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Abstract. The adoption of distributed version control (DVC), such as Git and
Mercurial, in open-source software (OSS) projects has been explosive. Why is
this and how are projects using DVC? This new generation of version control
supports two important new features: distributed repositories and histories that
preserve branches and merges. Through interviews with lead developers in OSS
projects and a quantitative analysis of mined data from the histories of sixty
project, we find that the vast majority of the projects now using DVC continue
to use a centralized model of code sharing, while using branching much more
extensively than before their transition to DVC. We then examine the Linux his-
tory in depth in an effort to understand and evaluate how branches are used and
what benefits they provide. We find that they enable natural collaborative pro-
cesses: DVC branching allows developers to collaborate on tasks in highly cohe-
sive branches, while enjoying reduced interference from developers working on
other tasks, even if those tasks are strongly coupled to theirs.

1 Introduction

Version control (VC) is tool support for concurrent, collaborative software processes.
VC allows developers to create a branch, an isolated workspace, from a particular state
of the source code. They can share this branch and work on their tasks within it without
impacting the rest of the project and later merge (or integrate) their changes back into
the main line of development.

Intuitively, branches should be cohesive (i.e. collect related changes [26]) allowing a
team to work together on a focused task and isolated from the rest of the project so that
rapid and volatile development is not interrupted or impacted by external changes. The
rich history provided by recent VC and their adoption by a number of projects provide a
unique opportunity to address these intuitions and quantitatively measure how cohesive
and isolated branches are in practice.

The evolution of VCs is marked by increasing fidelity of the histories they record.
A commit is the write of a change into VC history. First generation VC, such as RCS,
record the history of individual file commits. This enabled rolling back changes to a
single file and reviewing file-specific changes. Second generation, or centralized VC
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(CVC), such as Subversion, stored sets of file changes committed together (i.e., a change-
set) in its history. This allows a related set of changes to be rolled back, and also enables
the conjoint history of a set of related files to be reconstructed.

Mainline

m
y-branch

Fig. 1. DVC history preserves branches and
merges

Recently, a new generation of VC,
distributed version control (DVC), has
transformed the use of VC and has
achieved widespread adoption. In DVC,
every copy of a project is a repository,
with its own history and the power to ex-
change source code changes with other
repositories. In contrast with CVC, DVC
is distributed in the sense that it allows
the change of changesets unmediated by
a central repository. DVC also preserves
the history of branches after their promotion into the mainline of development. Consider
Fig. 1 in which circles represent commits to the repository. Arcs denote the temporal
ordering of commits. “Mainline” denotes the main line of development from which re-
leases are made and to which features, like “my-branch”, are merged. The dashed edges
depict relationships that were untracked, and forgotten in CVC 1. In DVC, a commit al-
ways tracks its immediate predecessor commits, across both branches and merges; for
DVC, the dashed edges are indistinguishable from the edges along a branch. This branch
history allows us to augment developer studies with quantitative studies of branch co-
hesion and isolation. We can use this branch history to crosscheck qualitative results on
branch usage. We can also use these measures to shed light on whether differences in
how a project uses branches correlate with defect rates or schedules delays.

Open-source software (OSS) projects have rapidly adopted DVC. Our first research
question, RQ1, asks “Why did OSS projects rapidly adopt DVC?” We use interviews to
show that developers had previously wanted to make heavier use of branches but were
dissuaded by “merge pain”, the difficulty of resolving conflict that arises during branch
integration, and buttress this observation by showing that branch usage has markedly
increased in those projects that made the transition from CVC to DVC. We also note
that almost all projects making the switch have continued to use a centralized reposi-
tory, calling into question the conventional wisdom that DVC’s support for distributed
workflows has been the principal cause of the rapid transition to DVC.

Without branches, developers must share a single mainline and deal with the con-
flicts that sharing entails. In practice, projects developed workflows to avoid or mitigate
conflict, such as baton passing or the “commit bit”. We can demonstrate the benefit of
branching by simulating a lack of branching. We observe that branched history of a
DVC can be linearized onto a single “mainline” in which the conflicts and interruptions
that branching avoids become manifest. This linearized history overapproximates the
actual conflict and allows us to bound the cohesion and isolation that branches afford.

