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ABSTRACT
Empirical studies of software defects rely on links between
bug databases and program code repositories. This linkage
is typically based on bug-fixes identified in developer-entered
commit logs. Unfortunately, developers do not always report
which commits perform bug-fixes. Prior work suggests that
such links can be a biased sample of the entire population
of fixed bugs. The validity of statistical hypotheses-testing
based on linked data could well be affected by bias. Given
the wide use of linked defect data, it is vital to gauge the
nature and extent of the bias, and try to develop testable
theories and models of the bias. To do this, we must establish
ground truth: manually analyze a complete version history
corpus, and nail down those commits that fix defects, and
those that do not. This is a difficult task, requiring an ex-
pert to compare versions, analyze changes, find related bugs
in the bug database, reverse-engineer missing links, and fi-
nally record their work for use later. This effort must be
repeated for hundreds of commits to obtain a useful sam-
ple of reported and unreported bug-fix commits. We make
several contributions. First, we present Linkster, a tool to
facilitate link reverse-engineering. Second, we evaluate this
tool, engaging a core developer of the Apache HTTP web
server project to exhaustively annotate 493 commits that
occurred during a six week period. Finally, we analyze this
comprehensive data set, showing that there are serious and
consequential problems in the data.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Product Metrics,
Process Metrics
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1. INTRODUCTION
Software process data, especially bug reports and commit

logs, are widely used in software engineering research. The
integration of these two provides valuable information on the
history and evolution of a software project. It is used, e.g.,
to predict the number and locale of bugs in future software
releases (e.g., [27, 31, 17, 6]). The two data sources are nor-
mally integrated by scanning through the version control
log messages for potential bug report numbers; conscien-
tious developers enter this information when they check-in
bug fixes (e.g., see [14]). We used similar techniques in our
previous work, and, in fact, improved current practice by
adding heuristics to check the results [3, 4]. Even so, the
links (between program code commits and bug reports) thus
extracted cannot be guaranteed to be correct, as they are
reliant on voluntary developer annotations in commit logs.

In prior work, we have shown that such data sets are
plagued by quality issues [4]; furthermore, these issues
(e.g., incompleteness, bias, etc.) adversely affect applica-
tions and algorithms which rely on such data [10]. We de-
fined two types of bias: bug-feature bias, where only the fixes
of certain types of defects are linked, and commit-feature
bias, where only the certain kinds of fixes, or fixes to certain
kinds of files, are linked. In addition to these data quality
issues, many researchers make questionable process assump-
tions: for instance they assume that all the relevant bugs of
a software product are actually reported in the bug track-
ing database of the project. To truly understand defect-
reporting bias and verify such assumptions, we must uncover
the ground truth: we must analyze completely (at least a
time-window of) the commit version history of a project,
and precisely identify all the commits that are defect fixes,
and those that are not.

To get at ground truth requires skill, knowledge and ef-
fort: one must compare successive versions, understand the
changes, identify any relevant reported bugs in the repo,
and establish a link when possible. This process must be
repeated until we have a large enough sample for statistical
analysis. This is costly, difficult, and time-consuming.

Linkster is a convenient, interactive tool, integrating multi-
ple queryable, browseable, time-series views of version con-
trol history and bug report history. Linkster enables an
expert to quickly find and examine relevant changes, and an-
notate them as desired; specifically, Linkster makes it easy
to find defect-fix commits. We engaged an expert Apache
core developer, Dr. Justin Erenkrantz, to use Linkster to
manually annotate 6 full weeks (including 493 commit mes-
sages) of the Apache history. This case study helped us to



improve the tool, and yielded a trove of data to examine
three research questions.

Traditionally, researchers have made several assumptions
about the bug fixing, reporting, and linking phenomena.
The first two research questions reflect general internal va-
lidity concerns that arise when using linked bug data for
software engineering research.

RQ 1: Do the bug reporting and fixing practices of
developers correspond to the assumptions commonly made
by researchers?

Second, researchers have tended to gloss over the issue of
whether automated tools that find links between commits
and bug reports have false-positives or false-negatives.

RQ 2: How well does the automated approach of finding
links between commits and bug reports work?

Finally, the linked set of bug-fixing commits are a sample of
the full set of bug-fix commits. We can check and see if this
sample is biased in any detectible way.

RQ 3: Is there any evidence of systematic bias in the
linking of bug-fix commits to bug reports [10]?

To our knowledge, the only published study on this question
is by Aranda and Venolia [1]: they analyzed the complete-
ness and degree of truth in software engineering datasets
and provided a partial answer to RQ 1 (see Sub-Section 2.2).
Most studies do not even address data quality issues [23].

In addition, we were able to qualitatively explore how
the Apache project actually uses software engineering tools
such as bug tracker and version control systems, yielding
some rather surprising observations.

We begin with a discussion of related work (Section 2),
followed by an overview of the tools and processes (Sec-
tion 3) used in Apache HTTP web server project. We
then present (Section 4) a description of Linkster, and de-
tails of the case study procedure evolving an Apache core
developer (Section 5). In Sections 6 and 7 we present our
findings, which we summarize briefly below:

Finding 1: A so-called “bug” is not always a bug; neither
is a “commit” always a commit. In other words: in Apache,
the most important bugs are not handled in the bug tracker
but mentioned in the mailing list system; and only a fraction
of commits actually pertain to program changes (RQ 1).

