
Practical Privacy: The SuLQ Framework

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim

1 Carnegie Mellon University
2 Microsoft Research
3 Microsoft Research

4 Ben Gurion University

Abstract. We consider a statistical database in which a trusted administrator introduces noise to the
query responses with the goal of maintaining privacy of individual database entries. In such a database,
a query consists of a pair (S, f) where S is a set of rows in the database and f is a function mapping
database rows to {0, 1}. The true response is

∑
r∈S

f(DBr), a noisy version of which is released. Results
of Dinur, Dwork, and Nissim show that a strong form of privacy can be maintained using a surprisingly
small amount of noise – much less than the sampling error – provided the total number of queries
is sublinear in the number of database rows. We call this query and (slightly) noisy reply the SuLQ
(Sub-Linear Queries) primitive. The assumption of sublinearity becomes reasonable as databases grow
increasingly large.
We extend this work in two ways. First, we modify the privacy analysis to real-valued functions f .
Second, we examine the computational power of the SuLQ primitive. We show that it is very powerful
indeed, in that slightly noisy versons of the following computations can be carried out with very few
invocations of the primitive: principal component analysis, k means clustering, the ID3 algorithm, the
perceptron algorithm, and (apparently!) all algorithms in the statistical queries learning model.

1 Introduction

We consider the problem of applying algorithms to a collection of private individual data, with
the goal of producing utility while preserving privacy. We work in the Sub-Linear Queries output-
perturbation framework, introduced by Dwork and Nissim [6]. In this framework, a query consists
of a pair (S, f) where S is a set of rows in the database and f is a function mapping database rows
to {0, 1}. The true response is

∑
r∈S f(DBr), a noisy version of which is released. It was shown

in [6] that a strong form of privacy can be maintained using a surprisingly small amount of noise,
provided the total number of queries is sublinear in the number database rows; hence the term
Sub-Lineare Queries, or SuLQ, framework. The sub-linearity assumption becomes reasonable as
databases grow increasingly larger.

It was already demonstrated in [6] that SuLQ databases provide utility as they allow for learning
statistics of the input, sometimes even in the case of independently-operated vertically-partitioned
databases. In this paper we greatly extend these results, slightly modifying the noise distribution and
strengthening the analysis in [6] to support real-valued functions f , and then obtaining algorithms to
compute a rich collection of supervised and unsupervised functionalities, including approximations
to k-means clustering, principal component analysis, and the ID3 classification algorithm, while
preserving privacy in a very precise and rigorous sense.

Our approach is quite straight forward – we run the SuLQ primitive with the individual private
information playing the role of database entries. This gives rise to a calculus of noisy computation,
in which we formulate our algorithms. We note that whereas in prior work privacy had to be proved
’from scratch’, in the SuLQ framework privacy follows by virtue of working within the framework.

1.1 Related Work

The problem of ensuring privacy in statistical databases has been studied extensively since the
1970’s with mixed results. We focus here on some of the recent results, and refer the reader to [3]
for an excellent survey of results on perturbation and other techniques for statistical disclosure
control.

In 2000 Lindell and Pinkas [11] and Agrawal and Srikant [2] presented two approaches to pri-
vacy preserving datamining. Lindell and Pinkas constructed an efficient secure function evaluation
protocol for the ID3 algorithm. The parties in their protocol collect private individual data, and
want to share it to compute a classification tree. The protocol enables the parties to compute this
classification tree, without leaking any information about the inputs they hold other than what
can be learned from the output. Agrawal and Srikant demonstrated how to learn the probability
distribution underlying some collection of individual data, in the presence of perturbation noise
(introduced for maintaining privacy).

Interestingly, the research of secure function evaluation protocols almost completely ignored the
question of which functionalities preserve privacy. E.g. the work of Lindell and Pinkas guarantees
that no information beyond what is implied by the outcome of the ID3 algorithm is revealed,
but it does not guarantee that this outcome itself preserves privacy, nor that it is superior in
this case to any other classification algorithm of similar quality. To our best knowledge, the only
attempts to define such ‘functional privacy’ in the context of secure function evaluation was by
Feigenbaum et al. [8] in defining private approximations, and similarly Halevi et al. [9] in defining
almost private approximations. Both definitions are strongly tied to the generic definition of secure
function evaluation – they consider f to be functionally private with respect to g if f does not
reveal any information beyond whatever g reveals; it does not say when is the information revealed
by g ‘private’.

The work of Agrawal and Srikant [2] rekindled the interest in perturbation techniques. Sub-
sequent work demonstrated that the privacy definition introduced in [2] is far too weak [1] and
suggested alternative privacy definitions [4–7] and perturbation techniques (see [6] for a short sur-
vey of the evolution of privacy definitions since [2]). Dinur and Nissim [5] researched the limitation
of perturbation techniques in one-dimensional statistical databases, and showed that a fairly large
perturbation noise is needed for preserving privacy with respect to polynomial time adversaries.
Jointly with Dwork they showed, however, that if the total number of queries to a database is
sublinear in the number of its entries n, then a very strong notion of privacy may be maintained
with a surprisingly small amount of noise – a random quantity whose standard deviation is of order
o(
√

n). This result was further extended to multi-attribute databases in [6].
This low amount of noise is significant for the following reason. If we think of each database

entry a sample from some underlying probability distribution and we wish to gather statistics on
properties P that occur with possibly small but still constant probability in the population, then
the sampling error in our population of size n will be of order Ω(

√
n). Thus, the noise that is added

for the sake of protecting privacy is significantly smaller than the sampling error. In other words,
providing privacy need not interfere with accuracy, so long as the number of statistical queries is
not too large.