Ideally, when a task is identified, developers create a branch to work on the task
together. But does this occur in practice? Is work performed in a branch more cohesive

1 This limitation was addressed in Subversion 1.5.
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than all changes across the repository during the same time period? Thus, RQ2 is “How
cohesive are branches?” To investigate this question, we use directory distance of the
files modified in a branch to measure its cohesion. Then we compare actual branches in
the Linux history against the baseline, background cohesion of linearized sequences of
commits. If actual branches are no more cohesive than these commit sequences, then
branches are either unlikely to be cohesive or directory distance is a poor proxy for
branch cohesion. To form these commit sequences, we picked a random starting point
on the linearized branch history. In §4.2, we found that actual, observed branches are
significantly more cohesive than background commit sequences.

RQ3 asks “How successfully do DVC branches protect developers from interrup-
tion?” VC is good about flagging syntactic conflict; semantic conflict occurs when
mainline has changed in such a way as to invalidate assumptions made during the de-
velopment of a branch. Cross branch coupling causes semantic conflict. To merge a
feature branch into mainline is to promote that branch. When promoting a branch, pro-
grammers must review mainline to try to find semantic conflict. To measure semantic
conflict, we measure the number of commits in a branch being considered for promo-
tion that modified a file that has also been modified in mainline, since the branch forked
from mainline. Against a linearized DVC history, we measure and bound how often the
semantic conflict would interrupt a developer in the absence of branching or procedures
to ameliorate it.

We make three principal contributions in this paper: 1) We present compelling evi-
dence from study of sixty projects (RQ1) that branching and not distribution has driven
the rapid adoption of DVC; 2) We define two new measures: branch cohesion and dis-
tracted commits, a type of task interruption that occurs when integration work intrudes
into development; and 3) We apply these measures to the Linux history and (RQ2) quan-
tify the cohesiveness of branches and (RQ3) the effective isolation they provide against
the interruptions intrinsic to concurrent development.

2 Theory

In April, 2005, development simultaneously began on two open source DVC systems,
Git and Mercurial. Their popularity has exploded, and by 2011, a large portion of open
source projects have already migrated to a DVC. According to Debian (a Linux distribu-
tion), of the 55% of projects that report their VC (9,132 projects), 44% (3994 projects)
use DVC [33], indicating that it has achieved widespread acceptance and adoption2.
VC has a profound effect on workflow, and adoption of a new VC is not a trifling mat-
ter [12], as evidenced by the amount of discussion surrounding decisions to change, the
work required to move from one to another, and the change in project workflows, all of
which we have observed in OSS projects. For examples see GNOME’s move to Git [25],
Python’s move to mercurial [7], and the project that KDE created solely to evaluate and
eventually create tools for a migration to Git [13].

2 The data we report here comes from the repository that contains the Debian packaging scripts.
In practice, we observe that for the majority of projects, this repository is indistinguishable
from the upstream repository.
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Research Question 1: Why did OSS projects rapidly adopt DVC?

In §4.1, we present compelling evidence that DVC support for branching drove the
transition to DVC. Our interviews show that the impetus is cohesion and isolation. But
how cohesive are branches and how well do they isolate developers?

Cohesion. If developers use branches to isolate tasks, we expect to find that branches
are cohesive and encapsulate related changes. Two reasons to expect developers to work
with cohesive branches is that their histories are easier to understand when faced with
maintenance tasks and they are easier to revert if the branch has a problem. On the
other hand, developers could be using branches merely to isolate their development
work, without separating that work into cohesive tasks.

Research Question 2: How cohesive are branches?