Finding 2: We compared the manual annotations with data
produced by automated linking (viz., for false-positives or
false-negatives); the automated approach finds virtually all
the commit log messages which contain a link to the bug
tracking database (RQ 2). Sadly, however, many defect-fix
commits are un-identified in the commit logs, and thus are
invisible to automated approaches.

Finding 3: In the manually annotated sample, we find
strong statistical evidence that different bug-fixers vary in
their linking behavior. Investigating further, we find anec-
dotal evidence suggesting that factors such as experience,
ownership and the size (number of files) of the commit affect
linking behaviour. We also find that reporting bias affects
the performance of a bug prediction algorithm (BugCache).
Given the small size of the manually annotated sample, the
evidence here is mostly suggestive rather than statistically
significant; however, it points out the strong need for further
studies—for if this type of reporting bias is confirmed as a
widespread problem, this is of serious, fundamental concern

to all empirical research that uses this type of linked bug-fix
data.

2. RELATED WORK
Areas closely related to this research include data extrac-

tion and integration, data quality in software engineering,
data verification in software repositories, and our own pre-
vious work on data quality effects on empirical software en-
gineering.

2.1 Data Extraction and Integration
Software engineering process data such as bug reports and

version control log files are widely used in empirical software
engineering. Therefore, the extraction and integration of
this data is critical.

Fischer et al. [14] presented a Release History Database
(RHDB) which contains the version control log and the bug
report information. To link the change log and the bug
tracking database, Fischer et al. searched for change log
messages which match to a given regular expression. Later,
they improved the linking algorithm and built in a file-
module verification [13]. A similar approach to link the
change log with the bug tracking database was chosen by
other researchers. All of them used regular expressions to
find bug report link candidates in the change log file (e.g., [32,
31, 30, 33, 34, 30]).

In [3], we presented a step-by-step approach to retrieve,
parse, convert and link the data sources. We improved the
well-established prior art, enhancing both the quality and
quantity of links extracted.

2.2 Data Quality in Software Engineering
As discussed in [10], empirical software engineering rese-

archers have considered data quality issues. Space limita-
tions inhibit a full survey, we present a few representative
papers.

Koru and Tian [21] surveyed members of 52 different medi-
um to large size Open Source projects with regards to defect
handling practices. They found that defect-handling pro-
cesses varied among projects. Some projects are disciplined
and require recording of all bugs found; others are more lax.
Some projects explicitly mark whether a bug is pre-release
or post-release. Some record defects only in source code;
others also record defects in documents. This variation in
bug datasets requires a cautious approach to their use in em-
pirical work. Liebchen et al. [22] examined noise, a distinct,
equally important issue.

Liebchen and Shepperd [23] surveyed hundreds of empiri-
cal software engineering papers to assess how studies manage
data quality issues. They found only 23 that explicitly ref-
erenced data quality. Four of the 23 suggested that data
quality might impact analysis, but made no suggestion of
how to deal with it. They conclude that there is very lit-
tle work to assess the quality of data sets and point to the
extreme challenge of knowing the “true” values and popula-
tions. They suggest that simulation-based approaches might
help.

Bettenburg et al. [7, 8, 9] provided first analysis of bug
report quality. They investigated the attributes of a good
bug report surveying developers and used it to develop a
computational model of a bug report quality. The resulting
model allowed to display the current quality of a defect re-
port whilst typing. Hooimeijer et al. [16] also analyzed the



quality of defect reports and tried to predict whether the
defect report will be closed within a given amount of time.

Chen et al. [12] studied the change logs of three Open
Source projects and analyzed the quality of these log files.

In [4] we surveyed five Open Source and one Closed Source
project in order to provide a deeper insight into the quality
and characteristics of these often-used process data. Specif-
ically, we defined quality and characteristics measures, com-
puted them and discussed the issues arose from these obser-
vation. We showed that there are vast differences between
the projects, particularly with respect to the quality of the
link rate between bugs and commits.

Aranda and Venolia [1] provided a field study of coordi-
nation activities around bug fixing, based on a survey of
software professionals at Microsoft. Specifically, they stud-
ied 10 bugs in detail and showed that (i) electronic reposi-
tories often hold incomplete or incorrect data, and (ii) the
histories of even simple bugs are strongly dependent on so-
cial, organizational, and technical knowledge that cannot be
solely extracted through the automated analysis of software
repositories. They report that software repositories show an
incomplete picture of the social processes in a project. While
they studied 10 bugs in detail, we focus on commit history:
we employed an expert, supported by a specially-designed
tool to fully annotate a sample of 493 commits. This data
helped us uncover a) some of the weaknesses of software
repositories as well as b) anecdotal evidence of systematic
bias in bug-fix reporting.

2.3 Studying Bias
Papers in empirical software engineering rarely tackle data

quality issues directly (see discussion earlier in this section);
our earlier work is an exception. In [2] and [10] we inves-
tigated historical data from several software projects, and
found strong evidence of systematic bias. We then investi-
gated potential effects of “unfair, imbalanced” datasets on
the performance of prediction techniques.

Ideally, all bug-fixing commits are linked to bug reports;
then empirical research would consider all type of fixed bug
reports. However only some of the fixed bugs have links to
the bug-fixing commits. This raises the possibility of two
types of bias: bug feature bias, where only certain types of
bugs are linked, or commit feature bias, whereby only certain
types bug-fixing repairs are linked. Either type of bias is
highly undesirable. With access to all the fixed bugs, and
the linked bugs, we could check for bug feature bias. Our
study [10] suggested that bug feature bias does exist, and
also that it affects the performance of the award-winning
BugCache defect prediction algorithm [19]. In this work,
we have a fully annotated list of commits for the first time,
thus achieving “ground truth” for a subset of the Apache
dataset, and thus we can analyze the data for commit feature
bias.

