression”, which means that
variable mappings that rename ptn to x should be ranked highly. We next describe
how to compute the set of keywords in the query, in the snippet, and how we measure
similarity.

We use the natural language processing tool OpenNLP [18] to parse a user query,
and associate to each variable name the list of words that appear, in the parse tree, at
a similar semantic level. For instance the parse tree of our example query is shown in
Figure 3: variable “x” appears in a noun phrase (NP) where we also find the set of
words {“the”, “regular”, “expression”}. Therefore we approximate the concept under-
lying variable x by this set.

For variable names occurring in snippets, we compute the set of concept keywords
from the API documentation. More specifically we focus on the documentation de-
scribing method arguments: we inspect all places where the variable appears in a
method call; and collect the (pre-indexed) set of words that document the associated
parameter (We indexed all available documents for popular libraries. When no docu-
ment was available for some library or the snippet variable was not used in any method
call, we set the Concept feature to 0). For instance in Listing 1, variable ptn is used as
the first parameter of the Regex constructor. The document for that parameter gives
us the set {the, regular, expression, pattern, to, match}.

The similarity value for a variable binding pair (v, u) is the text cosine similarity
between the concept of u and v, which is a value between 0 and 1 with a larger value
indicating better similarity. The value of the Concept feature is the average similarity
over all variable binding pairs (a mapping may contain more than one pair in case there
are more than one variable referenced in the user query).

11

Figure 3: Parse tree for a user query

0.5.2 Dataflow features
The Def-use, Method argument, Return value and Loop variable features are dataflow-
oriented. They model the dataflow that usually happen to fit the snippets into the user’s
context.

The Def-use feature is based on the following intuition (1) variables that are initial-
ized in the user’s context are more likely to be used (and less likely to be initialized) in
the suggested snippet. (2) Variables that are initialized in a snippet are more likely to
be used (and less likely to be initialized) in the user’s context. (We exclude some trivial
variable initializations to constants.)

We argue that the intuition makes sense because if the user mentions a variable in
the query and the variable is already initialized, it is more likely to serve the purpose
of passing information to the desirable snippet, and less likely to receive information
from the snippet. Similarly, if an uninitialized variable is mentioned in a snippet, it is
more likely to receive information from the snippet. and the suggested snippet. The
variable pth is initialized in the user’s context. It is less likely to be matched with the
variable line because line is initialized in the code snippet. The value of the feature
Def-use is set to the percentage of variable pairs that obey this def-use rule.

The Method argument favors variable mappings which bind the arguments of the
snippets. If a snippet is a method declaration and this method has arguments, it is very
likely that the arguments should be binded. Suppose for the query “read file pth line
by line” in Figure 1, one of the candidate snippet is in List 2:

Listing 2: Snippet in form of method declaration
1 void ReadTextFile(string fName) {
2 using (StreamReader r = new StreamReader(fName)) {
3 string line;
4 while ((line = r.ReadLine()) != null) { }

12

5 }
6 }

Since the whole snippet is a method declaration and the method has one argument
fName. It is very likely the argument fName should be binded to the query variable
pth. The value of Method argument feature is the percentage of the method decla-
ration arguments that are binded to query variables. If there is no such argument, the
value is set to 100%.

Similar to the Method argument feature, if a snippet has a return value, that value
is more likely to be binded to an uninitialized query variable to indicate the receiving
of some information from the snippet. The Return value features captures this factor
by setting the value to 1 if the return value is binded.

Loop variables are less likely to be binded to query variables.

0.5.3 Positional features
Positional features include the Fill all argument and the Appearing order feature. They
apply when there are more than one variables mentioned in the user query.

The Fill all argument favors mappings that binds all arguments in a method call or
bind none of them. If a method called in the suggested snippet requires two arguments
and the mapping m already renames one of the arguments into a query variable, it is
preferable that the other argument is also renamed by the mapping. For example, for
the user query “add variable x and value y into Windows registry key” (x and y are
strings) and the snippet in Listing 3. Since the SetValue method has two actual
arguments "Name", and "Isabella", it is more likely to bind both of them with the
query variables x and y. The value of this feature is 1 if a mapping obeys this rule and
0 otherwise.