2 Definitions

We model a database as an n-tuple (d1, d2, . . . , dn) of elements drawn from an arbitrary domain D.
The domain could be points in IRk, text strings, images, or any other imaginable set of objects. In
previous work, the elements di were assumed random and independent, so that revealing one to the
adversary would not give information about another. We advance this approach by using a priori
beliefs about the elements di, which we assume are independent.

For any predicate f : D → {0, 1} we let pi,f
0 be the a priori belief that f(di) = 1 and pi,f

T be
the a posteriori belief that f(di) = 1, given the answers to T queries, as well as all the values
in all rows other than i: di′ for all i′ �= i. We define the monotonically-increasing 1-1 mapping
conf : (0, 1) → IR as follows: conf(p) = log(p/(1 − p)). Note that while a small additive change in
conf(p) implies a small additive change in p, the converse does not hold. Our definition of privacy
is based on bounding the additive increase from conf(pi,f

0) to conf(pi,f
T).

Definition 1 ((ε, δ, T)-Privacy). A database access mechanism is (ε, δ, T)-private if for every set
of independent a priori beliefs b : D × [n] → IR, for every data element index i, for every predicate
f : D → {0, 1}, and for every adversary A making at most T queries,

Pr
[

conf(pi,f
T) − conf(pi,f

0) > ε
]

≤ δ .

The probability is taken over the randomness of the adversary as well as the database access mech-
anism.

3 General SuLQ Databases

The database access mechanism we consider is an extension of the SuLQ DB of [6] to continuous,
real distributions. Here we use N(0, R) to refer to a random number distributed according to a zero
mean normal with variance R = R(ε, δ, T).

SuLQ Database Algorithm A(R)
Input: a query (g : D → [0, 1]).

1. Return
∑

i g(di) + N(0, R).

The main technical theorem of this paper is an extension of the previous privacy result of [6]
from Boolean functions on the domain {0, 1}k to bounded functions on arbitrary domains. The
theorem holds even if the domain of g is [n] × D, but we do not exploit that fact here.

Theorem 1. For all ε, δ, T , the SuLQ algorithm A(R) is (ε, δ, T)-private for R > 8T log2(T/δ)/ε2.

The proof analyzes the a posteriori belief pi,f
� that f(di) = 1 given the answers to the first �

queries (ã1, . . . , ã�) and the entire database except for the ith row. As the initial beliefs are assumed
independent, this definition of pi,f

0 is equivalent to our first definition of pi,f
0 as the a priori beliefs.

Following [5], we study the random walk on the real line defined by conf(pi,f
�), and argue that with

high probability T steps of the random walk do not suffice to reach distance ε. The full proof is
conducted in Section 5.

4 Computation with the SuLQ Primitive

The basic SuLQ operation – query and noisy reply – can be viewed as a noisy computational
primitive which may be used to compute more advanced functions of the database than simple
statistical queries. In this section we describe five examples of the power of the primitive.

In all of the examples below the rows of the database are drawn from [0, 1]d, although it should
be apparent how to generalize many of the techniques to other domains. For notational simplicity,
we consider SuLQ queries that return multi-dimensional answers. Clearly, we could run a query for
each output dimension independently, and, so long as we charge the dimensionality of the result
against our allotted queries, we are simply shortening notation. We use N(0, R)d to refer to a
d-dimensional vector whose entries are each independent N(0, R) random variables.

4.1 Singular Value Decomposition and Optimal Projections

Many powerful data mining and data filtering tasks make use of the singular value decomposition
of an incidence matrix associated with the data. Given a n × d matrix A whose rows are the rows
of the database, Latent Semantic Indexing, Principal Component Analysis, and many flavors of
spectral clustering operate by projecting data elements (eg: rows) onto the space spanned by the
top k right singular vectors of A, these being the top k eigenvectors of the matrix AT A. Given the
matrix AT A, the eigenvectors can be easily computed using standard algorithms from numerical
analysis.

Notice that as di is simply the ith row of A, we may write the matrix AT A as

AT A =
∑

i

dT
i di , (1)

where dT
i di ∈ IRd×d is the outer product of di. This suggests the following rather simple SuLQ

implementation:

1. (d2 queries) Approximate AT A =
∑

i dT
i di by computing

C = SuLQ(f(di) := dT
i di)

2. Compute and return the top k eigenvectors of C.

While C is not exactly AT A, and therefore our computed eigenvectors are not exactly correct,
eigenvectors are notoriously robust in the presence of independent, zero-mean noise. In fact, the
normal error N(0, R)d×d that we add is about the most benign form of error. See [?] for concrete
perturbation bounds.