In summary: a few studies explicitly consider the qual-
ity of systematic bias in the data. This study, in contrast,
explores the implications of this behavior by attempting to
unearth the ground truth by enlisting a core developer to
annotate all commits, and thus seek out quality and bias
issues.

3. CASE STUDY: APACHE
The Apache HTTP web server is an Open Source soft-

ware system developed under the auspices of the Apache
Software Foundation. Apache is the most popular web

server on the Internet, serving over 55% of all websites [26].
Apache is also one of the most popular Open Source projects
among researchers. It is widely used in current empirical
software engineering research (e.g., [25, 28, 20, 8, 18]), and
thus a good subject for an in-depth examination of data
quality.

3.1 Project Tools
Like many other Open Source projects, Apache uses the

BugZilla1 bug tracker and the SVN2 version control system.
In addition, the Apache Software Foundation provides offi-
cially maintained git3 mirrors for all projects. The Apache
project allows free access to the contents of all these tools.
Apache also maintains a public mailing list for developers
and Apache users to discuss issues of concern.

3.2 Data Gathering and Integration
We retrieved, processed and linked the Apache HTTP

web server process data as presented in [3]. Basically, we
downloaded all BugZilla bug reports and SVN version con-
trol log files. Then, we scanned each commit log message for
indications of fixing a bug using a set of heuristics; typically
we look for bug report numbers in log messages. This leads
to a set of automatically extracted links between program
code commits and bug reports. This set of links is validated
using another set of heuristics (op cit).

3.3 Apache Dataset
With our own (rather modest) resources, we could only

completely evaluate and manually verify a subset of the orig-
inal Apache dataset. Therefore, we had to sample the orig-
inal dataset. There were two choices: random sampling or
temporal sampling.

Random sampling requires some rationale for selecting a
sample—e.g., prior knowledge of the distribution of the rele-
vant co-variates to the study, so that a sample representative
of the population could be chosen. It is difficult to decide a
priori what such co-variates might be, let alone their distri-
bution. So, we chose to perform temporal sampling.

Table 1: Apache Datasets: Details

Dataset Original Evaluation

Dataset Sample

Considered time period 2004-06-18 – 2005-09-23 –

2008-04-25 2005-11-18

#Bug reports 2,409 (100%) 103 (100%)

#Fixed bug reports4 559 (23.20%) 23 (22.33%)

#Linked bug reports 256 (10.63%) 10 (9.71%)

#Duplicate bug reports 364 (15.11%) 8 (7.77%)

#Invalid bug reports 766 (31.80%) 38 (36.89%)

#Different bug reporters 1,827 98

#Commit messages 8,580 (100%) 493 (100%)

(transactions)

#Empty commit messages 0 (0.00%) 0 (0.00%)

#Linked commit messages 472 (5.50%) 29 (5.88%)

#Different developers 63 23

1See http://www.bugzilla.org/
2See http://subversion.tigris.org/
3See http://git-scm.com/
4We define “fixed” bug reports as bug reports that have at least one
associated fixing activity (which means a status change to “fixed”)
within the considered time period.

http://www.bugzilla.org/
http://subversion.tigris.org/
http://git-scm.com/
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Figure 1: Linkster (Screenshot)

With this approach, we chose to verify all the commits in a
given period. With complete results for that period, we can
then revisit our earlier results and judge the quality against
this limited but complete and accurate temporal sample.
To find a “typical” period for our evaluation dataset we ana-
lyzed the whole original Apache dataset based on week-long
epochs. Then, we chose a period of 6 consecutive weeks
that was as representative as possible to the overall original
Apache dataset in terms of its descriptive process statistics
(e.g., similar proportions of bugs and commits). Table 1 lists
some basic software process statistics for both—the original
and the evaluation—Apache datasets including the finally
defined time-frames.

4. LINKSTER
The use of Linkster simplified our domain expert’s task,

greatly accelerating an otherwise tedious, repetitive and in-
convenient sequence of invocations of multiple tools.

Figure 1 shows a screenshot of Linkster, showing win-
dows containing three kinds of information: commit trans-
actions including all the changed files (a), bug reports (b),
and diff & blame information for all of the lines in a file
before and after a particular commit (c).
Linkster requires access to a version control system for

file content and a database (local or remote), containing the
raw mined repository and bug tracking information. We use
git as our backend repository format, given its increasing
popularity [11], and ready availability of tools supporting
conversion from competitors such as CVS, SVN, etc. How-
ever, for convenience, Linkster displays the revision IDs
from the original repository. All notes, links, and annota-
tions (explained below) made by the user are also recorded

in the database to facilitate use and analysis thereof after
annotation. Linkster efficiently displays, integrates, and
allows inspection and annotation of information from all
data sources. Linkster is written in Python, using the
PyQt widget toolset and has been written with portability
in mind. We have successfully run it on Linux, OS X, and
Windows.

To our knowledge, no other tool provides integrated pro-
ject information in combination with functionality to an-
notate / link commits. Hipikat [32], which was developed
at UBC, is similar in that it creates links between different
types of software artifacts. However, these links are based
purely on heuristics and Hipikat functions as a recommender
system rather than a browsing and annotation system.

