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Abstract

A fundamental vision driving pervasive computing re-
search is access to personal and shared data anywhere
at anytime. In many ways, this vision is close to being
realized. Wireless networks such as 802.11 offer connec-
tivity to small, mobile devices. Portable storage, such as
mobile disks and USB keychains, let users carry several
gigabytes of data in their pockets. Yet, at least three sub-
stantial barriers to pervasive data access remain. First,
power-hungry network and storage devices tax the lim-
ited battery capacity of mobile computers. Second, the
danger of viewing stale data or making inconsistent up-
dates grows as objects are replicated across more com-
puters and portable storage devices. Third, mobile data
access performance can suffer due to variable storage
access times caused by dynamic power management, mo-
bility, and use of heterogeneous storage devices. To over-
come these barriers, we have built a new distributed file
system called BlueFS. Compared to the Coda file system,
BlueFS reduces file system energy usage by up to 55%
and provides up to 3 times faster access to data repli-
cated on portable storage.

1 Introduction

Storage technology for mobile computers is evolv-
ing rapidly. New types of storage such as flash mem-
ory offer performance and energy characteristics that dif-
fer substantially from those of disk drives. Further, the
limited battery lifetime of mobile computers has made
power management a critical factor in the design of mo-
bile I/O devices. Finally, a dramatic improvement in stor-
age capacity is enabling users to carry gigabytes of data
in a pocket-sized device. Collectively, these changes are
causing several of the assumptions made in the design of
previous mobile file systems to no longer hold.

In this paper, we present the Blue File System
(BlueFS), a distributed file system for mobile computing
that addresses the new opportunities and challenges cre-
ated by the evolution of mobile storage. Rather than em-
bed static assumptions about the performance and avail-
ability of storage devices, BlueFS has a flexible cache hi-

erarchy that adaptively decides when and where to access
data based upon the performance and energy character-
istics of each available device. BlueFS’s flexible cache
hierarchy has three significant benefits: it extends bat-
tery lifetime through energy-efficient data access, it lets
BlueFS efficiently support portable storage, and it im-
proves performance by leveraging the unique character-
istics of heterogeneous storage devices.

BlueFS uses a read from any, write to many strategy.
A kernel module redirects file system calls to a user-level
daemon, called Wolverine, that decides when and where
to access data. For calls that read data, Wolverine orders
attached devices by the anticipated performance and en-
ergy cost of fetching data, then attempts to read informa-
tion from the least costly device. This lets BlueFS adapt
when portable storage devices are inserted or removed,
when the dynamic power management status of a device
changes, or when wireless network conditions fluctuate.

For calls that write data, Wolverine asynchronously
replicates modifications to all devices attached to a mo-
bile computer. Wolverine aggregates modifications in
per-device write queues that are periodically flushed to
storage devices. Asynchrony hides the performance cost
of writing to several devices, while aggregation saves
energy by amortizing expensive power state transitions
across multiple modifications.

We have implemented BlueFS as a Linux file system
that runs on both laptops and handhelds. Our results
show that BlueFS reduces file system energy usage by
up to 55% and interactive delay by up to 76% compared
to the Coda distributed file system. BlueFS also provides
up to 3 times faster access to data replicated on portable
storage. Further, BlueFS masks the performance impact
of disk power management and leverages new types of
storage technology such as flash memory to save power
and improve performance.

We begin in the next section with a discussion of re-
lated work. Sections 3 and 4 outline BlueFS’s design
goals and implementation. We present an evaluation of
BlueFS in Section 5 and discuss our conclusions in Sec-
tion 6.



2 Related work

BlueFS distinguishes itself from prior distributed file
systems by using an adaptive cache hierarchy to reduce
energy usage and efficiently integrate portable storage.

Energy management has not been a primary design
consideration for previous distributed file systems; how-
ever, several recent projects target energy reduction in the
domain of local file systems. Researchers have noted the
energy benefits of burstiness for local file systems [6, 15]
and have provided interfaces that enable applications to
create burstier access patterns [24]. Rather than defer
this work to applications, BlueFS automatically creates
burstiness by shaping device access patterns. BlueFS
further reduces client energy usage by dynamically mon-
itoring device power states and fetching data from the
device that will use the least energy. Finally, BlueFS
proactively triggers power mode transitions that lead to
improved performance and energy savings.

Several ideas that improve file system performance
may also lead to reduced energy usage. These include
the use of content-addressable storage in systems such as
LBFS [12] and CASPER [21], as well as memory/disk
hybrid file systems such as Conquest [23]. We believe
that these ideas are orthogonal to our current design.

Previous file systems differ substantially in their
choice of cache hierarchy. NFS [13] uses only the ker-
nel page cache and the file server. AFS [8] adds a single
local disk cache — however, it always tries to read data
from the disk before going to the server. xFS [3] employs
cooperative caching to leverage the memory resources
of networked workstations as a global file cache. Each
static hierarchy works well in the target environment en-
visioned by the system designers precisely because each
environment does not exhibit the degree of variability in
device access time seen by mobile computers. In con-
trast, BlueFS’s use of an adaptive hierarchy is driven
by the expectation of a highly dynamic environment in
which access times change by orders of magnitude due
to dynamic power management, network variability, and
devices with different characteristics.

The file system most similar to BlueFS is Coda [9],
which is also designed for mobile computing. Like AFS,
Coda uses a single disk cache on the client — this cache
is always accessed in preference to the server. BlueFS
borrows several techniques from Coda including support
for disconnected operation and asynchronous reintegra-
tion of modifications to the file server [11].

Unlike BlueFS, Coda has not made energy-efficiency
a design priority. Although Coda did not originally sup-
port portable storage, recent work by Tolia et al. [20]
has used lookaside caching to provide limited, read-only
support for portable devices. Lookaside caching indexes

files on a portable device by their SHA-1 hash. If Coda
does not find a file in its local disk cache, it retrieves the
attributes and SHA-1 hash for that file from the server. If
a file with the same hash value exists in the index, Coda
reads the file from portable storage.

Tolia’s work examines how one can best support
portable storage while making only minimal changes to
an existing file system and its usage model. In contrast,
our work integrates support for portable storage into the
file system from the start. Our clean-sheet approach
yields two substantial benefits. First, BlueFS support is
not read-only. BlueFS keeps each portable device up to
date with the latest files in a user’s working set and with
the latest version of files that have affinity for the de-
vice. Since all modifications written to a portable device
are also written to the file server, BlueFS does not lose
data if a portable device is misplaced or stolen. Second,
BlueFS provides substantial performance improvements
by maintaining consistency at the granularity of storage
devices rather than clients. This lets BlueFS access files
on portable storage devices without fetching attributes or
hashes from the server.

PersonalRAID [17] uses portable storage to synchro-
nize disconnected computers owned by the same user.
The target environment differs from that of a distributed
file system in that data is only shared between users and
computers through synchronization with the portable de-
vice. Also, one must have the portable device in order to
access data on any computer. Since PersonalRAID does
not target mobile computers explicitly, it does not make
energy-efficiency a design goal.