We remark that, using the techniques of [6] for vertically partitioned databases, this computation
can be carried out even if each column of the database is stored in a separate, independent, SuLQ
database.

Principle Component Analysis PCA [12] is a related technique that uses the space spanned by
the top k right singular vectors of the matrix A, with the mean of the rows, denoted µ, subtracted
from each. These are the top k eigenvectors of the covariance matrix of A, or equivalently, of∑

i(di − µ)T (di − µ)). We can compute an accurate approximation µ to µ with only d additional
queries, and then apply the approach above using C = SuLQ(f(di) := (di − µ)T (di − µ)). The
query complexity of this function is still O(d2).

4.2 k Means

Given a collection of points {di} ⊂ IRd, it is natural to try to cluster the points so that each cluster
contains points that are mutually proximate. One approach to solving this problem is the k-means
algorithm, which maintains a set of k “centers”, points in IRd, and forms clusters by associating
each sample with the closest cluster center. Given a clustering of the points, the cluster centers
minimizing the radii are exactly the means of each cluster, suggesting the following iterative update
rule:

Given cluster centers µ1, . . . µk:
1. Partition the samples {di} into k sets S1, . . . , Sk, associating each di with the nearest µj.
2. For 1 ≤ j ≤ k, set µ′

j =
∑

i∈Sj
di/|Sj |, the mean of the samples associated with µj.

This update rule is typically iterated until some convergence criterion has been reached, or a fixed
number of iterations have been applied.

While the first step seems unlikely to be implementable privately – computing the nearest mean
of any one sample would breach privacy – the update rule’s interface is feasible: we supply k points
in IRd and receive k new points in IRd. In fact, we are able to emulate iterative k-means in SuLQ,
using some care in our definition of f :

Given cluster centers µi . . . , µk:
1. (k queries): Approximate the number of points in each of the Sj, computing for 1 ≤ j ≤ k

sj = SuLQ(f(di) := 1 if j = arg min
j

‖µj − di‖ and 0 otherwise)

2. (kd queries): Approximate the means of points in each of the Sj , computing for 1 ≤ j ≤ k,

µ′
j = SuLQ(f(di) := di if j = arg min

j
‖µj − di‖ and 0 otherwise)/sj

As long as the number of points in each cluster greatly exceeds R1/2, we expect sj to be a good
estimate of sj = |Sj|, and the computed µ′

j to accurately estimate the µ′
j of the non-private

approach. Formally,

Lemma 1. For each 1 ≤ j ≤ k, if |Sj | � R1/2 then with high probability

‖µ′
j − µ′

j‖ is O((‖µj‖ + d1/2)R1/2/|Sj |)

Proof. Notice that the SuLQ algorithm averages the exact same set of rows as the exact algorithm,
with two sources of error: the inaccuracy of the sj and the error in the summation

∑
i∈Sj

di/sj. Let
sj = |Sj | and let nj denote the difference between

∑
i∈Sj

di and sjµ
′
j . We must bound

‖(
∑
i∈Sj

di + nj)/sj −
∑
i∈Sj

di/sj‖ = ‖(1/sj − 1/sj)
∑
i∈Sj

di + nj/sj‖ (2)

≤ |(sj − sj)/sj|‖µ′
j‖ + ‖nj/sj‖ (3)

From our assumption that |Sj | � R1/2, with high probability |(sj − sj)/sj | is O(R1/2/|Sj |) and
‖nj/sj‖ is O((dR)1/2/|Sj |).

4.3 The Perceptron Algorithm

Given a collection of rows di and labels �i ∈ {−1,+1}, a linear threshold is a vector w such that
for all i, 〈di, w〉 · li > 0. That is, the sign of �i agrees with that of the inner product 〈di, w〉, and the
hyperplane orthogonal to w therefore separates positively labeled instances from negatively labeled
ones.

The perceptron algorithm is useful for finding a separator when one is known (or assumed) to
exist. It operates by repeatedly incorporating the misclassified samples into its estimate of w:

1. Initialize w randomly.
2. As long as there exists a j such that 〈dj , w〉 · lj < 0,

(a) Set w = w + dj .
3. Return w.

We will be unable to learn of the misclassification of a specific row, much less select it out for
incorporation into w. However, the proof of convergence for the perceptron algorithm relies only
on the repeated incorporation of misclassified points, not their membership in the set. We will
synthesize an aggregate misclassified point and incorporate it, as in the following algorithm:

1. Initialize w0 = 0d and s0 = n.
2. For j = 0, 1, 2, . . ., repeating so long as sj � R1/2

(a) (1 query) Count the misclassified rows, computing

sj = SuLQ(f(di) := 1 if 〈di, wj〉 · li ≤ 0 and 0 otherwise.)

(b) (d queries) Synthesize a misclassified vector, computing

vj = SuLQ(f(di) := lidi if 〈di, wj〉 · li ≤ 0 and 0 otherwise)/sj.

(c) Set wj+1 = wj + vj .
3. Return the final value of w.

This process incorporates into wj a noisy average of all points that are currently misclassified. If
there are not sufficiently many, the algorithm stops, as we no longer expect the aggregates to reflect
substance rather than noise.