Listing 3: Adding a Windows registry entry
1 RegistryKey key;
2 key = Registry.CurrentUser.CreateSubKey("key");
3 key.SetValue("Name", "Isabella");
4 key.Close();

The Appearing order feature favors a mapping if the appearing order of the binded
variables in the snippet is the same as the appearing order of query variables in user’s
code. The appearance order of variables in snippets usually coincides with the ap-
pearance order of the variables in user’s context. Continuing with the above example
in Listing 3, if x appears before y in user’s context, it is more likely that the snip-
pet variable that x is mapped to appears before the snippet variable that y is mapped
to. According to this criterion, the mapping {x 7→ "Name", y 7→ "Isabella"} is
preferable to the mapping {x 7→ "Isabella", y 7→ "Name"}. The feature is set to
1 if the ordering is preserved, 0 otherwise.

0.5.4 Training the variable renaming ranker
Ideally, we need to build a ranker to rank all possible mappings. But the situation
is different from that of snippet ranking because in variable renaming, we are only
interested in one — the correct mapping — out of many. All the other mappings are

13

considered wrong. The ordering among the wrong mappings is not meaningful. This
suggests a binary classifier as an implementation choice: the classifier decides if a
mapping is correct or wrong.

Bing Code Searchuses the Ranking SVM [7] algorithm for training a binary classi-
fier. The basic idea of Ranking SVM is to formalize the ranking problem into a binary
classification problem and use support vector machines to solve the classification prob-
lem. Ranking SVM is supervised learning.

To build the training data, we continued to use the 150 sampled queries from Bing’s
query log. For each snippet annotated as relevant, we also manually wrote down the
correct variable mappings. This resulted in 672 mappings. These 672 mappings are
positive instances. All the other type-wise correct mappings are considered as negative
instances.

Note that the number of correct mappings is significantly lower than the number of
wrong mappings. To create a balanced training set in which the number of correct and
wrong mapping instances are equal, we generate instances in the following way: for
a pair of correct mapping Mc and wrong mapping Mw, let Fc and Fw be the feature
vectors calculated for them. Generate two instances, the first is a positive instance with
value Fc − Fw and label 1, and the second a negative instance with Fw − Fc and label
-1. The Ranking SVM is trained to perform the classification. During training, we used
10 fold cross validation in the training to avoid overfitting.

For a mapping, the classifier outputs a score in range [-1, 1]. The larger the
score, the more likely the mapping is considered correct by the classifier. Bing Code
Searchuses this score to sort the mapping candidates and takes the top one mapping.

0.6 Collecting user feedback
What we have described so far allows us to propose to the user a small selection of snip-
pets, ranked according to their estimated relevance, and adapted to the user’s context
through variable renaming. These suggestions are presented to the user within Visual
Studio as shown in Figure 1. From there, the user will typically select one snippet and
insert it into the program text.

To provide assistance in this process, Bing Code Search records the number of
times each snippet is selected by users. If a similar query is asked later, Bing Code
Search will adjust the ranking by boosting the snippets that have more frequently been
selected in the past.

With recorded user selection, Bing Code Search adjusts the suggestion list when
similar queries are asked. It turns out that calculating query similarity is difficult, be-
cause we ideally want to capture semantic similarity rather than syntactical similarity.
Our tool adopts the notion of query similarity widely used in search engines: two
queries are considered similar if the returned documents are similar. In other words,
Bing Code Search does not measure query similarity directly, instead, it assumes that
if the resulting snippet suggestions are similar, the user queries are similar.

Since Bing Code Search remembers how many times a snippet has been selected
by the users, it boosts the most frequently selected snippet to the top of the list.