Coupling and Interruption. Developing a new feature often requires making changes
to modules that are coupled to other modules. If different features, under simultane-
ous construction by different developers, affect coupled modules, the tasks may require
coordination, as one developer’s work can cause other developers’ code to become un-
stable. Ideally, uninvolved developers should be isolated from these changes until the
feature has achieved some degree of stability. At the same time, a developer working
on a new feature should still have access to VC to commit incremental changes, and
rollback, as necessary. Berczuk [2] makes this point in his discussion of configuration
management patterns, where he argues that developers should checkpoint changes at
frequent intervals to a location separate from the “team version control,” and that only
tested and stable code should be integrated. When the feature is ready, its integration
must not be too difficult or the productivity gained from working on an isolated branch
is lost. Indeed, Perry et al. [24] claim that tool support for integration is important be-
cause “integration too often is painful and distracting” and because development lines
diverge when parallel development goes on too long.

When branches are not used, all changes occur on the mainline and a developer
may need to merge and integrate changes that are unstable and transitory or only tan-
gentially related to her work. The attendant interruptions can slow development. The
use of branches allows a developer to control and minimize the frequency of such
interruptions.

Integration interruptions are a form of task interruption. Prior literature has shown
that task interruptions seriously impact developer productivity. Recovering from inter-
ruptions can be difficult and time-consuming: developers must mentally juggle goals,
decisions, hypotheses, and interpretations related to their task, or risk inserting bugs. In
a study at Microsoft [16], 62% of developers said that recovering from interruptions
is a substantial problem. Van Solingen [28] found that interruptions are most problem-
atic when a developer is checking in changes or updating their working code base. De-
Marco observed that resuming after an interrupt often takes at least 15 minutes [10].
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Parnin et al. [22] instrumented Visual Studio and Eclipse to observe the time taken to
resume development tasks. While they found some strategies for mitigating the effects,
developers began editing within a minute of restarting a task only 10% of the time and
took over 30 minutes in 30% of the cases. While these papers consider the effect of in-
terruptions in broader terms, they do support the claim that task interruptions diminish
productivity.

Research Question 3: How successfully do DVC branches protect developers
from interruption?

3 Methodology

We used a mixed method research strategy [9] in our study of branches in DVC. We
began with interviews of developers (the qualitative phase) to help develop hypotheses
regarding the motivations for DVC adoption and then empirically evaluated these hy-
potheses by gathering data and performing statistical analyses (the quantitative phase).
For us, the advantage of a mixed method approach is that the qualitative investigation
allowed us to collect answers to fundamental questions related to the “how” and “why”
of DVC adoption. The answers then provided insight and added meaning to our quanti-
tative results that might otherwise have been missed in a purely quantitative study. This
increased our confidence in the findings and provided a richer context that can aid in
understanding whether our results generalize.

In an effort to understand what has motivated the rapid transition to DVC from an op-
erational point of view, we observed the development activities in projects that switched
to DVC and interviewed a number of lead developers from these projects regarding their
switch. We sent personalized requests for fifteen minute interviews to the three most ac-
tive developers in a number of large and mature projects that had used CVC for multiple
years and had recently moved or decided to move to DVC. Following these interviews,
we gathered data from the development history of these projects and quantitatively eval-
uated hypotheses based on their responses.

Interviewing project leaders was critical in understanding why people switched to
DVC, the perceived benefits and drawbacks of the switch, and (in cases where the
projects have used DVC for some time) how it has affected the policy and develop-
ment process of the projects. The data mining of the VC history and developer mailing
lists allowed us to provide quantitative evidence of the effects of DVC. We interleave
quotations from interviews and numerical findings from data mining to triangulate and
provide a balanced perspective.

We conducted semi-structured interviews of four projects and six people. Semi-
structured interviews make use of an interview guide that contains general group-
ings of topics and questions rather than a pre-determined exact set and order
of questions [17]. Semi-structured interviews are often used in an exploratory
context when there are clear research questions [17,31]. The responses from
these interviews help develop hypotheses and focus quantitative analysis. We
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Fig. 2. Branches projected onto D, a single timeline by date. The merge change M that joins the
two branches falls out since the work to merge each change occurs, piecemeal, as each change is
recorded.

extracted themes from the interviews using a modified version of Creswell’s
guidelines [9] for coding. The interview guide that we used can be found at
http://www.cabird.com/public/vcinterviewquestions.pdf3. We minimally
copy-edited the quotes for readability. We eliminated false starts and superfluous crutch
words; we used standard notation, delimiting clarifying comments with brackets and
marking the suppression of unnecessary phrases with an ellipsis [17].