We now sketch the modified proof of convergence of the perceptron algorithm using the SuLQ
primitive. We let Sj be the set of vectors misclassified by wj in the jth round, and let vj =∑

i∈Sj
lidi/sj be the actual sum of misclassified vectors. We use nj = vj−vj for the error introduced

by the SuLQ query, divided by sj

Theorem 2. If there exists a unit vector w′ and scalar δ such that for all i, li〈w′, di〉 ≥ δ and for
all j, δ � (dR)1/2/sj then with high probability the algorithm terminates in at most 32maxi ‖di‖2/δ
rounds.

Proof. The proof we use is not new, aside from the technical issue of analyzing the error returned
by the SuLQ primitive. The proof is by contradiction: we will show that in each round j the
inner product 〈w′, wj〉 increases by more than ‖wj‖. However, as 〈w′, wj〉 ≤ ‖w′‖‖wj‖ = ‖wj‖,
this growth can not continue forever, otherwise 〈w′, wj〉 would overtake ‖wj‖. Therefore, there is
a bound (which we compute) on the number of iterations that are applied. Details appear in the
Appendix (Section A).

4.4 ID3 Classifiers

Let A = A1, . . . , Ad be a collection of categorical attributes and let T = {T1, . . . , Tn} ⊆ A1×· · ·×Ad

be a collection of transactions over these attributes. Each transaction Ti is assigned a label li ∈ L
that we wish to predict given only the transaction attributes. The ID3 algorithm, introduced by
Quinaln [13], is a heuristic for constructing a decision tree classifier, that is, a rooted tree where
each internal node is assigned an attribute A in A1, . . . , Ad, and its out-degree corresponds to the
number of possible values A may assume. Leaves are assigned a value in L. The prediction made
by the decision tree on a transaction T is the leaf value reached by starting at the root, following
the path that agrees with the values assigned to the corresponding attributes in T .

The ID3 tree is constructed starting from the root in a recursive manner. The algorithm chooses
a “best attribute” A to be put at the root, that “best classifies” the transaction set T . The trans-
action set is partitioned by A, and the algorithm is then applied recursively, without the attribute
A. Recursion stops either (i) when the classification of a partition is consistent (all transaction in it
have the same value for A1 which is assigned to the corresponding leaf), or (ii) when the attribute
set becomes empty (and the leaf value is determined according to a majority vote). For simplicity

of presentation, we assume that each attribute (including L) may take values in [t]. We use T [A]
for the value of attribute A in T , the subset of T for which A takes the value j is denoted T [A = j].

Given attributes A = A1, . . . , Ad and a labeled transaction set T :
1. If A = ∅: Return a leaf whose value is the majority vote on the labels of transactions in T .
2. If T [L] = l for all T ∈ T : Return a leaf whose value is l.
3. Determine the attribute A that “best classifies” T (see below).
4. Recursively apply the ID3 algorithm on inputs ((A \ A),T [A = j]) for j ∈ [t].
5. Return a tree with a root node labeled A and edges labeled 1, . . . , t going to the trees obtained

in the corresponding recursive calls to the ID3 algorithm.

To complete the description we need to specify how to determine the attribute A. The entropy
of the label attribute is HL(T) = −∑t

k=1(|T [L = k]|/|T |) log(|T [L = k]|/|T |). Given attribute A
with possible values a1, . . . , at we have HL|A(T) =

∑t
j=1(|T [A = j]|/|T |) · HL(T [A = j]). The

information gain of attribute A is defined as HL(T) − HL|A(T). The attribute A that exhibits
the highest gain is chosen in step 3 of the ID3 algorithm. Observe that one need only maximize
VA = |T | · HL|A(T) =

∑t
j=1

∑t
k=1 |T [A = j ∧ L = k]| · log |T [A=j∧L=k]|

|T [A=j]| to figure out the “best
attribute”.

Using the SuLQ framework, we will be limited in the accuracy of computing HL|A(T). Hence,
we will settle for an approximation to the ID3 algorithm, that picks an attribute A whose gain
is not more than ∆ away from the “best attribute” for some suitably chosen constant ∆ (this
approach is followed also in [11] for other reasons). Another limitation is that we will not be able
to meaningfully recurse with the ID3 algorithm with small transaction sets.

Given attributes A = A1, . . . , Ad and a transaction set T expressed as a conjunction of terms
(A = j):

1. Let NT = SuLQ(f(di) := 1 if T (di)), and for j ∈ [t] let Nj = SuLQ(f(di) :=
(T ∧ (L = j)) (di)).

2. If A contains only A1, return a leaf labeled j that maximizes Nj.
3. If NT < γε (where ε = (R log(1/δ))1/2 and γ = O(t2/∆)), return a leaf labeled j that maximizes

Nj.
4. For every attribute A:

(a) Let NA
j = SuLQ(f(di) := (T ∧ (A = j)).

(b) Let NA
j,k = SuLQ(f(di) := (T ∧ (A = j) ∧ (L = k)).

5. Choose the attribute Ā that maximizes

V̄A =
t∑

j=1

t∑
k=1

NA
j,k · log

NA
j,k

NA
j

where terms for which NA
j,k or NA

j are smaller than NT /γ are skipped.
6. recursively apply the ID3 algorithm on inputs (A \ Ā),Ti ∧ (Ā = i) for i ∈ [t].
7. Return a tree with a root node labeled Ā and edges labeled 1 to t going to the trees obtained

in the corresponding recursive calls to the ID3 algorithm.