14

0.7 Framework Implementation
Bing Code Search is implemented in a client-server architecture. The client is the
Visual Studio plugin. The plugin sends user queries to the server, receives snippet
suggestions from the server, records user actions and sends those actions to the server.
We use three sets of servers located in three geographical areas: US, Europe, Asia.
Depending on the user location, queries are automatically routed to the nearest location

The server invokes the Bing search engine to get relevant web pages, performs
snippet extraction and ranking, performs variable renaming and sends the suggested
snippets to the plugin. The server also stores all pre-extracted snippets from popular
C# programming websites to reduce response time. The average response time per
query is 1.5 second, which provides a smooth user experience.

0.8 Experimental Evaluation
We designed two experiments to evaluate Bing Code Search. The first experiment eval-
uates whether it suggests relevant snippets on new queries, i.e. in a setting where we
don’t have a history of previous queries and users, usually referred to as cold start. The
second experiment evaluates if using Bing Code Search can save users’ time compared
to the de facto method of only using web search.

0.8.1 Experiment I
To evaluate if Bing Code Search can effectively answer new queries, we devised a
benchmark with 150 queries. The queries are proportionally randomly sampled from
a month’s Bing query log according to their occurrence frequency. Some example
queries are “open file”, “generate MD5 hash code”, “upload file to ftp”, “serialize
object to xml” and “check whether serial port is open”.

For each query, we asked a programmer to construct a context in which the query
can be asked. The context consists of all the code surrounding the query, such as
variable declarations and definitions. The programmers were allowed to optionally
change the query text, and reference contextual variables in the queries. This resulted
in 80 queries with one variable, 29 queries with two variables and 41 queries with no
variables. The popular occurrence of variables in queries indicates that referencing
variables in queries is natural for programmers and makes it easier to express the task.

For example, for the query “split string”, the context devised by a programmer is
shown in Listing 4.

Listing 4: Splitting string
1 static void Method(string[] args) {
2 string st = "dg xd we wx";
3 ///split string st by space
4 }

For each query, we retrieved 20 web pages using Bing and extracted all snippets from
those web pages. We asked the programmers to annotate each snippet as relevant or

15

not according to the query. A snippet is annotated as relevant if it contains all the state-
ments needed to solve the task, even if they additionally include irrelevant statements.
This resulted in 3947 annotated snippets. For each relevant snippet, if the query refer-
ences any variable, we also asked the programmers to write down the correct variable
renaming mapping, resulting in 672 mappings. Bing Code Search is evaluated against
this benchmark.

Suggestion quality

In information retrieval system evaluation, two metrics, Mean Reciprocal Rank (MRR)
and Normalized Discounted Cumulative Gain (NDCG), are most widely used. We use
them to evaluate the quality of the suggestion list given by our trained snippet ranker,
compared to the original ranking from the Bing search engine.

The snippet ranker is trained using the FastRank algorithm. A 10-fold cross vali-
dation is used to avoid overfitting the training data. We repeated the training for 100
times to minimize the variance of the result due to randomness in cross validation.
The numbers reported below are averaged over these 100 iterations. Variable renaming
evaluation used the same process.

We compare the snippet ranking from our trained ranker against the ranking from
Bing. The snippet ranking from Bing is estimated by putting all snippets from the first
web page (in their appearance order) on top of the second web page, and so on. This
simulates how humans browse through the retrieved web pages.
Mean reciprocal rank. The reciprocal rank (RR) for a query is calculated as the
inverse of the rank of the first solution snippet. For example, if the top ranked snippet
is solution, then the RR value is 1

1 = 1, if the second ranked snippet is solution, the
RR value is 1

2 . The larger the MRR value, the better the suggestion list because it
reveals that first relevant snippet appears earlier in the ranking. The mean reciprocal
rank is the RR value averaged across all the queries.