Other tools such as EvoLens, softChange, or Shrimp pro-
vide only part of the functionality, but all existing tools have
goals other than expert commit annotation.

SoftChange [15] is a tool to aid software engineering re-
search by visualizing data. Similar to Linkster, SoftChange
integrates data from multiple sources such as version control
systems, releases, and bug databases. However, softChange
uses visualizations (usually plots) to answer questions,(e.g.,
how many bugs are closed in each time period?) and does
not allow annotation of data as Linkster does.

EvoLens [29] helps developers to understand the evolution
of a piece of software by visualizing the software as well as
metrics of the software over time. The visual nature across
time facilitates identifying design erosion and hot spots of
activity. Linkster does not leverage advanced visualization
techniques and integrates multiple types of data rather than
just source code information.

Shrimp [24] integrates and visualizes source code, docu-



mentation (Javadoc), and architectural information to aid
source code exploration. Linkster is more concerned with
process related artifacts, (e.g., changes, discussions, bug re-
ports, and fixes) than understanding the source code itself.

4.1 Commit Information
Figure 1-a shows the Commit Information Window of

Linkster. The top (1) contains a list of commits that
satisfy some query, e.g., commits within a time window or
changes made by a particular author. Each line shows the
revision identifier (as used in the original repository), com-
mit time, author, and the first line of the commit message.
The entire commit message is shown in a tooltip when the
mouse hovers over an entry.

When a commit entry in the list is selected, the meta-
data is updated in the bottom half (2). The list of files
modified in the commit (3) is also displayed. Double clicking
a file brings up the Blame & Diff Information for the file
allowing the user to examine the exact changes that were
made. For annotation purposes, the user may select the
reason(s) for the commit by checking boxes (4) or drag and
drop (or remove) a bug record from the Bug Information
Window into the list of bug IDs (5), which is populated
with the set of automatically identified links between the
commit and bug records. Finally, the user may enter free
form notes for the commit (6).

4.2 Bug Information
Figure 1-b contains the Bug Information Window. The

top portion (7) is a scrollable list of bugs from the bug
database. Each entry contains the bug ID, the date of cre-
ation, and a one line summary of the bug. Hovering over
an entry shows the bug severity in a tooltip. Any of these
entries may be dragged to the bug IDs list (5) in the commit
information window to indicate a commit that is associated
with the bug.

Selecting a bug entry populates the bottom half of the
window with detailed information. The left side (8) con-
tains short attributes of the bug, while the right side (9)
displays the full bug description followed by all of the com-
ments in chronological order with author and date. Clicking
on the Bug Activity tab (10) displays a list (not shown) of
all changes to the bug record, such as assigning the bug to a
developer or marking a bug as closed. Each entry indicates
when the change was made and who made it along with old
and new values for the changed field as appropriate. Fi-
nally, clicking on the Fixing Files tab (11) presents a list
(not shown) of all of the commits to files that are associated
with the fix of the bug. This list is comprised of files auto-
matically or manually linked to the bug. Double clicking on
any file in this list will bring up a blame & diff window for
the commit.

4.3 Blame & Diff Information
Figure 1-c shows the Blame & Diff Information Window

for the changes to a file in a particular commit. The left
view (13) shows the content of the file prior to the change,
and the right view (14) shows the content after the change.
Removed lines are prefixed with“−”and are highlighted red,
and added lines are in green with a “+” prefix. Each line
is also prefixed with revision identifier of the commit that
introduced the line. Selecting a line highlights all other lines
introduced in the same commit, and also updates the meta-
data area (12) with information about that commit. This

can help the user learn why, when, and by whom, the line
was originally added. If additional information is desired,
double clicking a line will bring up a new Blame & Diff
window for the commit which introduced the line (if, for
example, one desires to see why a line that was removed in
one revision was originally added in a prior revision). An
annotator can, thus, gradually step back through version
history.

The views are synchronized such that scrolling up, down,
left, or right in one view causes the other to change ac-
cordingly. The thumbnail view (15) graphically shows the
differences for the entire file with red indicating removed
lines and green, added lines. Clicking on a location in the
thumbnail view will cause the pre and post views to jump
to that location, making it easier to identify and examine
changes in larger files.

5. APACHE DATA EVALUATION
To address our research questions, we began our evalua-

tion with the creation of an evaluation dataset, as defined
in Section 3.3. Armed with Linkster to facilitate browsing
and annotation, we engaged the services of an informant:
an experienced Apache developer, Dr. Justin Erenkrantz,
to manually annotate a temporal sample of commits using
Linkster. Clearly, the quality of this completely annotated
evaluation dataset is predicated on the expertise of the anno-
tator. Justin is a core developer of the Apache HTTP web
server project (since January 2001), the President of the
Apache Foundation and serves on the Foundation’s Board of
Directors. He also develops for Apache Portable Runtime,
Apache flood and Subversion5.

Using Linkster, Justin annotated each commit, to flag
it as a bug fix, an implemented feature request, a mainte-
nance task or other. With this information, we obtain fully
annotated commit data, providing a complete picture of all
the changes during the given period and how/why/by whom
these changes were made. This data can be used to verify
our automated linking approach (which includes mainly bug
fixes and some feature requests). Indeed, annotating pro-
gram code commits dating back months or years in the past
is a challenge, even for an experienced core developer like
Justin. Linkster was very helpful, providing an integrated
view of all the relevant information. Based on the log mes-
sage, the changed files and the file diffs of the changed files,
Justin was able to annotate all commits, and, in most cases,
provided additional information about the commits.