Lemma 2. The gain of Ā differs from the maximum gain by ∆ with probability 1 − O(dt2δ).

Proof. Note that with probability 1 − O(dt2δ) all estimates from the SuLQ primitive are within
error ε. Hence, we assume this is the case.

There are two contributions to V̄A − VA. One comes from skipped terms in the sum, these each
contribute at most a NA

j,k + ε = O(|T |∆/t2), and hence form a total of O(|T |∆).
The second contribution to the difference comes from the noise, of magnitude ε, added in NA

j

and NA
j,k (we use the notation τj for |T [A = j]| and τj,k for |T [A = j ∧ L = k]|):

NA
j,k log

NA
j,k

NA
j

= (τj,k ± O(ε)) · log τj,k ± O(ε)
τj ± O(ε)

= (τj,k ± O(ε)) ·
(

log
τj,k

τj
+ log

1 ± O(ε)/τj,k

1 ± O(ε)/τj

)

= (τj,k ± O(ε)) ·
(

log
τj,k

τj
± O(ε)(1/τj,k + 1/τj)

)

Note that the ratio within the log is bounded by constants (as we skip in Step 5), and that the
terms O(ε)/τ are at most constants, hence we get:

NA
j,k log

NA
j,k

NA
j

= τj,k log
τj,k

τj
± O(ε) .

The total contribution here hence O(t2ε) which again evaluates to O(|T |∆), as needed.

4.5 Capturing the Statistical Queries Learning Model

The Statistical Query model, proposed by Kearns in [10], is a framework for examining statisti-
cal algorithms executed on samples drawn independently from an underlying distribution. In this
framework, an algorithm repeatedly specifies a predicate f and an accuracy τ , and is returned the
expected fraction of samples satisfying f to within additive error τ . Conceptually, the framework
models drawing a sufficient number of samples so that the observed count of samples satisfying f
is a good estimate of the actual expectation.

The statistical query model is most commonly used in the computational learning theory com-
munity, where the goal is typically to learn a “concept”, a predicate on the data, to within a certain
degree of accuracy. Formally, an algorithm δ-learns a concept c if it produces a predicate such that
the probability of misclassification under the latent distribution is at most 1− δ.

We will now see that any concept that is learnable in the statistical query model is privately
learnable using the equivalent algorithm on a SuLQ database. The emulation of the Statistical
Query primitive is rather straightforward: we must execute a sufficient number of queries so that
we are assured that the accuracy is within the alloted τ . The efficiency of the learning algorithm,
measured by number and accuracy of queries, will determine the size of the database required to
privately learn the concept.

Given as input a predicate p and accuracy τ :
1. Initialize tally = 0.
2. Repeat t ≥ R/τn2 times

(a) Set tally = tally + SuLQ(f(di) := p(di))
3. Return tally/tn.

Theorem 3. For any algorithm that δ-learns a class F using at most q statistical queries of accu-
racy {τ1, . . . , τj}, the algorithm can δ-learn F on a SuLQ database of n elements, provided that

n2 ≥ R log(q/δ)
T − q

×
∑
j≤q

1/τj

Proof. The repetition in Step 2 reduces the variance, so that each emulated execution of STAT (p, τ)
results in an answer that looks like

∑
i p(di)/n + N(0, τ ′) for some τ ′ ≤ τ . If we properly augment

each of the accuracies for the q queries by a factor of 1/ log(q/δ), we ensure that the probability
that any exceeds their associated τi is at most δ.

With this understood, we now need to determine how large a database we require to ensure
privacy, or rather to ensure that the SuLQ primitive does not prematurely terminate the algorithm.
An execution of a learning algorithm determines a number of SuLQ queries that must be performed,
captured precisely by the set of accuracies {τ1, . . . τj} required by the STAT queries of the algorithm.

T ≥
∑
j≤q

�R log(q/δ)/τjn
2� ≥ q + R log(q/δ)/n2 ×

∑
j≤q

1/τj (4)

From this we determine that for fixed R,T all is well so long as n satisfies

n2 ≥ R log(q/δ)
T − q

×
∑
j≤q

1/τj . (5)

5 Proof of Privacy Theorem

The privacy we offer is a guarantee that the confidence in any predicate applied to a row of the
database will not increase substantially over the course of T arbitrary queries. To bound the change
that occurs, we will view the confidence as a submartingale, and use Azuma’s inequality to bound
its magnitude.

5.1 The Evolution of Confidence as a Sum

We start by working to convert the confidence at any point in time into a sum, with terms con-
tributed at each step. We first convert the a posteriori beliefs into joint beliefs, relying on the fact
that the appropriate scaling is equivalent for the numerator and denominator.

b(f(di) = 1|a1, a2, . . . , aj)
b(f(di) = 0|a1, a2, . . . , aj)

=
b(f(di) = 1 ∧ a1 ∧ a2 . . . ∧ aj)
b(f(di) = 0 ∧ a1 ∧ a2 . . . ∧ aj)

=
Numerj

Denomj

Decomposing the numerator into the integral over the subset D1 ⊆ D of elements x satisfying f ,

Numerj =
∫

D1

b(a1 ∧ a2 . . . ∧ aj ∧ di = x)dx =
∫

D1

b(a1 ∧ a2 . . . ∧ aj |di = x) b(di = x)dx (6)

As each aj is independent of a1, . . . , aj−1 when conditioned on di, we may extract b(aj |di = x) from
the first term.