Bayou [19], Segank [18], and Footloose [14] take a
peer-to-peer approach to mobile computing. These sys-
tems allow cooperating computers to share data through
pairwise exchange. Many of the principles employed in
BlueFS such as adaptive caching to multiple devices and
tight integration with power management could also be
applied in such peer-to-peer systems.

3 Design goals

In this section, we outline the three primary design
goals of the Blue File System. We also describe how
BlueFS addresses each goal.

3.1 Change is constant

Our first design goal is to have BlueFS automatically
monitor and adapt to the performance and energy charac-
teristics of local, portable, and network storage. Mobile
storage performance can vary substantially due to:

• deployment of new types of storage devices. In
recent years, some handheld computers have
used flash or battery-backed RAM for primary



storage. Compared to disk storage, flash of-
fers excellent performance for read operations
but poor performance for small writes [25].
Battery-backed DRAM offers excellent perfor-
mance for reads and writes, but can sacrifice
reliability. Finally, the performance of new
portable devices such as mobile disks often lags
far behind that of their fixed counterparts [26].

• the impact of power management. Storage and
network devices use aggressive power manage-
ment to extend the battery lifetime of mobile
computers. However, the performance impact
of power management is often substantial. Con-
sider disk drives that cease rotation during idle
periods to save energy [5]. The next access is
delayed several hundred milliseconds or more
while the disk spins up. Similarly, when net-
work interfaces are disabled or placed in power
saving modes, the latency to access remote
servers increases greatly [1]. The end result is
that storage access latency can change by sev-
eral orders of magnitude when a device transi-
tions to a new power mode.

• network variability. Access times for remote
storage are affected by fluctuations in network
performance due to mobility. For example,
when latency to a network server is low, the
best performance will often be achieved by es-
chewing local storage and fetching data directly
from the server. When latency is high, local or
portable storage is best.

BlueFS adapts to storage variability by passively
monitoring the performance of each local, portable, and
remote storage option available to the mobile computer.
It also monitors the power state of each device. When
reading data, BlueFS orders available storage options by
estimated performance and energy cost. It first tries to
obtain needed data from the lowest cost device. If that
option fails, it tries the next device. To mitigate the im-
pact of searching devices that do not contain the desired
data, it maintains an enode cache that records which de-
vices hold recently used files.

On the write path, BlueFS places modifications in per-
device operation logs and asynchronously writes changes
to each device. This substantially improves performance
when writing to devices with high latency such as flash
memory and distant network storage.

One can reasonably expect that mobile storage will
continue to evolve as new technologies such as MEMS-
based storage [16] become available. A file system that
embeds static assumptions about device performance
may soon be outdated. In contrast, a flexible cache hi-
erarchy offers the possibility of adapting to new devices.

3.2 Power to the people

BlueFS’s second design goal is to extend client bat-
tery lifetime. Energy is often the critical bottleneck
on mobile computers, especially for small devices such
as handhelds. On one hand, manufacturers are adding
additional capabilities such as ubiquitous network ac-
cess through 802.11 interfaces, more powerful proces-
sors, and larger storage capacities. On the other hand,
the amount of energy supplied by batteries is improving
slowly [10]. Despite this disconnect, mobile comput-
ers have been able to maintain reasonable battery life-
times by implementing more efficient power manage-
ment strategies at all system layers.

The energy cost of ubiquitous data access can be
high because distributed file systems make heavy use
of power-hungry storage and network devices. How-
ever, the energy expended by current file systems is of-
ten much higher than necessary, simply because energy-
efficiency was not an important goal in their design. In
contrast, BlueFS contains several mechanisms that sub-
stantially reduce energy consumption.

First, BlueFS considers energy cost in addition to per-
formance when deciding from which device it will read
data. Second, BlueFS aggregates write operations to
amortize the energy cost of spinning up disk drives and
powering on network interfaces.

Third, BlueFS integrates with device power manage-
ment strategies. It uses self-tuning power management
interfaces [1, 2] to disclose hints about the devices that it
intends to access. The operating system uses these hints
to proactively transition devices to save time and energy.

Finally, BlueFS enables the use of more aggressive
power management by masking the performance impact
of device transitions. For example, many users disable
disk power management due to the annoying delays that
occur when accessing data after the disk has spun down.
BlueFS hides these delays by initially fetching data from
the network while it spins up the disk. By limiting the
perceived performance impact of power management,
BlueFS may increase the adoption of more aggressive
power management policies.

3.3 You can take it with you

Our last design goal is transparent support for portable
storage such as USB keychains and mobile disks. The
capacity of these devices is currently several gigabytes
and is growing rapidly. Given a wide-area connection
that offers limited bandwidth or high latency, accessing
data on portable storage is substantially faster than read-
ing the data from a file server.

Yet, portable storage is not a panacea. Most users cur-
rently manage their portable storage with manual copy-
ing or file synchronization tools [22]. These methods
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have three potential disadvantages. First, since files on
portable storage are not automatically backed up, vital
data may be lost if a portable device is misplaced, dam-
aged, or stolen. Second, data on portable storage cannot
be accessed from remote computers or shared with other
users when the device is not attached to a computer with
a network connection. Third, the potential for accessing
out-of-date versions or creating inconsistent copies of a
file increases greatly when the user manually manages
the consistency of file replicas.

BlueFS addresses these problems by having each
portable device act as a persistent file cache. BlueFS
presents a single system image across all computers and
portable storage devices. The primary replica of each
block of data resides on the file server. Client and
portable storage devices store second-class replicas that
are used only to improve performance and reduce energy
usage. No data is lost when a portable device is lost,
stolen, or damaged since the primary replica always re-
sides on the server.

Blocks cached on portable storage devices are acces-
sible through the BlueFS namespace. When a new device
is inserted into a computer, BlueFS adds the device to
its search path. On subsequent read operations, BlueFS
transparently fetches files from the portable device if that
device offers better performance and lower energy usage
than other storage options.

When files are modified, BlueFS asynchronously
writes modifications to all storage devices attached to the
computer, as well as to the file server. Propagation of
data to the file server greatly reduces the chance of data
loss since files never reside solely on a portable device.
Further, files are available from the server even when the
portable device is disconnected. Of course, mobile users
may wish to access cached data when disconnected from
the network. In this case, BlueFS uses techniques pio-
neered by Coda [9] to allow disconnected operation.

For example, consider a user with a USB keychain
who accesses data on computers at home and at work.
When the user creates the file /bfs/myfile at work,
BlueFS transparently replicates it on the keychain. The
user brings the keychain home and inserts it into the
computer there. When the file is next accessed, BlueFS
fetches it from the keychain instead of from a distant
server. The only change that the user notices is that per-
formance is substantially better using the keychain. If
the user leaves the keychain at work by mistake, the file
is retrieved from the file server instead.

