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Abstract

This paper proposes to utilize algorithms from the proba-
bilistic graphical models domain for Peer-to-Peer rating of
data items and for computing “social influence” of nodes in
a Peer-to-peer social network.

We evaluate the practicality of our approach using large-
scale simulations over a MSN Live Messenger subgraph
consisting of about a million nodes.

Our algorithms are general since they can be used for
Peer-to-peer monitoring and for the efficient computation
of other node ranking methods, such as PageRank and In-
formation Centrality.

1 Introduction

Whether you are browsing for a hotel, searching the
web, or looking for a recommendation on a local doc-
tor, what your friends like will bear great significance
for you. This vision of virtual social communities un-
derlies the stellar success of a growing body of recent
web services, e.g., http://www.flickr.com,
http://del.icio.us,
http://www.myspace.com, and others. How-
ever, while all of these services are centralized, the full
flexibility of social information-sharing can often be better
realized through direct sharing between peers.

This paper presents a mechanism for sharing user rat-
ings (e.g., on movies, doctors, and vendors) in a social net-
work. It introduces distributed mechanisms for comput-
ing by the network itself individual ratings that incorporate
rating-information from the network. Our approach utilizes
message-passing algorithms from the domain of Gaussian
graphical models. In our system, information remains in the
network, and is never “shipped” to a centralized server for
any global computation. Our algorithms provide each user
in the network with an individualized rating per object (e.g.,
per vendor). The end-result is a local rating per user which
minimizes her cost function from her own rating (if exists)
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and, at the same time, benefits from incorporating ratings
from her network vicinity. Our rating converges quickly to
an approximate optimal value even in sizable networks.

More specifically, consider the following settings. Sup-
pose that regarding a specific issue, say, a movie, every user
has an initial opinion represented as a value in some range
(or a special empty value ⊥). Further assume that users are
related to others through social connections. Then the goal
is to utilize each user’s own rating as well as to integrate
ratings from the social network for providing the user with
an individualized recommendation. The first challenge is
to define a utility target that delivers a sensible personalized
result to each user. We achieve this by forming a bi-criterion
cost function that combines the user’s own rating (if exists)
and the ratings of its immediate social contacts. The goal is
to minimize the square differences in both components over
the entire system.

The next challenge is to devise a distributed algorithm
that calculates ratings at each user. We employ a recent
algorithm for consensus propagation [1] that provably con-
verges to values that minimize our cost function. The al-
gorithm is purely decentralized and works iteratively: In
each round, a node integrates the values it received from
its immediate neighbors in the previous round, and sends a
new value to the neighbors. Previously, it was not known
how this algorithm would perform in practice in terms of
convergence time. Using simulations, we demonstrate fast
convergence, as seen in the body of the paper. To the best of
our knowledge, our simulation is the first in the field of be-
lief propagation to attempt a network of millions of nodes.

The final challenge we face is to assess the effectiveness
of our rating system. This requires developing some sort
of benchmark that tells whether the rating is “good”, and
is potentially of independent interest. We devised the fol-
lowing experiment. We first produce an influence-ranking
of the nodes. Rather than using PageRank or HITS rank-
ing, we again let the network itself compute a ranking in
a distributed manner. We then examine the effects that in-
fluential (high-ranking) nodes have on ratings of users in
the network. The result we expect from a good rating sys-
tem is that the ratings of influential nodes will propagate
and bias the ratings of significant portions of the network,



and would quench any bogus ratings inserted by poorly-
connected nodes.

We ran our benchmark over real (anonymized) data taken
from the Windows Live Messenger network. Each node
represents a Messenger user, and edges connect nodes with
those on their buddy lists. Our findings are as follows. The
ratings of high-ranking nodes have clearly dominated the in-
fluence of low-ranking nodes. Moreover, even when vastly
outnumbered, high ranking nodes still biased the rating sig-
nificantly more than low ranking nodes. These results are
encouraging indications that the rating system indeed pro-
vides sensible rating values.

Due to its complete decentralization, and its good scal-
ability, our work is suitable for deployment in social net-
works such as Messenger and others. It has been developed
as part of the Nocturnal project [21]. Nocturnal provides an
infrastructure for sharing views/recommendations among
social communities using an existing instant-messaging net-
work, without a central server. The core idea is “gossip”: I
share my views directly with my Messenger contacts, they
pass my views to their contacts, and so on. Every user in
the network stores this gossip data locally on his/her disk.