The MRR value for the original Bing ranking is 0.70. The MRR value for the
re-ranked list is 0.74, which is a 5.7% improvement. This shows that in the re-ranked
list, a relevant snippet is more likely to appear earlier.
Normalized discounted cumulative gain. For a query, there are usually multiple
snippets that can serve as a solution, and a user may prefer other solutions over the first
suggested solution. Solution snippets are more useful when appearing earlier in the
result list. The discounted cumulative gain (DCG) metric quantifies this notion. For a
ranked list R, the discounted cumulative gain DCGR is defined as:

DCGR =

|R|∑
i=1

2reli − 1

log2(i+ 1)
(5)

where i iterates over all the indexes in the ranking; reli is a binary value with 1 indicat-
ing that the snippet at position i is a solution and 0 otherwise. |R| gives the number of
items in the ranked list. Intuitively, DCG calculates the weighted sum of the relevancy
(either 1 or 0) of all the proposed snippets. The weight for each snippet degrades as we
move down the list. Unlike the reciprocal rank metric which only focuses on the rank
of the first solution snippet, the discounted cumulative gain DCG metric measures the

16

Table 3: NDCG comparison
NDCG Original list Re-ranked list Improvement
NDCG@1 0.607 0.635 4.6%
NDCG@2 0.557 0.622 11.7%
NDCG@3 0.545 0.627 15.0%
NDCG@4 0.553 0.631 14.1%
NDCG@5 0.554 0.636 14.8%
NDCG@6 0.562 0.645 14.8%
NDCG@7 0.575 0.661 15.0%
NDCG@8 0.580 0.673 16.0%
NDCG@9 0.585 0.682 16.6%
NDCG@10 0.596 0.690 15.8%

quality of a whole ranking. The normalized discounted cumulative gain (NDCG) value
is calculated as

NDCGR =
DCGR

IDCGR
(6)

where IDCGR is the discounted cumulative gain value for the ideal ranking for snip-
pets of the same query, which can be obtained from our annotations in the benchmark
by putting all solution snippets before the non-solution ones. NDCG value has range
[0, 1] with a larger value indicating a better ranking.

The NDCG values at rank from 1 to 10 for both the original and the re-rank lists
are reported in Table 3. The table reveals that the trained snippet ranker outperforms
Bings ranking in the case of suggesting relevant snippets at all ranks. Specifically,
the improvement is 4.6% at rank 1; and 15.8% at rank 10. This improvement is very
significant in search engine evaluation.

Bing Code Search versus code search engines

Besides using a search engine, we also used a code search engine Ohloh [16] to search
for solutions to the benchmark queries. It produced poor results: for 60 out of the 150
benchmark queries, the top 10 returned snippets did not contain any solution. This
is because code search engines expect the search keywords to be program language
tokens, instead of natural language words. However, users usually do not know the
right tokens; this makes the code search engines much less usable, as showed by our
experiment.

Variable renaming

Variable renaming replaces some variables mentioned in snippets by variables refer-
enced in a query. In the benchmark, we only consider variable renaming for the snip-
pets that are annotated as solutions. Some snippets need no renaming if no variable is
referenced in the query; others need one or more renaming.

17

Out of the 672 manually annotated variable renaming mappings, 71% were cor-
rectly selected as the top from among other competing mappings (whose average num-
ber was 10.4) for the snippet and context in question.

0.8.2 Experiment II
To find out if programmers can save time in code search and reuse with Bing Code
Search, we performed a baseline study involving 14 programmers: 7 programmers
were asked to use only the web search to complete 45 queries, and another 7 program-
mers to complete the queries using Bing Code Search. Those 45 queries are selected
from the benchmark and they cover different API usages, ranging from simple ones
such as “download file from url” to more complicated ones such as “upload to ftp”.

Table 4: Time performance Comparison
Action TWEB TBing Code Search

Snippet selection 69.9 54.2
Snippet adaptation 41.1 25.5
Total 111.0 79.7

Table 4 presents performance data (time in seconds) for this experiment. Column
TWEB reports the average time in seconds that a programmer spent in snippet selection
and adaptation by using only the search engine. Column TBingCodeSearch reports pro-
grammers’ average performance by using Bing Code Search. The numbers show that,
Bing Code Search helps programmers save 28% of the time.