Justin’s familiarity with the Apache project gives us con-
fidence that the results of our evaluation can be trusted.
In addition, detailed discussions and interviews with him
revealed facts about the tools and processes used in the
Apache HTTP web server project, and also ideas for im-
proving Linkster.

6. RESULTS
All 493 commits in our selected temporal sample were

annotated. In addition to the annotation into the four cate-
gories above: bug fix, feature request, maintenance/refactor-
ing, and other, our informant helped us further sub-classify
the commits. Table 2 summarizes the annotation results
including the sub-classification. Note, a single commit can
have many annotations, e.g., a commit may be annotated
as both a “bug fix” and a “feature request”.

5See http://www.erenkrantz.com/ for more details.

http://www.erenkrantz.com/


Table 2: Linkster Commit Categorization
(non-exclusive)

Category Sub-Category #Commits

Bug fix – 82

Bug fix Bug report 32

Bug fix Bug report (merge) 7

Bug fix Mailing list 13

Bug fix Backport 13

Bug fix Other 17

Feature request – 54

Feature request Documentation 7

Feature request Backport 14

Feature request Other 33

Maintenance – 49

Maintenance Documentation 5

Maintenance Backport 5

Maintenance Other 39

Other – 356

Other Documentation 156

Other Backport 49

Other Non-functional 30

Other Release 44

Other Voting 26

Other Other 51

Based on Justin’s insights into the Apache development
process, we developed a second, orthogonal categorization
that was more consistent with the procedures within the
project (Table 3). In contrast to our categorization, this
one assigns each commit exclusively to one of its process-
specific categories: backport/forward port, security fix, bug
fix, documentation, voting, release, or other.

Table 3: Process Specific Commit Categorization
(exclusive)

Category #Commits

Backport / Forward port 79

Security fix 7

Bug fix 69

Documentation 158

Voting 26

Release 44

Other 110

In the following sub-sections, we present our findings rela-
tive to the research questions presented in Section 1. We also
present additional findings based on interviews with Justin.

6.1 Bugs Incognito
Contrary to conventional wisdom, participants of the

Apache project do not report all the bugs solely through
BugZilla. We found that developers and professional users
also make use of the Apache mailing list to report bugs and
provide bug fixes (sometimes at the same time)
without reporting them in the bug tracker.

Finding 1. Not all fixed bugs are mentioned in the bug
tracking database. Some are discussed (only) on the
mailing list.

As shown in Table 2, we have 82 bug fix related com-
mits in our evaluation dataset. 32 of them (bug report)
are directly related to the bug tracking database. 7 other

commits contain a bug-fix, but are not the initial bug fix
commit rather than a merge of versions which contain bug
fixes indirectly (bug report (merge)). This means, that only
47.6% of bug fix related commits ( 32+7

82
) are documented

in the bug tracking database. For 13 other commits (16%
of total) identified by Justin as bug fixes, there are related
discussions in the Apache mailing list. This leads to the
discouraging observation that many bugs never appear in
the bug tracking database, but rather are only discussed on
the mailing list. Such a discussion often includes the bug
fix provided by a non Apache core developer. According to
Justin, these bugs are often the very important bugs espe-
cially because of the high attention by Apache developers
and the core community on the mailing list. Note also that
reporting some types of bugs (e.g., security related ones)
on the mailing list is a practice explicitly requested by the
Apache Foundation6.

Unfortunately, even knowing about the mailing list bugs,
it is hard to i) identify and ii) automatically mine them or
extract information similar to a bug report stored in the bug
tracking database (such as status changes, priority, severity,
etc.). Apache SVN revision #291558 (see Figure 2), for
instance, is related to a bug discussed on the mailing list7.
If one were to inspect the mailing list message, one would
find almost no evidence that this was a bug fix.

Finally, Justin found 17 other bug-fixing commits (21%)
which have neither an associated bug report or mailing list
message. This phenomenon, of under-reporting of bugs, is
a big problem. If important bugs are excluded from experi-
mental data (i.e., many bugs are left out) then the effective-
ness of defect prediction models and the validity of statis-
tical studies (which rely on them being in the bug tracking
database) may be threatened. This leads to the conclusion,
that not all fixed bugs are reported as bugs in the bug track-
ing database, or in other words: bugs go “incognito”.

6.2 Backport Incognito
In the Apache HTTP web server project only a few

developers are allowed to commit to an Apache release ver-
sion: thus a bug-fix on one release may actually have to be
committed by someone else to an older or different release.
Typically, this process works as follows. First, a developer
fixes a given bug and commits the new version to the cur-
rent version under active development (also known as the
“trunk”). Ideally s/he also refers to the related bug report
in the commit log. Next, at least two other developers re-
view the changed code, verify the changes and vote either for
or against the fix (this step is related to the voting commits
as shown in Table 2 and 3). Finally, if the votes are positive,
the fix is committed (or merged) to Apache release versions,
which is called a backport. As a result of this process, we
might find several different commits in the version history,
that fix the same bug.

Finding 2. To fix a bug in an Apache release, multiple
similar commits by different developers are needed.