Sharing views over a social network has many advan-
tages. By taking a peer-to-peer approach the user infor-
mation is shared and stored only within its community.
Thus, there is no need for trusted centralized authority,
which could be biased by economic and/or political forces.
Likewise, a user can constrain information pulling from its
trusted social circle. This prevents spammers from pene-
trating the system with false recommendations.

The structure of this paper is as follows: in Section 1.1
we briefly outline the related work regarding both ranking
of data items and ranking of nodes in a social network. In
Section 2 we define the data rating problem and propose
our solution in Section 3. We present simulation results of
a subgraph cut from a real social network topology, in Sec-
tion 4. We discuss several protocol extensions in Section 5.
We conclude in Section 6.

1.1 Related work

There is a mass of related work in the learning field re-
garding rating of data items. For example [12], [11] ranks
movie recommendation to users based on their past rating
of movies. Both papers achieve very good prediction re-
sults based on user movie rating databases. The problem is
that the algorithms assume centralized execution and global
knowledge of the network.

In Peer-to-peer settings, several works address collabo-
rative filtering [14]. Recent work [13] recommends files
to users in a file sharing network. Awerbuch et al. dis-
cusses in [17] how to find items for matching user tastes.
Those works assume a binary settings when one of more

items should be recommended to users.
We propose to utilize algorithms from the probabilistic

graphical models domain in Peer-to-peer settings. We chose
to address the simple question of rating a single data item in
the network, where the rating is real number (not a binary
recommendation) for showing the applicability of our tech-
nique. Rating of multiple data items can be done by running
our algorithm in parallel.

Other works discuss the influence of nodes in a so-
cial network [16, 15]. A good overview of the exist-
ing approaches is given in [16]. There are several known
ways to compute node importance in networks, for exam-
ple Google’s PageRank [5] algorithm, HITS [9] and Eigen-
Trust [8]. Another interesting method is the electrical con-
ductivity (EC) method [19] which regards the social net-
work as an electrical network and measures the social influ-
ence by calculating the electrical current flow.

Our work related to personalized rating of data items can
be easily utilized in other domains as well. For example,
for monitoring. Each node has a certain property we would
like to monitor, like the node current local load. Comput-
ing a global load in a very large and dynamic Peer-to-peer
network is not always meaningful. However, computing the
load in a certain vicinity of a node, can be easily done using
our technique.

We propose a novel method called “Spatial Ranking” to
compute a personalized ranking of the nodes in the social
network. Our method is based on the observation that when
a node i calculates a personalized ranking of the network,
it gives greater significance to nodes that are found in its
vicinity. Since social influence is a heuristic calculation, we
do not claim that our technique is better than other methods.
Different ranking methods capture different aspects of the
social network. The method we show is general since it
can be used other ranking methods as well. Specifically, we
show how to compute PageRank and Information Centrality
ranking methods, using the our algorithm.

2 The Data Rating Problem

The social network is represented by an directed,
weighted communication graph G = (V,E). Nodes V =
{1, 2, ..., n} are users. Edges express social ties, where an
edge weight wij indicates a measure of the mutual trust be-
tween the endpoint nodes i and j. A node i’s neighbors are
denoted by N(i).

We consider a single instance of the rating problem that
concerns an individual item (e.g., a movie). In practice, the
system maintains ratings of many objects concurrently, but
presently, we do not discuss any correlations across items.
Concerning one item, each node i has an initial input rating
yi, which may potentially be the special empty value ⊥.
The output of the rating algorithm provides every node i
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with a final rating xi. The “goodness” of the rating vector
is expressed by the cost function below.

2.1 The Proposed Cost Function

Our proposed cost function is composed of two terms.
The first one — (xi − yi)2 — measures the change in
user rating from their initial values. The second term —
Σj∈N(i)wij(xi − xj)2 — measures the difference between
a user’s rating and its buddies’ rating. Naturally, these terms
may be contradicting. A parameter β determines the rela-
tive importance among the two terms. When β is very large,
the nodes will have a good coordination with their neigh-
bors. When β is small, node will take into account their
own value with higher importance.