Compared to manual copy, BlueFS greatly reduces
the potential for data inconsistency by making individ-
ual storage devices first-class entities in the file system.
The BlueFS file server maintains per-device callbacks for
each file. On modification, the server sends an invali-
dation to the client to which the portable device is cur-
rently attached. If the device is disconnected, the inval-
idation is queued and delivered when the device is next
attached to a client. Note that BlueFS cannot eliminate
all inconsistencies because it allows disconnected op-
eration and writes modifications asynchronously to im-
prove performance and energy efficiency. Concurrent
updates to the same file may create conflicts where two
versions of the file exist. As in many other systems that
support weaker consistency, such conflicts are automati-
cally detected and flagged for manual or automatic reso-
lution [9].

Manual copy guarantees that a replica of the file, no
matter how out of date, will exist on a device until it is
deleted. BlueFS provides a stronger guarantee through
affinity, which lets users specify that a particular device
should always store the latest version of a file or subtree.
When a file with affinity is invalidated, BlueFS automat-
ically fetches the new version and stores it on the device.



4 Implementation

4.1 Overview

Figure 1 shows the BlueFS architecture. To simplify
implementation, we perform the bulk of the client func-
tionality in a user-level daemon called Wolverine. A
minimal kernel module, described in the next section, in-
tercepts VFS calls, interfaces with the Linux file cache,
and redirects operations to Wolverine. Wolverine, de-
scribed in Section 4.3, handles reading and writing of
data to multiple local, portable, and remote storage de-
vices. The BlueFS server, described in Section 4.4,
stores the primary replica of each object (i.e. each file,
directory, symlink, etc.)

BlueFS associates a 96-bit identifier with each object:
the first 32 bits specify an administrative volume [8],
and the remaining 64 bits uniquely identify the object
within that volume. Caching in BlueFS is performed at
the block-level. Operations that read or modify data op-
erate on whole 4 KB blocks — this size was chosen to
match the Linux page cache block size. As described in
Section 4.3.6, cache consistency is maintained with ver-
sion stamps and callbacks [8].

4.2 BlueFS kernel module

Similar to many previous file systems [8, 9], BlueFS
simplifies implementation by performing most function-
ality in a user-level daemon. The BlueFS kernel mod-
ule intercepts Linux VFS operations and redirects them
to the daemon through an upcall mechanism. The kernel
module also handles caching and invalidation of data and
metadata in the Linux file cache. Operations that modify
data such as write, create and rename are redirected
synchronously to the daemon. This allows the daemon
to support devices with different consistency semantics:
for example, the daemon might reflect modifications to
the server immediately to minimize the chance of con-
flicts, but it might delay writing data to disk to minimize
expensive disk power mode transitions. The cost of this
implementation is that a dirty block is double-buffered
until it is written to the last storage device or evicted from
the file cache. We plan to eliminate double-buffering in
the future by moving more functionality into the kernel.

4.3 The Wolverine user-level daemon

4.3.1 Write queues

Wolverine maintains a write queue in memory for
each local, portable, and network storage device that
is currently accessible to the mobile computer. Ini-
tially, it creates a write queue for the server and one
for each permanent storage device on the client. When
a portable storage device is attached, Wolverine cre-
ates a new queue; when a portable device is detached,

Wolverine deletes its associated queue. Write queues
serve two purposes: they improve performance by asyn-
chronously writing data to storage, and they improve
energy-efficiency by aggregating writes to minimize ex-
pensive power mode transitions.

A write queue is essentially an operation log for a stor-
age device. Whenever Wolverine receives a modification
via an upcall, it adds a new record containing that mod-
ification to each write queue. Operations are written to
storage in FIFO order to guarantee serializability; e.g.
since modifications are reflected to the server in order,
other clients never view inconsistent file system state.

BlueFS conserves memory by sharing records be-
tween write queues. Each record is reference counted
and deleted when the last queue dereferences the record.
For each queue, Wolverine maintains a per-file hash table
of objects that have been modified by queued operations.
Before reading data from a device, Wolverine checks its
hash table to identify any operations that modify the data
and have not yet been reflected to the device.

Each storage device specifies the maximum time that
records may remain on its write queue before being writ-
ten to the device. By default, BlueFS uses a maximum
delay of 30 seconds for all write queues (equivalent to the
default write-back delay for dirty pages in the Linux file
cache). The user may change this value for each device.

Wolverine caps the maximum memory usage of all
write queues to a user-specified value. New opera-
tions that would cause Wolverine to exceed this limit are
blocked until memory is freed by writing queued oper-
ations to storage. To avoid blocking, Wolverine starts
to flush write queues when memory utilization exceeds
75% of the allowed maximum. Each write queue may be
explicitly flushed using a command-line tool.

Wolverine creates bursty device access patterns with
a simple rule: whenever the first operation in a queue is
written to storage, all other operations in that queue are
flushed at the same time. This rule dramatically reduces
the energy used by storage devices that have large transi-
tion costs between power modes.

For example, disk drives save energy by turning off
electronic components and stopping platter rotation. En-
tering and leaving power-saving modes consumes a large
amount of energy that is only recovered if the disk stays
powered down for several seconds [5]. By burst-writing
modifications, BlueFS creates long periods of inactivity
during which the disk saves energy.

Write queues also reduce the energy used to write to
remote storage. Wireless 802.11 networks use a power-
saving mode (PSM) that disables the client interface
during periods of light network utilization. However,
the mobile computer expends more energy to transmit
data in PSM [1] because PSM decreases throughput and



increases latency. Ideally, the wireless network could
achieve the best of both worlds by entering PSM dur-
ing idle periods and disabling PSM before transmitting
data. Unfortunately, since the time and energy cost of
mode transitions is large, it is not cost effective to dis-
able PSM before a small transmission and re-enable it
after. BlueFS solves this problem by aggregating many
small transmissions into a single large one — this makes
power-mode toggling effective.

It seems counter-intuitive that writing data to more
than one storage device could save energy. However, we
find that writing data to multiple devices creates oppor-
tunities to save energy in the future. For example, if the
only copy of an object exists on a disk drive, then that
disk must be spun up when the object is next read. In
contrast, if the object is also written to a remote server,
then the file system may avoid an expensive disk transi-
tion by reading data from the server. Further, since writes
can be aggregated to minimize the number of transitions
while reads usually cannot, writing to multiple devices
in BlueFS tends to reduce the total number of transitions
that occur. When transitions are the dominant component
of energy usage, this saves energy.

4.3.2 Reading data

The kernel module sends Wolverine an upcall when-
ever data it needs is not in the Linux file cache. Wolver-
ine then tries to read the data from the storage option that
offers the best performance and lowest energy cost.

Wolverine maintains a running estimate of the current
time to access each storage device. Whenever data is
fetched, Wolverine updates a weighted average of recent
access times, as follows:

new est. = (α)(this msmt.)+(1−α)(old est.)

For the server, latency and bandwidth are estimated
separately. For local storage, separate estimates are used
for the first block accessed in a file (this captures disk
seek time) and contiguous block accesses in the same
file. Since storage behavior tends to be more stable than
network access times, BlueFS sets α to 0.1 for network
storage and 0.01 for local storage. We chose these values
based on empirical observation of what worked best in
practice.