Numerj =
∫

D1

b(aj |di = x) b(a1 ∧ a2 . . . ∧ aj−1|di = x) b(di = x)dx (7)

As the nature of the perturbation is clear, b(aj |di = x) can be transformed into the probability
p(aj |di = x),

Numerj =
∫

D1

p(aj |di = x) b(a1 ∧ a2 . . . ∧ aj−1|di = x) b(di = x)dx (8)

At this point observe that letting wx = bx/
∫
x bxdx, one can write

∫
x axbxdx =

∫
x wxaxdx

∫
x bxdx.

Moreover, the wx integrate to one and are independent of the ax terms. Applying this observation
to the above equation, choosing ax = p(aj |di = x), we get

Numerj =
∫

D1

wxp(aj|di = x)dx

∫
D1

b(a1 ∧ a2 . . . ∧ aj−1|di = x)b(di = x)dx (9)

=
(∫

D1

wxp(aj|di = x)dx

)
× Numerj−1 (10)

Applying the same arguments to Denomj , we arrive at the equation describing the evolution of
confidence from one step to the next.

log

(
Numerj

Denomj

)
= log

(∫
D1

wxp(aj |di = x)dx∫
D0

wxp(aj |di = x)dx

)
+ log

(
Numerj−1

Denomj−1

)
(11)

The prior beliefs are encoded in the wx, whose rich structure we will ignore completely.

5.2 Azuma’s Inequality

The evolution of confidence takes the form of a sum whose terms are random quantities. This is
analogous to a martingale, and we use Azuma’s inequality to bound the variation of the sum.

Lemma 3 (Azuma). Let s1, . . . sT be i.i.d. random variables such that E[si] ≤ α and |si| ≤ β.

Pr[|
∑

i

si| > λ(α + β)T 1/2 + Tα] ≤ 2e−λ2/2

We apply Azuma’s Inequality to the sum suggested in Eq. (11), with each sj term associated
with the confidence increase from seeing aj . Some work will be conducted in Lemmas 4 and 6 in
Appendix B to determine the relevant values of α and β, but once determined we can prove

Theorem 4. ∀ δ, with probability at least 1 − δ choosing R, the variance on the noise, to satisfy

R > 8 log(2/γ) log(T/δ)T/ε2 + (2λT 1/2 + T)/ε

ensures that for each (target, predicate) pair, after T queries the probability that the confidence has
increased by more than ε is at most γ.

Proof. We apply Azuma’s inequality to the change in confidence, which by Lemmas 4 and 6 has
bounds on expected and absolute increases, respectively,

α = 1/2R and β = (2 log(T/δ)/R)1/2 + 1/2R

yielding

Pr[|∆(conf)| > λ(1/2R + (2 log(T/δ)/R)1/2 + 1/2R)T 1/2 + T/2R] ≤ 2e−λ2/2 .

Rearranging and collecting terms gives

Pr[|∆(conf)| > λ(2 log(T/δ)T/R)1/2 + λT 1/2/R + T/2R] ≤ 2e−λ2/2 .

The second and third terms are smaller than the first, and will generally be of little consequence
as R grows large. When R ≥ 4,

Pr[|∆(conf)| > λ(4 log(T/δ)T/R)1/2] ≤ 2e−λ2/2

Finally, choosing λ = (2 log(2/γ))1/2 gives the bound we desire.

5.3 Deterministic Bounds on Confidence

The bounds on the growth in confidence presented thusfar rely on two types of events that happen
with high probability. First, the absolute increase in a single step should be small, which occurs
whenever |aj | is not overly large. Second, the martingale should not deviate wildly from its expec-
tation, which also happens with a significant probability.

We can remove these two sources of randomness, and the concerns about improbable but possible
privacy breaches, through a slightly altered sanitization and analysis. First, we can discard the
martingale argument and simply use the bound of Lemma 6 on the absolute increase in confidence.
This will weaken our result, but leaves no doubt as to the aggregate change in confidence. Second,
we can remove our use of the normal distribution, which can leak privacy if large values of aj

emerge. Instead, the density function q(x) ∝ e−|x−µ|/R serves as an excellent distribution, as no
matter the size of the sample aj, the ratio q(aj)/q(aj ± 1) is bounded by e−1/R. Combining these
two techniques, we get the following result:

Theorem 5. The modified SuLQ primitive that incorporates noise drawn from the density function
q(x) = e−|x|/R/R is (ε, 0, T)-private for R > T/ε.