Unfortunately, backport commits are not that easy to
identify by existing linking algorithms and heuristics; fre-
quently, while the log message for original commit to the
trunk refers to the bug report, the backport commit log does
not. To worsen matters, after the bug is actually closed,
6See http://httpd.apache.org/security_report.html
7See http://mail-archives.apache.org/mod_mbox/httpd-docs/
200509.mbox/%3c200509260627.33737@news.perlig.de%3e

http://httpd.apache.org/security_report.html
http://mail-archives.apache.org/mod_mbox/httpd-docs/200509.mbox/%3c200509260627.33737@news.perlig.de%3e
http://mail-archives.apache.org/mod_mbox/httpd-docs/200509.mbox/%3c200509260627.33737@news.perlig.de%3e


there is a rigorous review, verification and voting process
before the backport is accepted and committed. Therefore,
the time difference between the backport commit and the
status change (to fixed) on the bug report may rise to sev-
eral days, which again, makes it difficult to link the bug with
the commit. As a result, automated linking algorithms will
largely ignore backport fixes. Arguably, these are fixes are
very important: often they are involved in post-release fail-
ures. They should not be ignored by researchers engaged in
hypothesis testing or defect prediction work. Alas, finding
them may require extensive, high-expertise combing through
commit histories.

Figure 2: Commit message of Apache HTTP web
server revision #291558

6.3 Impact-of-Defect vs. Cause-of-Defect
This is a thorny issue: a defect in one project’s code base

might actually manifest as a failure in a different project.
Thus, some of the reported bugs in Apache HTTP web
server have their root-cause outside of the Apache pro-
gram code. Apache uses external libraries, as well as Apache
Commons modules. Therefore, failures in the Apache HTTP
web server, even if duly reported in the Apache bug track-
ing database, may actually have to be fixed elsewhere. The
reverse is also possible.

The mod-python8 sub-project maintains its own version
control system repository and an Apache project’s main
bug tracker independent Jira issue tracker9. Mod-python is-
sue 8310, for instance, was reported in the Jira issue tracker
but fixed in the Apache program code.

Finding 3. Developers sometimes fix bugs that are only
reported in some other projects’ bug tracker, rather than in
their own; and vice-versa.

Ideally, we have a complete, integrated source of all the
bugs in the bug repository, and all the fixes in the version
control system. Our findings, and indeed, the widespread
prevalence of cross-project module reuse, we can expect that
this type of separation between causes and effects of defects
is quite common. Given this, it would be helpful if a re-
port of a bug impacting one system would be transferred to
the bug repository of the causing system, and linked to fix
in the version control of that system. However, given the
poor linking behaviour when the cause and effect are in the
same system, we might expect that this type of cross-system
linking is pretty unlikely to occur.

6.4 Commits Incognito
In earlier work [4], we encountered the problem of unex-

plained commits, e.g., due to empty commit log messages.
Sadly, even an experienced developer would find it difficult
to retrospectively reconstruct the explanation of an unex-
plained commit.
8http://www.modpython.org/
9http://www.atlassian.com/software/jira/ and
https://issues.apache.org/jira/browse/MODPYTHON

10https://issues.apache.org/jira/browse/MODPYTHON-83

Finding 4. Even if we annotate all commits, the cause of
a commit still remains unspecified in some cases.

Table 2 and 3 show the annotation, sub-classification and
process-oriented classification of all the commits in our eval-
uation dataset. Based on the values in Table 3, for 110 com-
mits (22.3%) we have a process specific annotation of other.
The reason for these commits, therefore, is not justified by
one of the Apache software engineering core tasks.

In addition, most of the commits are not justified by a bug
fix or feature request rather than for documentation (32%),
voting (5.3%) or releases (8.9%). Only 37.1% of all commits
have a functional impact on the software product (feature
requests and bug fixes including all backport), which leads
us to the conclusion that not all commits are commits that
actually change the software.

For additional information to the quality and character-
istics of the version control data, we refer to our previous
work presented in [4].

6.5 Performance of the Linking Algorithm
In earlier work [3, 4, 10, 5], we reported a linking algorithm

whose performance was found to be best-in-class. The fully
annotated data provided the first known oracle to evaluate
linking algorithms, and so we evaluated ours.

Finding 5. The algorithm (op cit) finds most of the
commit log messages that the developers linked to bugs
reported in the bug tracker, subject to the time constraints
used by our algorithm.

In the chosen temporal sample, our linking algorithm found
29 links between the commit messages and the bug tracking
database. Justin also identified all these links; we thus found
no false-positive links in our evaluation dataset. In addition
to these, Justin found 10 additional links. Seven did not
satisfy our heuristic for valid links (time constraint of ±7
days between commit and status change on the bug report),
and so our algorithm rejected them as invalid links. Hence,
we found three false-negative links in our evaluation dataset.
The seven invalid links resulted from backport commits (as
explained earlier, Sub-Section 6.2). These backports corre-
sponded to bug-fix links in the original trunk which in fact,
were successfully discovered by our algorithm.

Unfortunately, as we elaborated before, even with a high
linking rate between the commit messages and the bug track-
er, only a subset of the fixed bugs are considered. Hence,
bugs discussed on the mail discussion system are often left
out by automated linking approaches.