One might reasonably expect that passive monitoring
of access times alone would yield good estimates. How-
ever, we have found that monitoring device power states
is also essential. In fact, the power state is often the dom-
inant factor in determining the latency of the next access.
For example, the time to read data from a Hitachi micro-
drive increases by approximately 800 ms when the drive
is in standby mode. Also, server latency increases by up
to 100 ms when the network interface enters its power-
saving mode.

BlueFS passively monitors both access times and de-
vice power modes. It uses the OS power manager de-
scribed in [2] to receive a callback whenever a network or
storage device transitions to a new power mode. For each
storage device, it maintains estimators for each possible
power mode. When predicting access times, BlueFS uses
the estimator that matches the current mode.

In addition to performance, Wolverine also consid-
ers energy usage when deciding which device to access.
Because on-line power measurement is often infeasible,
BlueFS relies on offline device characterization to pre-
dict energy costs. These characteristics need be deter-
mined only once for each type of I/O device — they are
provided when the device is first registered with BlueFS.
Often, relevant energy characteristics can be found in de-
vice specifications. Alternatively, we have developed an
offline benchmarking tool that measures the energy used
to read data, write data, and transition between power
modes [1]. Given a device characterization, BlueFS pre-
dicts the energy used by the entire system to access data.
This includes not just energy used by device I/O, but also
the energy expended while the mobile computer waits for
the request to be serviced.

The cost of accessing each device is the weighted sum
of the predicted latency and energy usage. By default,
BlueFS weights these two goals equally; however, the
user may adjust their relative priority. BlueFS first tries
to read the data from the least costly device. If the data is
not stored on that device, BlueFS then tries the remaining
devices in order. Since the server has the primary replica
of each file, Wolverine will only fail to read the data on
any device when the client is disconnected.

Before reading an object from a device, Wolverine
checks the device’s write queue hash table to see if oper-
ations that modify that item have not yet been reflected
to storage. If this is the case, the request can often be ser-
viced directly from the queued operation. For example,
a queued store operation may contain the block of data
being read. Sometimes Wolverine must replay queued
operations that modify the requested object. For exam-
ple, if the write queue contains operations that modify a
directory, Wolverine first fetches the directory from the
device, then replays the modifications in memory. Fi-
nally, it returns the modified directory to the kernel.

4.3.3 The enode cache

Early in our implementation, we found that BlueFS
sometimes wasted time and energy trying to read data
from a storage device that did not contain the needed
data. We therefore considered how to minimize the num-
ber of fruitless reads that occur. We explored maintain-
ing an in-memory index of cached data for each device.
However, given the limited memory and rapidly increas-
ing storage capacity of many small mobile devices, we



felt that such an index would often be too large. Instead,
we decided to strike a reasonable compromise by caching
index information only for recently accessed files.

When BlueFS first accesses an object, it creates an
enode that captures all the information it currently holds
about the validity of that object on the storage devices
attached to the mobile computer. For each device, the
enode indicates whether the object’s state is known or
unknown. For an object with known state, the enode tells
whether its attributes are valid, and whether none, some,
or all of its data blocks are cached. Enodes are hashed
by file id and stored in an enode cache managed by LRU
replacement. The default size of the cache is 1 MB.

Wolverine checks the enode cache before trying to
read an object from a device. It skips the device if an
enode reveals that the object is not present or invalid.
Whenever Wolverine tries to access an object on a new
device, it updates the object’s enode with its current sta-
tus (i.e. whether it is present on the device, and if so,
whether its data and attributes are valid).

4.3.4 Storage devices

Wolverine supports a modular VFS-style device inter-
face for storage. Each device provides methods to read
data and attributes, as well as methods to handle queued
modifications. We have implemented two devices that
use this interface. The remote device communicates with
the server through a TCP-based RPC package. The cache
device performs LRU-style caching of object attributes
and data blocks.

The cache device is layered on top of a native file sys-
tem such as ext2. This simplifies implementation and al-
lows BlueFS and non-BlueFS files to co-exist on a single
local or portable storage device. Thus, a portable storage
device with a BlueFS cache may also be used on comput-
ers that are not BlueFS clients; however, such computers
would only access the non-BlueFS files.

Each object and its attributes are stored in a single
container file in the native file system that is named by
the object’s 96-bit BlueFS id. This implementation sac-
rifices some efficiency, but has let us quickly support a
wide variety of storage media. Data blocks are cached in
their entirety, but not all blocks in a file need be cached.
Similar to the enode structure, each container file has
a header that specifies whether the object attributes are
valid, and whether its data is invalid, partially valid, or
entirely valid. When only a portion of the data blocks are
cached, a bit mask determines which blocks are valid.

To start using a new storage device, a client registers
the device with the BlueFS server. The server assigns a
unique id that is written to a metadata file on the storage
device. During registration, the user also specifies the
maximum amount of storage that BlueFS may use on that

device. After a device is registered, it may be attached to
any BlueFS client.

If the cache on a device becomes full, BlueFS evicts
objects using the second-chance clock algorithm, with
the additional modification that object metadata is given
additional preference to remain in the cache. Wolverine
starts the eviction thread whenever a cache becomes 90%
full. Since the primary replica of a file always exists on
the server, the eviction thread simply deletes container
files to create space.

To maintain the LRU approximation, Wolverine en-
sures that each cache is updated with the latest version
of data being read by the user. When data is read from
the server or from another device, Wolverine checks the
object’s enode to determine if the cache already has the
latest version of the data. If the cache does not have the
data or its status is unknown, Wolverine places a copy of
the data on the device’s write queue. This ensures that
each local and portable device has up to date copies of
files in the user’s current working set.

4.3.5 Affinity

While LRU replacement is a convenient way to cap-
ture a user’s current working set on a local or portable
device, it is often the case that a user would prefer to al-
ways have a certain set of files on a particular device. In
BlueFS, device affinity provides this functionality.

Affinity specifies that the latest version of an object
should always be cached on a particular device. Al-
though affinity is similar in spirit to hoarding [11] in
the Coda file system, affinity can support portable de-
vices because it is implemented at device granularity. In
contrast, Coda implements hoarding at client granularity,
meaning that one cannot hoard files to portable storage or
to multiple devices on the same client.

In BlueFS, a command-line tool provides users with
the ability to add, display, or remove affinity for files and
subtrees. Affinity is implemented as an attribute in the
cache container file header. If the affinity bit is set, the
object is never evicted. If a file with affinity is invalidated
by a modification on another client, Wolverine adds the
object to a per-device refetch list. Every five minutes,
a Wolverine thread scans the refetch lists of all attached
devices and requests missing data from the server. If the
set of files with affinity to a device is greater than the size
of the cache, the user must remove affinity from some
files before the thread can refetch all files.

Affinity for subtrees is supported with a sticky affin-
ity attribute that is associated with directories. Whenever
an object is added as a child of a directory with sticky
affinity to a device, the new object is given affinity to
that device. If the new object is a directory, it also re-
ceives sticky affinity. For example, if a user specifies that



a PowerPoint directory has sticky affinity to a USB stick,
new files created in that directory will also have affinity
to the USB stick.