The goal is to find a vector that minimizes the overall
cost of both terms throughout the network, i.e., calculate
the following minimum:

minx[Σi∈V (xi − yi)2 + βΣwij∈Ewij(xi − xj)2] (1)

Note, that the above cost function is general in the sense
it can be utilized for other useful computations in the Peer-
to-Peer network. One immediate example is for monitoring
some nodes’ parameters like the network load. In this case,
each yi is the current load the node is experiencing, xi is
the output estimated load in the node’s vicinity. The param-
eter β defines the level of correlation between node values,
where a very large β will force the output values to converge
to the average load. The weights wij define the relations be-
tween nodes, where closer nodes will have higher weights,
forcing the load to converge locally in each vicinity.

3 Peer-to-Peer Rating

We first give a brief background of Gauss-Markov Ran-
dom field (GMRF).

GMRF Background. A Gauss-Markov Random field is a
Markov Random Field where the joint distribution is Gaus-
sian p(x) ∼ N(µ, P ). There are two parameters which
characterize the distribution: the mean µ is a vector of
length n. The covariance matrix P is matrix of size n × n
defined by Pij ≡ Cov(Xi, Xj) = E{(x − µi)(x − µj)}.
The probability density function is given in the following
form:

p(x) = α exp{−1
2
(x− µ)′P−1(x− µ)}

where α is a normalization factor. An alternative
parametrization is provided by the information form speci-
fied in terms of a field vector µ = P−1h and an information

matrix J = P−1. The pdf of the process is:

p(x) = β exp{1
2
x′Jx + h′x}.

The inference problem is defined as follows [7]: Given a
graphical model of the GMRF in the information filter form
(h, J), evaluate the marginal densities xi = N(µi, Pii) for
all nodes i. Note that this corresponds to recovering the
mean vector µ and the diagonal of the covariance matrix P .

We model our social network as a GMRF, where each
user is a node in the graph, and each edge is a social link
between users. Each node represents a scalar Gaussian dis-
tribution of mean yi (its prior input rating). The matrix W
of edge weights (trust values) is used as the covariance in-
formation matrix. We set the matrix diagonal values to 1,
which can be interpreted as giving equal “weights” to the
initial ratings of all users.

The output of the calculation is the solution for the infer-
ence problem: we would like to calculate for each node the
marginal probability p(xi) = N(µi, P

−1
ii ). The mean µi of

the Gaussian xi is the output rating.
We utilize the Consensus Propagation (CP) algorithm [1]

to solve the above minimization problem. The algorithm is
a variant of the belief propagation algorithm over a Gauss-
Markov random field (GMRF). It is a distributed message
passing algorithm where the interaction is between neigh-
boring nodes. Each node locally computes its output, the
rating. The algorithm is proved to converge towards the
optimal value which minimizes the proposed cost function
given in ( 1).

The Consensus Propagation Algorithm (CP) [1] is a dis-
tributed algorithm for calculating the network average, as-
suming each node has an initial value. We have extended
the CP algorithm in several ways. First, in the original paper
the authors propose to use a very large β for calculating the
network average. As mentioned, large β forces all the nodes
to converge to the same value. We remove this restriction
by allowing a flexible selection of β based on the applica-
tion needs. As β becomes small the calculation is done in a
closer and closer vicinity of the node. In the extreme case
where β is zero, the calculation is done only locally in the
node, without taking into account its neighbors values.

Second, we have extended the CP algorithm to support
null value, adapting it to omit the term (yi − xi)2 when
yi = ⊥, i.e., when node i has no initial rating.

Third, we use non-uniform edge weights wij , which
in our settings represent mutual trust among nodes. This
makes the rating local to certain vicinities, since we believe
there is no meaning for getting a global rating in a very
large network. This extension allows also asymmetric links
where the trust assigned between neighbors is not symmet-
ric.

The algorithm computes the following in a loop:
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Ji→j = (
1

(1 + Σk∈N(i)\jJk→i)
+

1
βwij

)−1

µi→j =
yi + Σk∈N(i)\j Jk→iµk→i

1 + Σk∈N(i)\jJk→i

xi =
yi + Σk∈N(i)Jk→iµk→i

1 + Σk∈N(i)Jk→i

Where a message from node i to node j has two real
numbers: The precision (one over the variance) Ji→j and
the mean µi→j . N(i) is the list of node i’s neighbors, β is
the weighting constant discussed earlier and yi is the prior
input. xi is the posterior, the output computed locally in
each node.