6.6 Performance of LINKSTER
Linkster performed mostly as expected and Justin was

able to annotate all the commits (493) of our evaluation
sample dataset in one working day. In the discussions with
Justin, we found some minor issues, which were promptly
remedied. In addition, we found that the most important
bugs are discussed in the mailing list system only. There-
fore, Linkster has been extended to support browsing of
messages from development mailing lists and also enables
linking them to both bug reports and repository commits.

http://www.modpython.org/
http://www.atlassian.com/software/jira/
https://issues.apache.org/jira/browse/MODPYTHON
https://issues.apache.org/jira/browse/MODPYTHON-83


6.7 Threats to Validity
This sub-section discusses external and internal threats to

validity that can affect the results reported in this section.
Threats to external validity. Can we generalize from

the results based on the Apache HTTP web server dataset
to other datasets? Software engineering tools and processes
vary in different projects and, therefore, our findings based
on Apache may not generalize. However, our findings indi-
cate that developers may use software process support tools
for various goals not envisioned by its original developers
(such as version control systems for voting or mailing list
systems for bug reporting). It seems prudent to assume that
the Apache project is not a complete exception and that,
therefore, the data used in studies of other projects may also
lack important information. Another threat is the use of a
single annotator (Justin). Getting the same data annotated
by other developers, and checking agreement, would have
been better; we hope to do this in future work.

Threats to internal validity. Did we choose our eval-
uation dataset well, and properly analyze it? We chose our
time-frame carefully; however, it may not properly represent
the original Apache dataset. The annotation and classifica-
tion were performed carefully by a very experienced Apache
core developer. Still, there may be errors. Nonetheless, ac-
cording to Justin, the interesting practices of the Apache
developers are by no means exceptional to this time period.

7. COMMIT-FEATURE BIAS, REVISITED
The manual annotation effort indicates that many bug

fixes are not identified in the commit logs, and thus are
completely invisible to the automated linking tools used to
extract bug-fix data. Thus the linked bug-fix commits are
a sample of the entire group of commits. However, samples
thus extracted have been central to many research efforts.
The natural question is: is this sample representative, or bi-
ased? We seek to test for the two kinds of bias: bug feature
bias, whereby only fixes to certain kinds of bugs are linked,
and commit feature bias whereby only certain types of com-
mits are linked [10]. Earlier, with access to the entire set
of fixed bugs, and the subset of linked bugs, we could check
for (and did find) bug feature bias; lacking access to a fully
annotated set of commits that tells us which commits are
bug fixes, we were previously unable to check for commit
feature bias.

Now, with a fully annotated temporal sample of commits,
we can indeed check for commit feature bias. Commit fea-
tures are properties of the file and its revision history, such as
size, complexity, authorship, etc.. These are critical proper-
ties that have been studied in dozens of papers that test the-
ories of bug introductions; they are also the features used for
bug prediction. So it is important to test for commit feature
bias, and evaluate its impact. In this section, we describe
some findings related to commit feature bias, and its effect
on a well-known bug-prediction algorithm (BugCache).

We remind the reader that our sample size (despite the
time and effort required to gather even that much) is not
big enough to realistically expect to find statistically signif-
icant support for answers to the questions discussed in this
section. However, there are some takeaways: we do find sta-
tistical support for the answer to one question, and we do
find some anecdotal answers for the other questions. Fur-
thermore, actual bias along any of the lines discussed here
would have a highly deleterious effect on the external va-
lidity of theories tested using only the linked data. Most

importantly, we hope to convince the reader that such stud-
ies are important and need to be repeated and conducted at
larger scales.

7.1 Sources and Extent of Commit Feature Bias
The first question arises naturally from the fact that there

are different individual developers, who may have different
attitudes towards linking. The simplest and most obvious
question is as follows:
Do different developers show significantly different
linking behaviour? The anonymized table of developers’
linking behavior indicates that this is the case: (p ' 0.002).

Name Linked Not Linked Name Linked Not Linked

a 0 6 b 10 5

c 1 1 d 11 8

e 0 3 f 0 1

g 0 3 h 0 5

i 2 7 j 0 3

k 0 2 l 0 1

m 0 2 n 0 1

o 0 1 p 1 0

q 4 0 Total 26 52

We now hypothesize several different specific possible mo-
tivational theories of linking behavior. In several cases, there
was a visually apparent signal, in boxplots, albeit none that
were statistically significant. The results are shown in Fig-
ure 3. We list them below, but we caution the reader to
interpret all these findings as at best anecdotal. However, it
is important to bear in mind that actual bias influenced by
any of the processes hypothesize below would be very dam-
aging to the external validity of theories tested solely on the
linked data.
Does the experience of the author(s) whose code is
being fixed influence linking behaviour? We hypothe-
sized that the quest for greater reputation might incentivize
people to link fixes when the code under repair belonged to
an experienced (and thus more reputable) person. We mea-
sured the fixed code’s“author reputation”as the geometric of
the prior commit experience of everyone who contributed to
the fixed code. The left most boxplot in Figure 3 is weakly
suggestive that fixes made to code with more experienced
authorship are more likely to be linked.
Does the number of files involved in the bug fix mat-
ter? If more files are repaired in a bug fix, perhaps the fix
is more “impactful”; this might motivate the fixer to more
carefully document the change. In fact, the boxplot (second
from left in Figure 3) is suggestive that this might be the
case, with all the unlinked fixes being single-file fixes.
Are more experienced bug fixers more likely to link?
We might expect that more experienced developers behave
more responsibly. We measure experience as the number of
prior commits. The boxplot (second from right) suggests
support for this theory, with a noticeably higher median for
the linked case.
Are developers who “own” a file more likely to link
bug-fixes in that file? One might expect that people
fixing bugs in their own files are more likely to behave re-
sponsibly and link; on the other hand, there is a anti-social
reputation-preserving instinct that suggests that they may
be less likely to link. We measure ownership as the propor-
tion of lines in the file authored by the bug fixer. Indeed,
the boxplot visually supports the “anti-social” theory.