0.9 Lessons Learned
The experimental evaluation helped us to demonstrate the effectiveness of the proposed
framework. Shipping the extension to a large public and collecting usage data allowed
us to understand how programmers are using our technology. This section shares our
findings. We believe that many of them are general and apply to the problem of code
search in an IDE. The usage data were recorded during three weeks after the release.
Queries were collected from around 20,000 users, who issued an average of 3,000
queries per days.

0.9.1 Ease of usage and user excitement
The first finding is that users immediately understand the benefit of the extension and
how to use it. Few users asked us about usage instructions. A simple feature is one
of our design goals and it is very important to grow a large user community. Further,
users are excited about this advanced code search and reuse feature. Thousands of
users shared this extension through social networks; many left very positive feedback:
“Awesome Idea. Its really helpful feature for all coders”, “Amazing. Love it. For those
moments where I forget”, “Not an easy job, but surprisingly neat, and correct!”.

18

Table 5: Solving complex tasks
User Time Query
527 2/20 2:24PM read excel file
527 2/20 2:26PM regex numbers only

Table 6: High-level auto-completion
User Time Query
67 3/4 open database connection
67 3/5 open database connection
67 3/12 open database connection

0.9.2 Habit forming
The second finding is that there are already recurring users (users who issued queries
on more than one day). From recorded telemetries, we observed that 48% of the users
issued queries on one day; 21% on two days and 31% on three days and above. Further,
we can also see that some developers already start to form search habits. A usage habit
means that a developer uses the feature again and again. This is a good indication that
the feature offers continuous value. We observed two different habits: solving complex
tasks and high-level auto-completion.

A complex task requires multiple steps, and we observed some users issued differ-
ent but related queries in a short period of time, indicating they used the tool to guide
them through the steps. Table 5 shows such an example: user 527 issued two queries
in 2 minutes. The first solves the task of reading data from Excel file; and the second
query solves the task of parsing numbers using regular rexpression. This is a typical
pattern for processing spreadsheets. The fact that the user issued these related query in
a short time period shows that she is in the process of solving a multi-step task.

Bing Code Search enables high-level auto-completion: auto-complete not only a
single method, but also a complete solution for a task. We observed that some users
issued the same queries on different days, indicating that the users know how to solve
the task, and they rely on the tool for a faster auto-completion. Table 6 shows a concrete
example from user 67. This user issued the same query on three different days, with
other queries in between, showing that she practically used the tool to auto-complete a
task.

0.9.3 Criticisms
We also received negative feedback. Many developers complained about the absence
of a keyboard shortcut to trigger the Bing Code Search window, see Figure 2). Many
complained about the lack of compatibility with older versions of Visual Studio. Many
more complained about the lack of support for their language, e.g., C++, or Visual
Basic.

19

0.10 Conclusion
Programmers encounter difficulties when using APIs. This paper describes the Bing
Code Search framework that suggests code snippets from natural language queries.
Bing Code Search uses a search engine to retrieve web pages, extracts code snippets
from these pages and re-ranks those snippets to achieve better precision. It then adapts
the snippets into the user’s context through variable renaming. The framework also
collects user feedback to improve future suggestion quality.

Two experiments are used to evaluate the framework. They show that Bing Code
Search is able to suggest better results than the Bing search engine, and that it helps
programmers save time in API related programming tasks.

Telemetries collected from real users revealed that Bing Code Search is easy to use
and some of them have started to form usage habits. This shows that Bing Code Search
can provide continuous value for developers, instead of just one cool tool which will
be forgotten after a few trials.

For the moment, Bing Code Search only suggests C# snippets. The basic ideas
are independent of the language, the IDE and the underlying search engine and our
findings should apply to other settings.

After three weeks, this free extension has been downloaded by more than 20,000
users who issue on average 3,000 queries per day. We believe that Bing Code Search
is the most widely used tool in its category. This demand has prompted efforts to
integrate other programming languages including C++, JavaScript, VB.Net and F#.
We also received requests from programming websites to be registered as a source of
information for Bing Code Search, including GitHub, CodePlex and CodeProject.