For the quantitative mined data, we developed measures and modified existing ones
to best examine the impact of DVC in the context of our dimensions. The data used,
the definition of the measure, and attendant threats to validity are discussed in §4. We
chose to examine 60 projects that had transitioned to DVC. These projects were drawn
from lists of projects using DVC on Wikipedia and GitWiki and include such notable
projects as Wine, Samba, Perl, Ruby on Rails, and the Glasgow Haskell Compiler.
These projects vary in age from 21 years (in the case of Perl) to 6 months (pthreads-
stubs in X.Org) with a median of 4.5 years. The number of contributors as recorded
by the repositories ranges from 1462 (Wine) to 1 (dri2proto in X.Org). The commits
to these projects number from 139,187 (Samba) to just 6 (pthread-stubs in X.Org). As
such, our selection of projects for analysis spans a broad spectrum of OSS projects in
terms of size, age, and development activity. All projects have used DVC for at least 5
months at the time of this study; the majority of them for over one year.

We use Linux to evaluate hypotheses and questions regarding advanced DVC usage
because the Linux kernel project has never used a CVC and its developers are generally
very experienced with history-preserving branching. Linux started using Git in 2005;
we have 3.5 years of Linux VC data and the corresponding data from Linux kernel
Mailing List (LKML). Over this period, there were 4K developers, 118K commits, and
443K mail messages for Linux.

4 Evaluation

In this section, we answer each of our research questions. To begin, we introduce
our branch linearization technique on which much of our analysis rests. To linearize

3 At the request of the participants, the interviews in their entirety are confidential.

http://www.cabird.com/public/vcinterviewquestions.pdf
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a branched DVC history, we project the concurrent sequence of changes in a DVC his-
tory onto the single timeline D, as shown in Fig. 2. The commits along this timeline
represent concurrent work that actually occurred across branches. Conflict or interrup-
tion, that occurs along this timeline, bounds the work needed to avoid conflict or re-
cover from interruption. This work was previously largely unobservable (apart from
mutterings in mailing lists/interviews/change-log messages), handled by policies and
procedures such as baton passing and patch rework on a project’s mailing list [32]. To
measure the cohesion (§4.2) and isolation (§4.3) of branches, we compare the cohesion
and isolation of their within branch changes against that of across branch changes, in
the form of simulated branches drawn from D.

4.1 Rapid DVC Adoption

Pundits claim that support for distributed (changeset flows unmediated by a central
repository), as opposed to centralized, development is the root cause of this rapid transi-
tion [23,8]. We have observed something different. The vast majority of these projects
do not appear to be making use of distribution. Of the sixty projects whose VC use we
examined, all but Linux continue to use a centralized model organized around a single
public repository, except the xemacs and gnome projects which publish two reposito-
ries. Although these projects continue to use a centralized style of development, we
have observed a dramatic shift in their use of branches.

Lead developers from prominent open source projects (§3) indicated that, prior to
using DVC, branches were “painful and difficult” to integrate:

“ The biggest complaint associated with Subversion is associated with branch-
ing and merging. The one feature that Git has that our users would really like
is a really fast and simple merge. ”

Richards, CEO WANdisco [14]

In some cases, two branches would grow so far apart, they had to abandon one of them
altogether. Prior to DVC, branches were typically created only for releases and not
new features. For instance, Koziarski from Ruby on Rails states: “We had branches
for versions [releases]. Feature branches were very rare for us”[20]. A preliminary
empirical investigation showed that few branches were created pre-DVC. Of the ex-
amined 60 projects that switched to DVC, 1.54 branches were created on average
per month per project before using DVC; after switching to DVC, the average rose
to 3.67. A Wilcoxon rank sum test shows that the two populations are statistically
different4(p � 0.01)