4.3.6 Cache consistency

Cache consistency in BlueFS builds upon two pieces
of prior work: Coda’s use of optimistic replica con-
trol [9] and AFS’s use of callbacks for cache coher-
ence [8]. BlueFS adds two important modifications.
First, BlueFS maintains callbacks on a per-device basis,
rather than on a per-client basis. Second, the BlueFS
server queues invalidation messages when a device is
disconnected. These modifications let BlueFS efficiently
support portable media and clients that frequently hiber-
nate to save energy.

Optimistic replica control provides greater availabil-
ity and improves performance by allowing clients to read
or write data without obtaining leases or locks. When
two clients concurrently modify a file, the write/write
conflict is detected at the server and flagged for manual
resolution. Like Coda, BlueFS stores a version number
in the metadata of each object. Each operation that modi-
fies an object also increments its version number. Before
committing an update operation, the server checks that
the new version number of each modified operation is
exactly one greater than the previous version number. If
this check fails, two clients have made conflicting mod-
ifications to the object. The user must resolve such con-
flicts by selecting a version to keep. In the absence of
disconnection, such conflicts occur only when two dif-
ferent clients update the same file within 30 seconds of
each other (i.e. the amount of time an update can reside
in the server write queue). Prior experience in other dis-
tributed file systems [9] has shown that such conflicts are
rare.

Callbacks are a mechanism in which the server re-
members that a client has cached an object and notifies
the client when the object is modified by another client.
In contrast to AFS and Coda, BlueFS maintains call-
backs on a per-device rather than a per-client granularity.
Specifically, a BlueFS device may hold a data and/or a
metadata callback for each object. When Wolverine adds
an operation to a device write queue that caches data, it
also adds a callback request on behalf of that device to
the server write queue. It uses the enode cache to re-
duce the number of callback requests. The object enode
records the set of devices for which the server is known
to hold a callback. When a callback is already known to
exist for a device, no request need be sent to the server.
Wolverine also sets callbacks for objects stored in the
Linux file cache. From the point of view of the server, a
client’s file cache is simply another device.

Each callback request contains the version number of
the cached object. If this does not match the version

number of the primary replica, the server issues an im-
mediate invalidation. Otherwise, the server maintains the
callback as soft state.

Wolverine optimizes invalidation delivery by notify-
ing the server when storage devices are attached and de-
tached. The server does not send invalidations to devices
that are currently attached to the client that made the
modification since the client will already have placed the
modification on each device’s write queue. The server
sends invalidations to all other devices that have a call-
back on the object; invalidations for multiple devices at-
tached to the same client are aggregated.

Upon receipt of an invalidation, the client updates the
object enode to indicate that the data and/or metadata are
no longer valid. Invalidations for the Linux file cache
are passed to the kernel module, which removes the data
from the file cache. Other invalidations are placed on
device write queues. When the queues are flushed, inval-
idated objects are deleted. Note that the presence of the
invalidation record in a queue’s hash table prevents stale
data from being read before the queue is flushed.

As described, callbacks provide cache consistency
only when the server and the client to which a storage
device is attached remain continuously connected. Dur-
ing disconnection, invalidation messages could poten-
tially be lost, so the validity of cached objects becomes
unknown. In our initial design, BlueFS performed full
cache revalidation upon reconnection. During revalida-
tion, BlueFS verifies each cached object by asking the
server for the version number and identifier of the last
client to make an update. If these values match those of
the cached replica, the replica is valid and a new callback
is set. Otherwise, the replica is deleted.

However, due to the growing size of mobile storage
devices, full cache validation is expensive in terms of
both time and energy. Unfortunately, mobile storage de-
vices are frequently disconnected from the server. First,
portable devices are naturally disconnected when they
are detached from one computer and reattached to an-
other. Second, handheld and other mobile computers fre-
quently hibernate or enter other power saving modes in
which the network interface is disabled. Thus, the de-
vices specifically targeted by BlueFS frequently discon-
nect and would often require full cache revalidation given
our initial design.

We therefore modified our design to have the server
queue invalidation messages for later delivery when a de-
vice holding a callback is disconnected. When a portable
device is next attached to a BlueFS client, the server for-
wards all invalidations queued during disconnection to
the new client. Similarly, when a client hibernates to save
power, the server queues invalidations for that client’s
file cache and all its attached devices. This lets hand-



held clients nap for short periods without missing inval-
idations. With these modifications, BlueFS avoids full
cache revalidations in most cases. A revalidation is re-
quired only when soft state is lost due to client or server
crash, or when a portable storage device is not cleanly
detached as described in the next section.

From the server’s point of view, client disconnection
is equivalent to hibernation. When Wolverine detects
that the server is unreachable, it writes operations that
are flushed from the server write queue to a file on a
user-specified local (non-portable) storage device. Upon
reconnection, it reads the file and sends these operations
to the server before transmitting new updates.

4.3.7 Adding and removing storage devices

Once a portable storage device is registered with the
server, it may be dynamically attached and detached
from any BlueFS client.

When a portable device is detached, Wolverine:

• sends a detach message to the server. The server
starts queuing callbacks at this point.

• stops placing new operations on the device’s
write queue. This is done atomically with pro-
cessing of the detach message.

• retrieves and stores the current version of any
objects on the device’s affinity-driven refetch
list.

• flushes any operations remaining on the write
queue to the device

• flushes the server write queue.

• writes to the device the state of the enode cache
for that device.

• writes a clean shutdown record to that device.

A clean detach guarantees that the latest version of all
files with affinity to the device are stored on that device.
BlueFS also supports an option in which the detach does
not refetch files from the server, but instead records the
list of files to be refetched in a file on the device. This op-
tion makes detach faster but these files are not available
if the device is next attached to a disconnected client.

When a portable device is attached, Wolverine:

• checks for a clean shutdown record. If the
record is found, it is deleted. If it is not found,
full cache revalidation is performed.

• sends an attach message to the server.

• deletes any objects invalidated by queued call-
backs contained in the server’s response to the
attach message.

• warms the enode cache with the device’s previ-
ously saved state. New enodes are created if the
cache is not full; otherwise, only enodes in the
cache are updated with the device state.

• reschedules any refetch requests that were saved
during detach.

If a device was not cleanly detached, it must be fully
revalidated on reattachment. Currently, revalidation must
also be performed when devices are detached from a dis-
connected client.

4.3.8 Fault tolerance

The BlueFS server writes modifications to a write-
ahead log before replying to RPCs. Since modifications
are safe only after the server replies, BlueFS clients can
lose approximately 30 seconds worth of updates if they
crash (i.e. the set of updates that resides in the server
write queue). In the common case, no data is lost when
a local or portable storage device on the client suffers a
catastrophic failure (since the primary replica of each ob-
ject exists on the server). However, modifications made
during disconnected operation are lost if the device hold-
ing the persistent head of the server write queue fails.
Although BlueFS does not currently guard against catas-
trophic server failure, well-known mechanisms such as
server or storage replication could provide this function-
ality.

4.3.9 Integration with power management

BlueFS works closely with device power manage-
ment to minimize energy usage. It discloses hints about
its I/O activity using self-tuning power management
(STPM). Since STPM has been described elsewhere [1],
we present only a brief description here.