Proof. It is not hard to see that for two densities p(x) and q(x) with means µp and µq, we can
bound the absolute increase in confidence by

log(p(x)/q(x)) ≤ −|x − µp|/R + |x − µq|/R ≤ |µp − µq|/R . (12)

As this bound is independent of x, we have a deterministic guarantee. We multiply this by T to yield
an deterministic upper bound on the aggregate increase in confidence of T/R = ε, for ‖µp−µq‖ ≤ 1.

Remark: While the requirement above that R > T/ε looks better than the result proved for
normally distributed noise, this is misleading. The variance of the density function q(x) = e−|x|/R/R
is not R, but rather 2R2, and so the error we must incorporate to achieve the deterministic bounds
is of the order of R rather than R1/2.

References

1. D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving data mining algorithms.
In Proc. Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 2001.

2. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. ACM SIGMOD Conference on Management
of Data, pages 439–450. ACM Press, 2000.

3. N.R. Adam and J.C. Wortmann, Security-Control Methods for Statistical Databases: A Comparative Study,
ACM Computing Surveys 21(4), pp. 515–556, 1989.

4. S. Chawla, C. Dwork, F. McSherry, A. Smith and H. Wee, Toward Privacy in Public Databases, to appear, TCC
2005.

5. I. Dinur and K. Nissim, Revealing information while preserving privacy, Proceedings of the Twenty-Second ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 202-210, 2003.

6. C. Dwork and N. Nissim, Privacy-Preserving Datamining on Vertically Partitioned Databases, Proceedings of
CRYPTO 2004

7. A. Evfimievsky, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In
Proc. Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
211–222, 2003.

8. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. N. Wright. Secure multiparty computation
of approximations. In Proc. 28th International Colloquium on Automata, Languages and Programming, pages
927–938. Springer-Verlag, 2001.

9. S. Halevi, E. Kushilevitz, R. Krauthgamer, and K. Nissim. Private approximations of np-hard functions. In Proc.
33th Annual ACM Symposium on the Theory of Computing, pages 550–559, 2001.

10. M. Kearns, Efficient Noise-Tolerant Learning from Statistical Queries, JACM 45(6), pp. 983 – 1006, 1998. See
also Proc. 25th ACM STOC, pp. 392–401, 1993

11. Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryptology, 15(3):177–206, 2002. An earlier version
appeared in Proc. Crypto 2000.

12. M. J. O’Connel, Search Program for Significant Variables, Comp. Phys. Comm. 8, 1974.
13. J. R. Quinlan, Induction of Decision Trees, Machine learning 1(1), 1986, pp. 81-106.

A Proof of Perceptron Implementation

During any iteration j, wj will be incremented by a collection of vectors
∑

i∈Sj
di/sj that are

misclassified by wj , plus a vector of random noise nj/sj .

〈w′, wj+1〉 = 〈w′, wj +
∑
i∈Sj

(lidi)/sj + nj〉 = 〈w′, wj〉 + 〈w′,
∑
i∈Sj

(lidi)/sj〉 + 〈w′, nj〉

The distribution on nj ensures that with high probability ‖〈w′, nj〉‖ � δ/4. Recalling that
〈w′, lidi〉 ≥ δ for all i, we are left with

〈w′, wj+1〉 ≥ 〈w′, wj〉 + 〈w′,
∑
i∈Sj

lidi/sj〉 − δ/4 (13)

≥ 〈w′, wj〉 + δ|Sj |/sj − δ/4 (14)
≥ 〈w′, wj〉 + δ/4. (15)

From this, collecting the contribution of each round we establish that

〈w′, wj〉 ≥ jδ/4 (16)

On the other hand, the length of w is evolving slowly. As each vector vj that we incorporate
has negative projection onto it, we have that 〈wj , vj〉 ≤ 0, and therefore

‖wj+1‖2 = ‖wj + vj + nj‖2 = 〈(wj + vj + nj), (wj + vj + nj)〉
= 〈wj , wj〉 + 〈vj , vj〉 + 〈nj , nj〉 + 2〈(wj + vj), nj〉 + 2〈wj , vj〉
≤ ‖wj‖2 + ‖vj‖2 + ‖nj‖2 + 2〈(wj + vj), nj〉

With the exception of the 2〈(wj + vj), nj〉 term, it is clear that ‖wj‖2 is evolving linearly with j.
The 2〈(wj + vj), nj〉 terms are each independent, zero mean normals. We expect their sum to be
negative at many points in the future. In a round r when their sum is non-positive, we have that

‖wr‖2 ≤
∑
j≤r

(max
i

‖di‖2 + ‖nj‖2) (17)

We have assumed that for all i, 〈w′, lidi〉 ≥ δ, implying that ‖di‖ ≥ δ. On the other hand, our
assumption on |Sj | ensures that with high probability ‖nj‖ � δ/4 ≤ ‖di‖. For any round r for
which

∑
j〈(wj + vj), nj〉 is negative, combining Eq. (16) and Eq. (17) we see that

δr/4 ≤ 〈w′, w〉 ≤ ‖w‖ ≤ (2r max
i

‖di‖)1/2 (18)

constraining r ≤ 32maxi ‖di‖/δ2, bounding the number of iterations. Assuming that ‖wj‖ does
not shrink, we expect

∑
j〈(wj + vj), nj〉 to be negative again not much after r steps. If ‖wj‖ does

shrink, excellent.