Without easy branch and merging facilities, our interviewees reported that develop-
ers would “pass around large patch sets” or “brain dump” a mega-patch that was almost
impossible to review. These large patch sets contained multiple, sometimes unrelated
changes, and it was impossible to “consider each on their own merits without having to
swallow the whole thing” (Turnbull, XEmacs [27]). This problem was compounded for

4 A Wilcoxon test was used rather than the standard t test due to the heavily skewed distribution
of branches.
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Fig. 3. Depiction of the selection of branches for the Monte Carlo simulation
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(b) Observed branches compared to simulated
branches over D from 1,000 simulations.

Fig. 4. Linux branch lengths: observed and simulated

new developers who did not have commit access and so could not work and commit in-
cremental work in the course of making large changes. Under CVC, developers without
commit privileges, as well as core developers who refused to use “painful” (Sperber,
XEmacs [21]) feature branches were effectively reduced to working in a time before
version control.

“ Because we’d have these large changes that would go in all at once, it would
be really difficult to find the source of problems. For example, if you wanted
to find a change that was responsible for certain problems, you would often
go back [in history] . . . and pretty soon you’d find one of these ‘mega’ patches
. . . that would essentially change every file in the system and would lump to-
gether sets of unrelated changes ... [these mega changes made it] really, really
difficult to track down what change was responsible for a given problem, it
makes software maintenance really difficult. ”

Sperber, XEmacs [21]
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In summary, projects continue to use a centralized repository and project maintainers
have stated that the DVC branch and merging facilities was a principal motivation, so
we find that the answer to RQ1 is branching, not distribution.

4.2 Cohesion

Large systems, like the Linux kernel, structure their files in a modular manner. Files
that perform similar or related functions are close in the directory hierarchy [5], thus the
directory structure loosely mirrors the system architecture. To determine how “cohesive”
a set of changes is, we measure how far source files are from each other in the directory
tree. Two files in the same directory have a distance of zero (i.e. the highest level of
cohesion), while the distance for files in different directories is the number of directories
between the two files in the hierarchy. We only include ‘.c’ source files as Bowman [5]
found that header files for the entire system often are located in one directory.

Let d : F×F → N0 denote the directory distance of two files. Each commit defines a
set of modified files, or changeset. When F is the set of files in a source code repository
and C is the set of commits, fm : C → (2F − ∅) returns the changeset of a commit;
fm cannot return the empty set because a changeset cannot be empty. The cohesion
of a single commit is the multiset of directory distances formed from the files in its
changeset. A branch is a “straight line” sequence of commits, B = c1, · · · , cn, where
c1 is not a merge commit and cn is either a leaf (i.e. HEAD) or the parent of a merge
commit. Thus, one branch includes and continues through a branch commit, while each
child of a merge commit starts a new branch, rather than continuing one of the merged
branches. For the branch B, let Bd be the multiset of directory distances formed over
the union of all its changesets:

Bd = {d(f, f ′) : f, f ′ ∈
⋃

c∈B

fm(c)}, for f �= f ′. (1)

Definition 4.1 (Branch Cohesion). The branch cohesion of B is the average of the
directory distances in Bd:

Bc =
∑

d∈Bd

d

|Bd| .

To determine if developers use branches to isolate cohesive changes, we need a baseline
to compare the cohesion of branches because we have no a priori notion of what the
range of good and branch cohesion values may be. Thus, we need to establish the back-
ground distribution of cohesion, as a baseline for comparison. To do so, we measure the
cohesion of branches over D, the linearized history of a project (Fig. 2), which captures
concurrency work as a free-for-all on a single, shared mainline. Specifically, we com-
pare the cohesion of observed branches in the history of the Linux kernel against the
cohesion of simulated branches of equivalent length over the linearized history,D, using
Monte Carlo simulation. Fig. 3 depicts this simulation. We first measure the length of
each branch in the observed Linux kernel history (Fig. 3 left) and extract their multiset
of branch lengths (Fig. 3 middle). We then randomly tile these branch lengths (which
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do not contain merge commits and sum to precisely the length of D) onto D to form
simulated branches (Fig. 3 right). Thus, the distribution of branch lengths is exactly the
same as the observed distribution of branch lengths in the Linux kernel history; specif-
ically, this is the distribution shown in Fig. 4(a). We then compute the branch cohesion
for each simulated branch. If developers generally work together on cohesive sets of
files in branches then the branch cohesion for branches of length n in the observed
DVC history will be higher than the cohesion for sequences of commits with length n
in D. We generated 1000 tilings in our simulation.