BlueFS issues a STPM hint every time it performs
an RPC. The hint contains the size of the RPC and dis-
closes whether the RPC represents background or fore-
ground activity. The STPM module uses this informa-
tion to decide when to enable and disable power-saving
modes. This decision is based upon a cost/benefit anal-
ysis that considers the observed distribution of RPCs,
the base power of the mobile computer, and the user’s
current relative priority for performance and energy con-
servation. For example, if BlueFS performs three RPCs
in close succession, STPM might anticipate that several
more RPCs will soon occur and disable power manage-
ment to improve performance.

If an adaptive system such as BlueFS adopts a purely
reactive strategy that considers only one access at a time,
it will often make incorrect decisions about which de-
vice to access. As an example, consider the case where
BlueFS is reading many small files stored on the server
and on a disk in standby mode. The best strategy is to
fetch the files from disk, since the transition cost of spin-
ning up the disk will be amortized across a large num-
ber of accesses. However, a system that considers only
one access at a time will never spin up the disk since the
transition cost always outweighs the benefit that will be
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Figure 2. Masking the latency of disk power management

realized by a single file. Dynamic power management
cannot help here: the disk will never spin up because the
OS sees no disk accesses.

BlueFS solves this problem using ghost hints [2] that
disclose to the OS the opportunity cost that is lost when
a device is in a power-saving mode. When Wolverine
predicts the time and energy cost of accessing each de-
vice in its current power mode, it also predicts the cost
that would have resulted from that device being in its
ideal mode. If the device that has the lowest current cost
differs from the device that has the lowest ideal cost,
Wolverine issues a ghost hint to the device with lowest
ideal cost. The ghost hint discloses the time and energy
wasted by that device being in the wrong power mode.
For example, when the disk STPM module receives a set
of ghost hints whose lost opportunity cost exceeds the
cost of the disk transition, it spins up the disk. Thus,
ghost hints enable BlueFS to proactively switch to the
best device during periods of high load.

We have designed BlueFS to mask the performance
impact of device power management. Consider the case
shown in Figure 2 where BlueFS is fetching a large
file with the disk initially in standby mode to conserve
power. Using other file systems, fetching the first block
incurs a large delay as the disk spins up (800 ms for the
Hitachi microdrive [7] and one second for the IBM T20
laptop drive). In contrast, BlueFS hides this delay by
fetching blocks over the network. For each block that
it fetches from the network, BlueFS issues a ghost hint
that discloses the opportunity cost of the disk being in
standby. While the disk spins up in response to the ghost
hints, BlueFS continues to fetch blocks from the server.
After the transition completes, BlueFS fetches remaining
blocks from disk. Eventually, the network device enters
a power-saving mode since it is now idle. No ghost hints
are issued to the network device because the disk offers
both the lowest current and ideal cost.

Our belief is that many users avoid disk power man-
agement because of lengthy spin up delays. If BlueFS
hides these delays, then users might use more aggressive
power management policies. However, the potential en-
ergy savings are extremely difficult to quantify; if such
savings were to occur, they would supplement those we
report in Section 5.5.

4.4 BlueFS server

Since the focus of BlueFS is on the mobile client, our
file server implementation is fairly standard. We expect
a single BlueFS server to handle roughly the same num-
ber of clients handled by a current AFS or NFS server.
The BlueFS server stores the primary replica of every
object. When a client modifies an object, it sends the
modification to the server. The server provides atomicity
and durability for file system operations through write-
ahead logging and serializability by locking the BlueFS
identifier namespace. The largest difference between the
BlueFS server and those of other file systems is that the
BlueFS server is aware of individual storage devices.

5 Evaluation

Our evaluation answers five questions:

• Do the new features of BlueFS hurt perfor-
mance during traditional file system bench-
marks?

• How well does BlueFS mask the access delays
caused by disk power management?

• How well does BlueFS support portable stor-
age?

• How much does BlueFS reduce energy usage?

• Can BlueFS adapt to storage devices with het-
erogeneous characteristics?



5.1 Experimental setup

We used two client platforms: an IBM T20 laptop and
an HP iPAQ 3870 handheld. The laptop has a 700 MHz
Pentium III processor, 128 MB of DRAM and a 10 GB
hard drive. The handheld has a 206 MHz StrongArm pro-
cessor, 64 MB of DRAM and 32 MB of flash. The laptop
runs a Linux 2.4.28-30 kernel and the handheld a Linux
2.4.18-rmk3 kernel. Unless otherwise noted, both clients
use a 11 Mb/s Cisco 350 802.11b PCMCIA adapter to
communicate with the server. The portable device in our
experiments is a 1 GB Hitachi microdrive [7].

The server is a Dell Precision 350 desktop with
a 3.06 GHz Pentium 4 processor, 1 GB DRAM, and
120 GB disk, running a Linux 2.4.18-19.8.0 kernel.
The client and server communicate using a Cisco 350
802.11b base station. When we insert delays, we route
packets through an identical Dell desktop running the
NISTnet [4] network emulator.

We measure operation times using the
gettimeofday system call. Energy usage is mea-
sured by attaching the iPAQ to an Agilent 34401A
digital multimeter. We remove all batteries from the
handheld and sample power drawn through the external
power supply approximately 50 times per second. We
calculate system power by multiplying each current
sample by the mean voltage drawn by the mobile
computer — separate voltage samples are not necessary
since the variation in voltage drawn through the external
power supply is very small. We calculate total energy
usage by multiplying the average power drawn during
benchmark execution by the time needed to complete the
benchmark. The base power of the iPAQ with network
in PSM and disk in standby is 1.19 Watts.

We limit maximum write queue memory usage for
BlueFS to 50 MB on the laptop and 15 MB on the hand-
held. Unless otherwise noted, we assign an equal priority
to energy conservation and performance.

5.2 Modified Andrew benchmark

We begin our evaluation with the traditional modi-
fied Andrew benchmark. While this benchmark does
not have a workload typical of how we expect BlueFS to
be used, its widespread adoption in the file system com-
munity makes it a useful data point. We compare three
file systems: NFS version 3, operating in asynchronous
mode; Coda version 6.0.3 running in both write con-
nected mode, in which modifications are reflected syn-
chronously to the server, and write disconnected mode,
in which modifications are reflected asynchronously; and
BlueFS. We measure the time needed by each file sys-
tem to untar the Apache 2.0.48 source tree, run config-
ure, make the executable, and delete all source and object
files. In total, the benchmark generates 161 MB of data.

Latency NFS Coda BlueFS
(ms) Wr. Conn. Wr. Disc.

0 879 ( 3) 702 (3) 601 (15) 552 (11)

30 5779 (56) 1681 (4) 637 (10) 535 (14)

This figure shows the number of seconds needed to untar, con-
figure, make, and delete the Apache 2.0.48 source tree. Each
value shows the mean of 5 trials with standard deviation given in
parentheses.

Figure 3. Modified Andrew benchmark

Figure 3 shows the result of running this benchmark
on the IBM T20 laptop. With no network latency be-
tween client and server, BlueFS executes the benchmark
59% faster than NFS and 9% faster than Coda in write
disconnected mode. With a 30 ms latency, BlueFS is over
10 times faster than NFS and 19% faster than Coda.