We created plots to evaluate two other theories: Are bug
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Figure 3: Commit feature bias (reading left to right) weighted experience of the original authors of the fix-inducing

code; number of files changed in the bug fix; experience of the author committing the bug fix; proportion of fixed file

owned by bug fix author at the time of the bug fix.

fixes to bigger files more likely to be linked? and Does
the prior experience of the file owner influence linking be-
haviour? and found no informal visual evidence supportive
of these theories.

7.2 Practical Effects: BugCache Revisited
The above analysis shows that the extent of bias in the

data is significant and that the effort of finding the ground
truth (e.g., through manual annotation with Linkster)
leads to important insights. But do those insights translate
to practical impact? In this sub-section we investigate the
impact of approaching ground truth in terms of changes in
the accuracy of the award-winning BugCache algorithm
[19]. To that end, we repeated our experiment showing
the impact of bias using Apache data [10]. Specifically,
we departed from two different datasets: The first dataset
(called A below) contained all 1576 bugs introduced in the
Apache 2.0 branch. The second one contained the addi-
tional 65 bugs found by Justin (called J). Table 4 shows
the resulting accuracies for training and predicting on each
combination of these two datasets.

Consider training on the extracted data A and predicting
on the same data. This provides a baseline accuracy of 0.875.
If the prediction is, however, performed on the dataset rep-
resenting ground truth for the period of manual annotation
A ∪ J then the accuracy falls to 0.870. We accede that due to
the limited manually annotated period the difference—like
all the differences in the table—is not significant. But as the
following shows we can recognize a tendency. Alternatively,
consider adding the manually annotated bugs to the train-
ing set (i.e., training on A ∪ J). In each possible prediction
target (i.e., A, J, and A ∪ J) we find that the availability
of the additional information actually leads to an improve-
ment in prediction accuracy. This is especially impressive
where the prediction target is A as it shows that the man-
ually annotated bugs actually contain information relevant
to the automatically extracted ones helping BugCache to
find four additional bugs.

Table 4: BugCache Prediction Quality

Learning Set Test Set Accuracy 95% Confidence Interval

A A 0.875 0.858, 0.890

A A ∪ J 0.870 0.852, 0.885

A J 0.738 0.620, 0.830

A ∪ J A 0.878 0.860, 0.893

A ∪ J A ∪ J 0.874 0.857, 0.889

A ∪ J J 0.785 0.670, 0.867

8. DISCUSSION AND CONCLUSIONS
In this paper, we analyzed three main research questions

and tried to find“ground truth”in the commit annotations of
a very popular software engineering dataset. We used tem-
poral sampling to define an evaluation subset of the original
Apache dataset and manually annotated all commits, with
the assistance of an Apache core developer and the use of
Linkster.
As presented in our previous work, bias in empirical soft-
ware engineering datasets may affect results of applications
which rely on such data [10]. Unfortunately, based on our
data verification, we found that things are even worse: our
findings cast doubt on some of the core assumptions made
in empirical research. Specifically:

1. Bugs often go incognito as they are not always reported
as a bug in the bug tracker but, e.g., in mailing lists,
and

2. commits not always clearly change the functionality of
the program.

Specifically, we showed that not all fixed bugs are reported in
the bug tracking database and most of the commits (62.9%)
are not related to a bug fix or feature request (which would
introduce a program change) rather than for documenta-
tion (32%), voting (5.3%), or releases (8.9%). In addition,
we presented the curious case of backport commits and the
challenging impact-of-defect vs. cause-of-defect problem.
Both issues have an impact on software engineering datasets.
Consequently, even though automated linkage tools are able
to connect a remarkable number of commits to bugs reports,
many bugs—sometimes the most critical ones—never show
up in the bug tracker and are, therefore, not linked. This
raises new issues concerning the validity of studies that rely
on version control and bug report data only—beyond what
we reported earlier [10]. We presented a detailed examina-
tion of the bias in automatically linked set, when compared
to the manually linked set. Especially notable is the sig-
nificant variation in linking behavior among developers, and
the anecdotal evidence suggesting that bug-fixing experience
and code ownership play a role in linking behaviour. We also
showed that BugCache has a strong tendency to miss pre-
dictions if it is not trained on ground truth.

Another implication of the work presented here is that
empirical software engineering studies will need to take the
whole software development social eco-system (revision con-
trol system, bug tracking database, mailing list systems,
email discussions, discussion boards, chats, etc. as well as
these data from other, related projects) into account in order



to elicit a more complete picture of the underlying develop-
ment process. This would allow to capture the nature of
some of the bugs and commits that our informant tediously
collected manually.

Nonetheless, this study is only a first step towards quality-
approved datasets and we acknowledge that we were only
able to verify a small subset of the overall Apache dataset.
Therefore, we hope to influence the community to seek more
ground truth for more software engineering datasets.
Granted, such work would entail a significant manual la-
bor, but, undoubtedly, the resulting valuable improvements
in data fidelity will serve the community well in years to
come. We seek mechanisms for fostering this community
effort, and welcome suggestions from readers to this end.
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