Fig. 4(a) is a boxplot of the lengths of observed branches in the history of the Linux
kernel. As Fig. 4(a) makes evident, the distribution is positively-skewed. Since 90% of
the Linux kernel branches have length less than 35 commits, we truncated Fig. 4(b) at
35. Branches longer than 35 commits had fewer than 25 instances, giving too small a
sample to produce meaningful results. Fig. 4(b) plots the mean branch cohesion of ob-
served Linux kernel branches (black diamonds) against the mean of the means of the
cohesion of the simulated branches (black circles). We report the mean of the means at
each branch length for the 1000 tilings and provide a 95% confidence interval (the ver-
tical lines). With the exception of branch length 34, which is not statistically significant
(red square), the observed branches are more cohesive than the simulated branches at
each length with p < 0.05.

Examining the magnitude of the differences in cohesion, we see that at branch length
two (the minimum), pairs of files committed on observed branches are 0.12 directories
closer together on average than pairs of files along D, the linearized history, while the
difference is 1.5 directories at branch length 32 (the maximum). These differences may
appear small, but note that a difference of 1 means that for each pair of files the distance
between them is at least one directory further apart in the code base on a simulated
branch than on the observed branch. This effect looms larger when one recognizes that
most branches modify tens to hundreds of files.

This point is further underscored by correlating this difference to the branch length.
As can be seen from Fig. 4(b), as branches become longer, the observed branches be-
come increasingly more cohesive relative to the simulated branches (Spearman correla-
tion: r = .69, p � .001). It is clear that developers group related changes on branches
and that this grouping increases with the number of changes.

Our interviews are consonant with this result: branches are not created only for re-
leases. In projects that have moved to DVC, branches comprise non-trivial, cohesive
changes such as features or localized bug fixes and maintenance efforts. Three of our
interviewees indicated that previously, such non-trivial changes would either have been
avoided or created “off-line” and then committed to the VC in a single, disruptive mega-
commit. Thus, we find that the answer to RQ2 is that branches are highly cohesive.

4.3 Coupling and Interruptions

Using data mined from the Linux kernel, we construct its linearized history D, as de-
fined in Fig. 2, and quantitatively establish an upperbound on the number of integration
interruptions that a developer avoids through the use of branching. By analogy to nu-
meric intervals, D(x, y) denotes the subsequence of commits between x and y in D.
For the commit c, let a denote its most recent non-merge ancestor.
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Fi ∩ fm(c)

Fi

a c

fm(c)Fi ∩ fm(c)}

fm(c)
D(a, c)

D

Fig. 5. Depiction of the formalisms described: The straight line indicates D, the linearized se-
quence of commits (ovals). The stacked colored rectangles above a commit represent its change-
set. Here, c is a commit whose nearest, non-merge ancestor in DVC is a. D(a, c) are the commits
made by other developers in the intervening time. Fm(c) is the set of files modified in c and Fi

is the set of files modified in the commits in D(a, c). The ratio of files in the intersection to files
changed in c is the index of similarity δ that we vary in our definition of distraction.

Consider a developer working on a new feature on a branch. When she promotes
a feature branch to master, she must not only resolve any syntactic conflict that arise,
but, more generally, look for potential semantic conflicts, conflicts that occur when
mainline changes in a way that violates the assumptions on which a feature branch
rests. For instance, her branch may rely on a global variable whose range of allowed
values has changed in master, because her branch is coupled to other branches promoted
since her branch began. Such verification can be subtle and time-consuming. This work
is inherent to concurrent development, but previously handled out-of-band by policy
and procedure. To upperbound this work, we consider the work to search for semantic
conflict that would occur along D where the distraction of integration work potentially
intrudes into feature development work at each commit. This measures how often the
integration work, ideally deferred to merge time, would instead intrude into feature
development in the absence of an isolation mechanism, such as that provided by DVC.