Convergence can be detected locally by measuring the
change between the previous rating value x

(t−1)
i and the

current value x
(t)
i . Rounds do not need to be synchronized.

Recent work shows that in most cases when the rounds are
no synchronized, the algorithm converges faster [10]. The
algorithm terminates locally when a node detects that there
is no change in the local decision value xi.

Efficiency. The local computation at a node at each round
is fairly minimal. Each node i computes locally two scalar
values µi→j , Ji→j for each neighbor j ∈ N(i). Conver-
gence time is dependent on the network topology. Empiri-
cal results are provided in the next section.

3.1 Rating Convergence

For evaluating the feasibility and efficiency of our rating
system, we used anonymized data obtained from Windows
Live Messenger that represents Messenger users’ buddy re-
lationships. The Messenger network is rather large for sim-
ulation (over two hundred million users), and so we cut sub-
graphs by starting at a random node, and taking a BFS cut
of about one million nodes. We repeated this experiment to
get several such networks with different scales, up to sev-
eral millions nodes. The diameter of the sampled graph is
five on average. Note that, we do not use the full Messenger
graph in a centralized simulation because of its enormous
size. In a distributed network settings, the rating algorithm
can work even on such a large network. Furthermore, we
expect that convergence time will have a similar magnitude
on the full graph. (Convergence speed is related to the graph
diameter which is very low on average in the full graph).

The experiment is geared towards evaluating the conver-
gence speed of our rating method in the Messenger social
network’s settings. Therefore, in this test, input ratings yi

and edge weights wij are simply drawn uniformly at ran-
dom in the range [0− 1]. We have repeated this experiment
with different initializations for the input rating and the edge
weights and got similar convergence results.

Figure 1 shows the convergence speed. The x-axis repre-
sents round numbers1. The y-axis represents the sum-total
of change in ratings relative to the previous round. We can
see that the node ratings converge very fast towards the opti-
mal rating derived from the cost function. After only five it-
erations, the total change in nodes ratings is about 1 (which
means an average change of 1× 10−6 per node).

Figure 1. Convergence of rating over a social net-
work of 800,000 nodes and 9,000,000 edges. Note,
that using asynchronous rounds, the algorithm con-
verges faster, as discussed in [10]

4 Rating Benchmark

One of the interesting challenges we faced was the need
to come up with a “benchmark” that evaluates the effec-
tiveness of our rating system. Demonstrating this requires
a quantitative measure beyond mere speed and scalability.
The benchmark approach we take is as follows. First, we
produce a ladder of “social influence” that is inferred from
the network topology, and rank nodes by this ladder. Next,
we test our rating method in the following settings. Some
nodes are initialized with rate values, while other nodes are
initialized with empty ratings. Influential nodes are given
different initial ratings than non-influential nodes. The ex-
pected result is that the ratings of influential nodes should

1The rounds are given only for reference, in practice there is no need
for the nodes to be synchronized in rounds.
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affect the ratings of the rest of the network so long as they
are not vastly outnumbered by opposite ratings.

As a remark, we note that we can use the social ranks
additionally as trust indicators, giving higher trust values to
edges which are incident to high ranking nodes, and vice
versa. This has the nice effect of initially placing low trust
on intruders, which by assumption, cannot appear influen-
tial.

4.1 Spatial Ranking

In this section we explain how we rank the socially in-
fluential nodes in the social network for testing our rating
method.

Our contributions regarding node ranking in the network
are twofold: First, we present a novel algorithm to com-
pute personalized ranking of nodes in the network. Sec-
ond, we show that our algorithm is general since it is able to
compute distributively and efficiently many of the existing
ranking methods including PageRank [5] and Information
centrality [19].

The “Spatial Ranking” algorithm output is not a global
ranking which outputs one rank list of all the nodes in the
network, but a personalized ranking which may be different
for each node. In our method, each node ranks itself the list
of all other nodes based on its network topology and creates
a personalized ranking of its own.

We do not claim that our ranking is better or worse than
other methods since ”socially influential” is a heuristic com-
putation. There are many different methods for computing
social influence and each of them is capturing some differ-
ent aspects of the social network properties. To this end, we
show that our method can calculate efficiently other ranking
methods.