B Supporting Lemmas: Expected Increase and Absolute Range

Before proceeding to bound the expected increase, we will need to observe a particular instance of
Jensen’s inequality, specifically applied to the log function.

Theorem 6 (Jensen). For an arbitrary function f , for a probability measure p(x) (ie:
∫
x p(x)dx =

1)

∫
x
p(x) log(f(x))dx ≤ log

(∫
x
p(x)f(x)dx

)

We will also use the above inequality with each side negated and the inequality reversed.
We now bound the expected amount of increase in the confidence value from one additional

observed aj . Here we bound the expected increase by a convex combination of relative entropies,
which we then evaluate in Lemma 5.

While we state the following lemma generally, it may help to think of the density function p(y)
as a normal distribution centered around the “true” value of g(di) and each of the px(y) density
function as corresponding to normal distributions centered around g(x).

Lemma 4 (Expected Increase). For any density function p(y) of finite entropy, set of density
functions {px(y)}, and wx with

∫
x wxdx = 1, we bound the expected increase in confidence in a

single step as

∫
y
p(y)

[
log

(∫
D1

wxpx(y)dx∫
D0

wxpx(y)dx

)]
dy ≤

∫
D0

wx

∫
y
p(y) log (p(y)/px(y)dy) dx .

Proof. We start by dividing the numerator and denominator by p(y). While p(y) can be quite small,
these divisions amount to adding and subtracting

∫
y p(y) log(p(y)), the entropy of the distribution,

which is finite.

∫
y
p(y)

[
log

(∫
D1

wxpx(y)dx∫
D0

wxpx(y)dx

)]
dy =

∫
y
p(y)

[
log

(∫
D1

wxpx(y)/p(y)dx∫
D0

wxpx(y)/p(y)dx

)]
dy (19)

Separating the numerator and denominator, and then the integrands

=
∫

y
p(y) log

(∫
D1

wxpx(y)/p(y)dx

)
dy −

∫
y
p(y) log

(∫
D0

wxpx(y)/p(y)dx

)
dx (20)

Applying Jensen’s Inequality to log both ways, then switching the order of integration,

≤ log
(∫

y
p(y)

∫
D1

wxpx(y)/p(y)dxdy

)
−
∫

y
p(y)

∫
D0

wx log (px(y)/p(y)) dxdy (21)

= log
(∫

D1

wx

∫
y
p(y)px(y)/p(y)dydx

)
−
∫

D0

wx

∫
y
p(y) log (px(y)/p(y)) dydx (22)

The p(y) terms cancel in the first term, leaving
∫
y px(y)dy = 1. The log of the first term is thus

zero, leaving us with only the second term. Passing the negation through the log, we get∫
y
p(y)

[
log

(∫
D1

wxpx(y)dx∫
D0

wxpx(y)dx

)]
dy ≤

∫
D0

wx

∫
y
p(y) log (p(y)/px(y)) dydx (23)

We now prove that the right hand quantity in the above lemma is small when the distributions
are Gaussians with close means and high common variance.

Lemma 5. Let p(x) and q(x) be normal densities with means µp and µq and common variance R.∫
x
p(x) log (p(x)/q(x)) dx = (µp − µq)2/2R

Proof. Expanding the LHS using the definition of the Gaussian density function,∫
x
p(x) log (p(x)/q(x)) dx =

∫
x
p(x) log

(
(2πR)−1/2e−(x−µp)2/2R

(2πR)−1/2e−(x−µq)2/2R

)
dx (24)

=
∫

x
p(x) log

(
e(2xµp−µ2

p)/2R

e(2xµq−µ2
q)/2R

)
dx (25)

Taking the log and rearranging the resulting algebra, we get∫
x
p(x) log (p(x)/q(x)) dx =

∫
x
p(x)(2x(µp − µq) − (µ2

p − µ2
q))dx/2R (26)

=
(

2(µp − µq)
∫

x
xp(x)dx − (µ2

p − µ2
q)
∫

x
p(x)dx

)
/2R (27)

Note that p is just a distribution, with
∫
x p(x)dx = 1 and

∫
x xp(x)dx = µp. Substituting accordingly

yields ∫
x
p(x) log (p(x)/q(x)) dx =

(
2µ2

p − 2µqµp − µ2
p + µ2

q

)
/2R = (µp − µq)2/2R (28)

Lemma 6 (Absolute Increase). For any two gaussians p(x), q(x) with variance R satisfying
|µp − µq| ≤ 1,

Pr[max
j

(log (p(x)/q(x))) > (2 log(T/δ)/R)1/2 + 1/2R] < δ . (29)

Proof. Following calculations from the previous lemma,

log (p(x)/q(x)) = 2x(µp − µq)/2R − (µ2
p − µ2

q)/2R ≤ x/R + 1/2R (30)

Using the definition of the normal density function we can see that the probability that x is large
is quite small.

Pr[log (p(x)/q(x)) > (2 log(1/δ)/R)1/2 + 1/2R] < δ (31)

Generalizing to T trials using a union bound,

Pr[max
j

(log (p(x)/q(x))) > (2 log(T/δ)/R)1/2 + 1/2R] < δ (32)