Fig. 5 illustrates the formalisms we introduce to measure the integration interruptions
that occur along D. The line at the left represents D, the linearized history. Ovals on D
represent commits. Each commit c defines a changeset, a set of files that it modifies. In
the figure, these modified files are the rectangles stacked above each commit. Specifi-
cally, c is a commit whose nearest, non-merge ancestor in the original DVC history is a,
and D(a, c) represents the commits, not including a or c, that developers made to other
branches in that history in the intervening time. Definition 4.2 formalizes the set of files
changed in a sequence of commits.

Definition 4.2 (Intervening Files). The files modified in D(a, c) “intervene” between
c and a, its nearest, non-merge ancestor in D. These files therefore change the state of
the project into which c is written. The set of intervening files is

Fi =
⋃

w∈D(a,c)

fm(w).
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If c modifies f ∈ Fi, a syntactic or semantic conflict could occur. Semantic conflicts
can be more distracting than syntactic conflicts as c’s author must review each file in
fm(c) ∩ Fi to ensure their absence, since VC catches syntactic conflicts. For instance,
one of the commits in D(x, c) could have changed the semantics of a function used
in c. Intuitively, the commit c is distracted if commits fall between it and its nearest,
non-merge branch ancestor on D and one of those intervening commits changed a file
that c also modified. In Fig. 2, all the commits except commits 1 and 5 are potentially
distracted, depending on the set of files each commit changes. Definition 4.3 captures
this intuition.

Definition 4.3 (Distraction). The commit c ∈ D is distracted if

|Fi ∩ fm(c)|
|fm(c)| > δ, for δ ∈ [0..1].

We cannot know how often files changed in both c and D(a, c) will actually cause a
conflict or require the developer committing c to understand a change that occurred in
D(a, c). We capture this uncertainty in the threshold δ, an index of similarity, or fraction
of the size of the intersection of c’s changeset and the changesets in D(a, c) over the
size of c’s changeset. Each setting of δ represents a different assumption about how
likely concurrent changes are to generate integration work in order to write the current
changeset and form the commit c. At the right of Fig. 5, the fraction of the number of
files in the intersection divided by the number of files in c pictorially depicts this index
of similarity that we use to measure integration interruptions.
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Fig. 6. Commits that require integration work as δ varies when
the Linux kernel history is linearized

In Fig. 6, we plot the
proportion of commits in
the linearized history of
the Linux kernel that are
distracted as δ varies. At
zero, we print the percent-
age of the time there are in-
tervening files (Fi �= ∅),
regardless of whether they
intersect with c’s change-
set. Even at δ = 1, i.e.
when we require fm(c) ⊆
Fi, 2.8% commits are dis-
tracted, i.e. may encounter
conflict or require review
to ensure that no seman-
tic assumption have been
violated. After calculating
the 95% confidence inter-
vals, we find that a commit
c modifies a file that intervenes between c and its ancestor a on D with a confidence
interval of 4.47% to 4.69% of the time. This corresponds to the point in Fig. 6 with an
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index of similarity of 0.1. All of the files in the changeset of a commit c are distracted
(index of similarity 1.0) with a confidence interval of 2.47% to 2.93%. Thus, a non-
empty overlap occurs approximately once every 22 commits and a complete overlap
every 35 commits.