We provided an online version of Bing Code Search at http://codesnippet.
research.microsoft.com. A video from the same page shows the extension in use.

20

Bibliography

[1] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer. Example-centric
programming: integrating web search into the development environment. CHI,
pages 513–522, 2010.

[2] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The mathematics of
statistical machine translation: Parameter estimation. Computational linguistics,
19(2):263–311, 1993.

[3] S. Chatterjee, S. Juvekar, and K. Sen. SNIFF: A search engine for java using
free-form queries. In FASE, pages 385–400. 2009.

[4] J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of Statistics, pages 1189–1232, 2001.

[5] http://code.google.com/codesearch.

[6] S. Gulwani. Automating string processing in spreadsheets using input-output
examples. SIGPLAN Not., pages 317–330, 2011.

[7] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for
ordinal regression. MIT Press, Cambridge, MA, 2000.

[8] K. S. Jones. A statistical interpretation of term specificity and its application in
retrieval. Journal of documentation, 28(1):11–21, 1972.

[9] V. Le, S. Gulwani, and Z. Su. Smartsynth: Synthesizing smartphone automation
scripts from natural language. In MobiSys, 2013.

[10] http://en.wikipedia.org/wiki/Learning˙to˙rank.

[11] G. Little and R. Miller. Keyword programming in Java. ASE, pages 37–71, 2009.

[12] D. Lorenzoli, L. Mariani, and M. Pezze. Automatic generation of software be-
havioral models. ICSE, pages 501–510, 2008.

[13] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid mining: helping to
navigate the API jungle. PLDI, pages 48–61, 2005.

[14] A. Mishne, S. Shoham, and E. Yahav. Typestate-based semantic code search over
partial programs. OOPSLA, 2012.

21

[15] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen, J. Al-
Kofahi, and T. N. Nguyen. Graph-based pattern-oriented, context-sensitive source
code completion. In ICSE, pages 69–79, 2012.

[16] http://code.ohloh.net.

[17] S. Oney and J. Brandt. Codelets: linking interactive documentation and example
code in the editor. CHI, pages 2697–2706, 2012.

[18] http://opennlp.apache.org.

[19] S. P. Reiss. Semantics-based code search. ICSE, pages 243–253, 2009.

[20] http://www.microsoft.com/en-us/download/details.aspx?id=27746.

[21] N. Sahavechaphan and K. Claypool. XSnippet: mining for sample code. SIG-
PLAN Not., pages 413–430, 2006.

[22] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz. Sando: An extensible local
code search framework. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, page 15. ACM, 2012.

[23] A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioğlu. Programming by
sketching for bit-streaming programs. SIGPLAN Not., pages 281–294, 2005.

[24] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program
synthesis. In POPL, pages 313–326, 2010.

[25] S. Thummalapenta and T. Xie. Parseweb: a programmer assistant for reusing
open source code on the web. ASE, pages 204–213, 2007.

[26] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining succinct and
high-coverage api usage patterns from source code. In Proceedings of the Tenth
International Workshop on Mining Software Repositories, pages 319–328. IEEE
Press, 2013.

[27] A. Wasylkowski and A. Zeller. Mining temporal specifications from object usage.
ASE, pages 295–306, 2009.

[28] D. Wightman, Z. Ye, J. Brandt, and R. Vertegaal. Snipmatch: Using source code
context to enhance snippet retrieval and parameterization. UIST, 2012.

[29] J. Yang and L. Tan. Inferring semantically related words from software context.
In Mining Software Repositories (MSR), 2012 9th IEEE Working Conference on,
pages 161–170. IEEE, 2012.

[30] K. Yessenov, Z. Xu, and A. Solar-Lezama. Data-driven synthesis for object-
oriented frameworks. SIGPLAN Not., pages 65–82, 2011.

22