4.1.1 Spatial Ranking Details

We propose to model the network as a Markov chain with
a transition matrix R, and calculate the fundamental matrix
P , where the entry Pij is the expected number of times of a
random walk starting from node i visits node j [4].

We take the local value Pii of the fundamental matrix
P , computed in node i, as node i’s global importance. In-
tuitively, the value signifies the weight of infinite number
of random walks that start and end in node i. Unlike the
PageRank ranking method, we explicitly bias the compu-
tation towards node i, since we force the random walks to
start from it. This captures the local importance node i has
when we compute a personalized rating of the network lo-
cally by node i. Figure 2 captures this bias using a simple
network of 10 nodes.

In Section 5 we show how to compute the full personal
ranking of nodes (the full matrix P ), where each node has a
personal ranking of all the other nodes.

The fundamental matrix can be calculated by summing
the expectations of random walks of length one, two, three
etc., R + R2 + R3 + . . .. Assuming that the spectral radius
%(R) < 1, we get

∑∞
l=1 Rl = (I − R)−1. Since R is

stochastic, the inverse (I − R)−1 does not exist. We there-
fore slightly change the problem: we select a parameter
α < 1, to initialize the matrix J = I − αR where I is
the identity matrix. We know that %(αR) < 1 and thus
αR + α2R2 + α3R3 + . . . converges to (I − αR)−1. We
use the message passing formulation of the Gaussian Belief
Propagation (GaBP) algorithm given in [2] for comput-
ing (I−αR)−1 of the social network, by the network itself:

Input: Adjacency matrix J (the correlation matrix),
shift vector h
Iterate:

hi\j = hi+
∑

k∈N(i)\j

∆hk→i , Ji\j = Jii+
∑

k∈N(i)\j

∆Jk→i

(2)
∆hi→j = −Jji(Ji\j)−1hi\j , ∆Ji→j = −Jji(Ji\j)−1Jij

(3)
Where hi\j , Ji\j are intermediate terms calculated by

the nodes, and each message sent from node i to node j
is composed of two reals: ∆Ji→j ,∆hi→j , the first repre-
sents the Gaussian precision (one over the variance) and the
second represents the Gaussian mean. Finally, each node
computes locally:

µi = hi +
∑

k∈N(i)

∆hk→i , Ji = Jii +
∑

k∈N(i)

∆Jk→i

Convergence can be detected locally when there is no
change between messages in consecutive rounds.

The convergence of the algorithm is guaranteed, since
we carefully selected α < 1 s.t. %(αR) < 1, it is known
that the BP algorithm over GMRF converges to the right
mean, and the variances calculated are an approximation.
We use the variances of each node as the spatial ranking of
that node. An analysis of the variance error can be found
in [6].

The BP convergence proofs assumes that the BP algo-
rithm operates in synchronous rounds. The assumption of
synchronized clocks is not reasonable in a very large social
network.

4.2 Experimental results

For performing our benchmark tests, we once again used
simulation over the∼ 1 million node sub-graph of the Mes-
senger network. Using the ranks produced by our spatial
ranking, we selected the seven highest ranking nodes and
assigned them an initial rating value 5. We also selected
seven of the lowest ranking nodes and initialized them with
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Figure 2. Example output of the Spatial ranking (on
top) vs. PageRank (bottom) over a network of 10
nodes. In the Spatial ranking method node rank is
biased towards the center, where in the PageRank
method, non-leaf nodes have equal rank. This can
be explained by the fact that the sum of self-returning
random walks increases towards the center.

rating value 1. All other nodes started with null input. The
results of the rating system in this settings are given in Fig-
ure 3. After about ten rounds, a majority of the nodes con-
verged to a rating very close to the one proposed by the
influential nodes. We ran a variety of similar tests and ob-
tained similar results in all cases where the influential nodes
were not totally outnumbered by opposite initial ratings; for
brevity, we report only one such test here.

The conclusion we draw from these test is that our rat-
ing system provides sensible rating values to users. Quite
importantly, it provides good protection against malicious
infiltrators: Assuming that intruders have low connectivity
to the rest of the network, we demonstrate that it is hard
for them to influence the rating values in the system. Fur-
thermore, we note that this property will be reinforced if the
trust values on edges are reduced due to their low ranks, and
using users satisfaction feedback.