Clearly, using a branch reduces distractions by delaying the need to resolve conflicts
until merging the branch back into its parent. But how often does the use of branching
actually avoid potential distractions in practice? Quantifying exactly how much distrac-
tion is avoided depends on how likely it is for concurrent changes to a single file to
generate integration work. First, there is the rate, reported above, of non-empty inter-
section. That is, how often concurrent edits on different branches touch the same file.
Second, there is the cardinality of that intersection; how many files are edited concur-
rently by different branches. Finally, there is the probability that the concurrent changes
to a file in different branches actually generate integration work, at the very least in
the form of confirming the changes made to the file are semantically noninterfering.
We have established that on average, non-empty intersections occur once in every 22
commits. To be conservative, we assume that these intersections contain only a single
file and that 90% of the time the programmer must examine the out-of-branch change
made to it. To answer RQ3, we therefore conclude that working on branches protects a
programmer from unexpected, unwanted semantic conflicts once in every 24.4̄ commits
on average, across all branches that a developer works on.

4.4 Threats to Validity

The main threat to the external validity of our cohesion and distractions results is their
dependence on Linux Git history, which may not be representative. Further, Git history
can be perfected via “rebasing”, an operation that allows the history to be rewritten to
merge, split or reorder commits [3]. Repositories hosted locally by developers are also
not observable until branches are merged elsewhere.

Many projects we surveyed did not have a long enough DVC history (i.e. sample-
size) to produce statistically significant results in all of our measures. Developers are
still adjusting to DVC and may not have adopted history-preserving branching to break
apart larger commits. As well, many contributions, even to DVC-using projects, are
still submitted as large patches to the mailing-list, diluting, at least in the short term, the
impact of DVC adoption.

D, the linearization of a DVC history that projects all branches onto a single, shared
mainline overapproximates the integration interruptions faced by a developer, but we do
not know by how much. Our use of directory distance as a cohesion measure does not
capture the cohesion of a cross-cutting change; however, the fact that we found a sig-
nificant difference in spite of understating the history-preserving nature of lightweight
branching strengthens our result. Our analysis assumes that all integration interruptions
waste time, which may not always be the case.

5 Related Work

Version control systems have a long and storied past. In this paper, our concern is pri-
marily the introduction of history-preserving branching and merging, and the resulting
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rich histories. The importance of preserving histories, including branches, has been well
recognized [11]. The usefulness of detailed histories for comprehension [1] and for au-
tomated debugging [34] are by now well accepted. Some have even advocated very fine-
grained version histories [18] for improved understanding and maintenance. Automating
the acquisition of information, such as static relationships or why some code was com-
mited, from accurate and rich VC history might improve developer productivity [15].

Branching in VCs have received a fair bit of attention [11]. Some have recommended
“patterns” of workflows for disciplined use of branching [29]. Others advocate ways of
branching and merging approaches [6] that mitigate the difficulties experienced with the
branch and merge operations of earlier version control systems. Merging is a complex
and difficult problem [19], which, if anything, will become more acute as a result of the
transition to DVC and the corresponding surge in the use of branching we have shown.
Bird et al. [4] developed a theory of the relationship between the goals embodied by the
work going on in branches and the “virtual” teams that work on such branches.

Perry et al. [24] study parallel changes during large-scale software development.
They find surprising parallelism and conclude “current tool, process and project man-
agement support for this level of parallelism is inadequate”. Their conclusion antici-
pates the rapid transition to DVC that we chronicle in this paper.

The influential work of Viégas et al [30] uses a visualization methodology to study
the historical record of edits in Wikipedia, and report interesting patterns of work (such
as “edit wars”). To our knowledge, our paper is the first detailed study of the impact
of DVC and its history-preserving branching and merging operations on the practice of
large-scale, collaborative software engineering.

6 Conclusion and Future Work

Contrary to conventional wisdom, branching, not distribution, has driven the adoption
of DVC: most projects still use a centralized repository, while branching has exploded
(RQ1). These branches are used to undertake cohesive development tasks (RQ2) and are
strongly coupled (RQ3). In the course of investigating these questions, we have defined
two new measures: branch cohesion and distracted commits, a type of task interruption
that occurs when integration work intrudes into development.

We intend to investigate how projects select branches to merge. The isolation that
branches afford carries the risk that the work done on that branch may be wasted if the
upstream branch evolves too quickly. We intend to investigate the impact of history-
preserving branching on the use of named stable bases [2].
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