BlueFS and Coda both outperform NFS because they
cache data on the laptop hard drive. In contrast, NFS
must refetch data from the server during benchmark ex-
ecution — this is especially costly when latency is high.
The difference in Coda’s performance between write
connected and write disconnected mode shows the bene-
fit of writing modifications asynchronously to the server.
Given this performance difference, we operate Coda in
write disconnected mode in subsequent experiments.

Originally, we had expected BlueFS to exhibit per-
formance similar to that of Coda in write disconnected
mode. One possible reason for the performance advan-
tage seen by BlueFS is its use of TCP rather than Coda’s
custom transport protocol. Another possible reason is
Coda’s use of RVM. However, we note that Coda’s re-
silience to client crash in write disconnected mode is
similar to that of BlueFS — up to 30 seconds of data
can be lost.

5.3 Masking the latency of power management

We next examined how well BlueFS hides the access
delays caused by disk power management. We first mea-
sured the time used by the Linux ext2 file system to read
files from the Hitachi 1 GB microdrive when the drive is
in standby mode. As shown by the dashed line in Fig-
ure 4, ext2 reads are delayed for approximately 800 ms
while the drive spins up to service the first request. Note
that distributed file systems such as Coda pay the same
performance penalty as ext2 because they use a static
cache hierarchy that always fetches data from disk.

We next measured the time to read the same files us-
ing BlueFS. BlueFS masks disk spin-up delay by read-
ing the first few blocks of the file from the server. For
small files, this leads to a substantial performance im-
provement; BlueFS reads a 4 KB file in 13 ms, whereas
ext2 requires over 800 ms. This gap may be larger for
other hard drives — our laptop hard drive spin-up delay
is greater than 1 second.
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This figure shows the time used by ext2 and BlueFS to read 4–
512 KB files. Files are stored on a portable Hitachi 1 GB micro-
drive and on the BlueFS server. At the beginning of each trial,
the network is in CAM and the microdrive is in standby mode. No
latency is inserted between the BlueFS client and server. Each
value is the mean of five trials.

Figure 4. Masking power management latency

The performance benefit of BlueFS decreases with
file size. For large files, BlueFS ghost hints spin up
the disk. During the transition, BlueFS fetches blocks
from the network. Although BlueFS improves perfor-
mance by fetching the first part of each file from the net-
work, this benefit is offset by the lack of readahead in
our current implementation. The break-even file size, at
which BlueFS and ext2 have equivalent performance, is
256 KB. However, first-byte latency is an important met-
ric for applications such as grep and Mozilla that can
begin useful processing before all bytes have been read.
Since BlueFS delivers the first block of large files to the
application 800 ms faster than ext2, many applications
will be able to begin processing data sooner.

5.4 Support for portable storage

We measured how well BlueFS supports portable stor-
age using a benchmark devised by Tolia et al. [20].
The benchmark replays a set of Coda traces collected at
Carnegie Mellon University using Mummert’s DFSTrace
tool [11]. The traces, whose characteristics are shown in
Figure 5, capture file system operations performed over
several hours on four different computers. Due to Coda’s
open-close semantics, the traces do not capture individ-
ual read and write operations. We therefore modified
DFSTrace to assume that files are read in their entirety
on open. Further, files that are modified are assumed to
be written in their entirety on close.

Each file system trace is accompanied by a snapshot
of the file system at the start of trace collection. At the
beginning of each experiment, the snapshot data exists
on the file server and the portable microdrive, but not on

Number Length Update Working
Trace of Ops. (Hours) Ops. Set (MB)
purcell 87739 27.66 6% 252
messiaen 44027 21.27 2% 227
robin 37504 15.46 7% 85
berlioz 17917 7.85 8% 57

This figure shows the file system traces used in our evaluation.
Update operations are those that modify data. The working set
is the total size of the files accessed during a trace.

Figure 5. File traces used in evaluation

the local disk of the client. We also generate a lookaside
index of the snapshot on the microdrive. Before running
the benchmark, we flush the Linux file cache on both the
client and server.

Tolia’s benchmark replays each trace as fast as possi-
ble and measures the time to complete all operations. We
therefore set BlueFS’s performance/energy knob to max-
imum performance. We ran the benchmark on the IBM
T20 laptop, using a Lucent 2 Mb/s wireless network card
to limit network bandwidth. We also use NISTnet to vary
network latency from 0 to 60 ms.

Figure 6 compares the time to replay the traces with-
out portable storage using Coda, with portable stor-
age using Coda’s lookaside caching, and with portable
storage using BlueFS. At 0 ms latency, BlueFS reduces
benchmark execution time 28–44% for the Purcell and
Messiaen traces compared to Coda lookaside caching.
Although lookaside caching pays little penalty for reval-
idating objects with the server at this latency, BlueFS
achieves a substantial benefit by fetching small files from
the server rather than the microdrive. For the Robin and
Berlioz traces, BlueFS and lookaside caching perform
similarly with no latency. For the four traces at 0 ms la-
tency, BlueFS reduces replay time 34–50% compared to
Coda without portable storage.

As latency increases, the performance advantage of
BlueFS grows. Lookaside caching requires one server
RPC per object in order to retrieve the attributes and
SHA-1 hash — BlueFS avoids this round-trip by using
device callbacks. At a latency of 30 ms, BlueFS fetches
all data from portable storage — thus, it is not affected
by further increases in network latency. At this latency,
BlueFS is at least twice as fast as Coda with lookaside
caching for the four traces.

At 60 ms latency, BlueFS executes the benchmark 5–
7 times faster than Coda without lookaside caching and
over 3 times faster than Coda with lookaside caching.
Over a higher-bandwidth, 11 Mb/s network connection,
we saw roughly similar results — BlueFS executed the
benchmark approximately 3 times faster than Coda with
lookaside caching at a network latency of 60 ms.

Finally, it is important to note that BlueFS updates the
microdrive as objects are modified during the trace. At
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This figure compares the performance benefit achieved by BlueFS and Coda through the use of portable storage. Each graph shows
the time to replay a file system trace with data stored on a local 1 GB microdrive and on a file server with 0, 30, and 60 ms of network
latency. Each value is the mean of 3 trials — the error bars show the highest and lowest result.

Figure 6. Benefit of portable storage

the end of trace replay, the microdrive holds a complete
version of the modified file tree. Since Coda lookaside
caching provides read-only access to portable storage,
many cached objects are invalid at the end of trace re-
play. In order to bring the cache up to date, the user
must manually synchronize modified files and generate a
new lookaside index. For large caches, index generation
is time-consuming (e.g. 3 minutes for the Purcell tree),
because it requires a full cache scan.

5.5 Energy-efficiency

We next measured the energy-efficiency of BlueFS by
running the Purcell trace on the iPAQ handheld using the
microdrive as local storage. In this experiment, it is im-
portant to correctly capture the interaction of file system
activity and device power management by replicating the
interarrival times of file system operations. Thus, be-
tween each request, replay pauses for the amount of time
recorded in the original trace. Since running the entire
trace would take too long using this methodology, we re-
play only the first 10,000 operations — this corresponds
to 42:36 minutes of activity.