5 Protocol Extensions

5.1 Extending the technique for comput-
ing the full fundamental matrix

We propose to extend the Walk-Sum technique [2] to
compute the full matrix P (including the off-diagonal en-
tries) to have a full ranking of nodes in the network. In the
extended method the output of the local calculation of node
i is the row P[i], where column j signifies the importance of
node j to node i. We use the conditional correlation Lemma
given in [6] for computing in parallel the full matrix P . The
trick is to run n instances of GaBP in parallel, where in in-
stance i the shift vector hi in node i is initialized to one, and
all other shift vectors are initialized to zero. Note that using
this method, the computation of matrix P is exact and not
an approximation as was done in [2].

Figure 3. Final rating values in a network of 800,000
nodes. Initially, 7 highest ranking nodes rate 5 and 7
lowest ranking nodes rate 1.

5.2 Extending our technique to compute
other ranking methods

PageRank. The PageRank algorithm is a fundamental al-
gorithms in computing node ranks in the network [5]. In
a nutshell, the Markov chain transition matrix M is con-
structed out of the web links graph. A prior probability x
can be taken to weight the result. The personalized PageR-
ank calculation can be computed [20]:

PR(x) = (1− α)(I − αMT )−1x

Where α is a weighting constant which determines the
speed of convergence in trade-off with the accuracy of the
solution and I is the identity matrix.

We propose to compute the personalized PageRank
using our GaBP algorithm. The input to the algorithm is
the correlation matrix J = (I − αMT ) and the shift vector
h = x. The output is the vector (I − αMT )−1x. Each
node stores the result of its own personalized PageRank.

Information Centrality. In the information centrality
node ranking method [19], the non-negative weighted
graph G = (V,E) is considered as an electrical network,
where edge weights is taken to be the electrical conduc-
tance. A vector of supply b is given as input, and the
question is to compute the electrical potentials vector
p. This is done by computing the graph Laplacian and
solving the set of linear equations Lp = b. The information
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centrality method (a.k.a current flow betweenes centrality)
is defined by:

IC(i) =
n− 1

Σi 6=jpij(i)− pij(j)

The motivation behind this definition is that a centrality of
node is measured by inverse proportion to the effective re-
sistance between a node to all other nodes. In case the effec-
tive resistance is lower, there is a higher electrical current
flow in the network, thus making the node more ”socially
influental”.

The relation between our algorithm and this proposed
method, is that [19] shows that the information centrality
can be calculated using (L + J)−1 where L is the graph
Laplacian and J is a matrix of all ones. So we can initialize
our algorithm with (L + J) matrix as input, and compute
its inverse, same as we did in the previous case. The out-
put in this case is that each node holds its own information
centrality computed locally.

6 Conclusion

The rating system presented here achieves the following
design goals.

1. The rating algorithm is completely decentralized and
uses the existing social network infrastructure.

2. The algorithm has good scalability behavior, suitable
for very large networks. Specifically, the algorithm
presents manageable overhead in terms of message
complexity, computation and storage, even for net-
works of millions of users. The algorithm can work
asynchronously, as we do not assume synchronized
clocks in a very large network.

3. The system maintains user privacy in the following
sense: rating information is shared explicitly only
among a user and her close social community. In
particular, sharing does not involve a centralized third
party.

4. The algorithm inherently favors highly-connected ‘in-
fluential’ users. This provides protection against spam-
mers who wish to adversely influence ratings. With the
rating system we propose, although spammers might
occasionally get a foothold within a community, they
cannot become influential.

Regarding the ranking of nodes in the network, we pro-
pose a novel way for distributed computation of matrix in-
verse based on the Gaussian Belief Propagation algorithm.
This method is highly efficient for sparse graphs. Simula-
tion results demonstrate convergence in about 5 rounds for

a graph that includes about a million nodes. The message
cost is minimal since each node sends one message contain-
ing two real numbers to its neighbor in each round.

We utilize our sparse matrix inversion method to com-
pute a novel social influence ranking of nodes the social
network we call “Spatial Ranking”.

We show that our technique is general since it can com-
pute other ranking methods like PageRank and Information
Centrality with the same efficiency.

As a future work, we plan to implement a prototype of
our algorithms to be used in real social networks like Noc-
turnal, demonstrating the feasibility of our approach in real
settings.
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