In our first experiment, shown in Figure 7, all files ac-
cessed by the trace are initially cached on the microdrive.
The left graph compares the interactive delay added to
trace replay by BlueFS and Coda — this shows the time
that the user waits for file operations to complete. The
right graph shows the amount of additional energy used
by the iPAQ to execute file system operations (i.e. it ex-
cludes energy expended during think time). Coda uses
default power management (PSM for the network and the
microdrive’s ABLE power manager). Note that power
management is essential to achieve reasonable battery

lifetime; Coda runs faster without power management,
but the iPAQ expends over 3 times more power.

With 0 ms latency, BlueFS reduces interactive delay
by 35% and file system energy usage by 31%. Since
all files are on disk, Coda only uses the network to
asynchronously reintegrate modifications to the server.
BlueFS, however, achieves substantial performance and
energy benefit by fetching small objects from the server
and by using the network when the disk is in standby.

With 30 ms network latency, the microdrive always
offers better performance than the server when it is ac-
tive. In the absence of power management, Coda’s static
hierarchy would always be correct. However, because
BlueFS hides performance delays caused by the drive en-
tering standby mode, it reduces interactive delay by 8%
compared to Coda. BlueFS also uses 20% less energy.
In addition to the energy reduction that comes from its
performance gains, BlueFS saves considerable energy by
aggregating disk and network accesses.

In Figure 8, we show results when only half of the
files accessed by the trace are initially cached on the mi-
crodrive. The set of cached files was randomly chosen
and is the same in all experiments.

BlueFS excels in this scenario. Compared to Coda,
BlueFS reduces interactive delay by 76% and file sys-
tem energy usage by 55% with no network latency. With
30 ms latency, BlueFS reduces interactive delay by 59%
and file system energy usage by 34%. When some files
are not cached, file accesses often go to different devices.
While one device is being accessed, the others are idle.
During long idle periods, these other devices enter power
saving modes, creating considerable variability in access
times. Thus, this scenario precisely matches the type of
dynamic environment that BlueFS is designed to handle.
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The left graph compares the interactive delay caused by Coda
and BlueFS during the execution of the first 10,000 operations in
the Purcell trace on an iPAQ handheld. The right graph shows
the energy used by each file system. All data is initially cached
on a local 1 GB microdrive. Each value is the mean of three trials
— the error bars show the highest and lowest result.

Figure 7. Benefit of BlueFS with warm cache

Of course, file system energy usage is only a portion
of the total energy expended by the mobile computer.
To calculate the effect of using BlueFS on battery life-
time, one must first determine the power used by non-
file-system activities. In Figure 8, for example, if one
assumes that the iPAQ constantly draws its base power
(1.19 Watts) during user think time, use of BlueFS ex-
tends battery lifetime by 18% with a 0 ms delay and by
12% with a 30 ms delay. However, the extension in bat-
tery lifetime would be much greater if the iPAQ were
to hibernate during trace periods with no activity (be-
cause average power usage due to non-file-system ac-
tivity would decrease). Conversely, application activity
may increase average power usage and reduce the energy
benefit of BlueFS.

5.6 Exploiting heterogeneous storage

In our final experiment, we explored how well BlueFS
utilizes multiple storage devices with heterogeneous
characteristics. The iPAQ handheld contains a small
amount (32 MB) of NOR flash that the familiar Linux
distribution uses as the root partition. Reading a 4 KB
block from flash is inexpensive: it takes less than 1 ms
and uses negligible energy. However, flash writes are
very costly — our measurements show that the iPAQ
flash has substantially lower write throughput and higher
latency than the microdrive. One reason for the low
throughput is that modifying a block of flash requires
a time-consuming erase operation before the block can
be overwritten. Another reason is that the iPAQ uses the
jffs2 file system, which performs writes synchronously.
Finally, jffs2 is log-structured, and garbage collection
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The left graph compares the interactive delay caused by Coda
and BlueFS during the execution of the first 10,000 operations in
the Purcell trace on an iPAQ handheld. The right graph shows
the energy used by each file system. Half of the data is initially
cached on a local 1 GB microdrive. Each value is the mean of
three trials — the error bars show the highest and lowest result.

Figure 8. Benefit of BlueFS with 50% warm cache

uses substantial time and energy [25].

Despite these obstacles, we decided to see if BlueFS
would benefit by using the iPAQ’s flash. We could allo-
cate only 16 MB of flash for BlueFS — much less than
the working set of the Purcell trace. When we untar the
initial tree for the trace on the iPAQ, BlueFS caches all
data on the microdrive but only a small portion on flash.
At the end of the untar, roughly 10,000 attributes and the
last several hundred files accessed are on flash.

Our initial results were disappointing. After investi-
gation, we found the culprit: flash read operations block
for up to several hundred milliseconds while one or more
flash blocks are erased to make room for new data. Based
on this observation, we modified the BlueFS latency pre-
dictor to correctly anticipate reduced performance during
flash queue flushes. We also increased the maximum de-
lay of the flash write queue to 300 seconds to minimize
the number of flushes that occur. We found it interest-
ing that write aggregation proves useful even for a device
with no power mode transitions.

With these modifications, BlueFS makes excellent use
of the iPAQ flash, as shown in Figure 9. With no network
latency, BlueFS with flash reduces interactive delay by
33% compared to our previous results, which used only
the microdrive. Use of flash also reduces BlueFS energy
usage by 9% on average, despite writing data to an addi-
tional device.

With 30 ms latency, flash reduces interactive delay by
48% and BlueFS energy usage by 25%. Observation of
inidvidual file operations shows that BlueFS makes the
best use of each device: data is read from flash when
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The left graph compares the interactive delay caused by Coda
and BlueFS during the execution of the first 10,000 operations of
the Purcell trace on an iPAQ handheld. The right graph shows
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on the microdrive. In addition, 16 MB of data is cached on local
flash. Each value is the mean of three trials — the error bars
show the highest and lowest result.

Figure 9. Benefit of heterogeneous storage

available, large files are read from the microdrive to uti-
lize its superior bandwidth, and the network is used to
read small files and the first block of large files when the
disk is spun down to save power.

6 Conclusion

Compared to previous distributed file systems,
BlueFS provides three substantial benefits: it reduces
client energy usage, seamlessly integrates portable stor-
age, and adapts to the variable access delays inherent in
pervasive computing environments. Rather than retrofit
these features into an existing file system, we have taken
a clean-sheet design approach. The benefits of designing
a new system are most apparent in the portable storage
experiments: BlueFS substantially outperforms an im-
plementation that modifies an existing file system.

In the future, we plan to broaden the set of caching
policies supported on individual devices. For example,
on a device that is frequently shared with friends, a user
may want to store only files that have affinity to that de-
vice. Alternatively, a user might wish to encrypt data on
portable devices that could be easily stolen. We believe
that BlueFS provides an excellent platform on which to
explore this topic, as well as other mobile storage issues.
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