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Abstract

This paper describes several extensions to the .NET Com-
mon Intermediary Language (CIL), each of which is designed
to enable easier implementation of typed high-level program-
ming languages on the .NET platform, and to promote closer
integration and interoperability between these languages. In
particular we aim for easier interoperability between com-
ponents whose interfaces are expressed using function types,
discriminated unions and parametric polymorphism, regard-
less of the languages in which these components are im-
plemented. We show that it is possible to add these con-
structs to an existing, “real world” intermediary language
and that this allows corresponding subsets of constructs to
be compiled uniformly, which in turn will allow program-
mers to use these constructs seamlessly between different
languages. In this paper we discuss the motivations for our
extensions, which are together called Extended IL (ILX),
and describe them via examples. In this setting, many of
the traditional responsibilities of the backend of a compiler
must be moved to ILX and the execution environment, in
particular those related to representation choices and low-
level optimizations. We have modified a Haskell compiler to
generate this language, and have implemented an assembler
that translates the extensions to regular or polymorphic CIL
code.

1 Introduction

Given a world with many programming languages, we need
the ability to translate constructs between languages, or, al-
ternatively, we need common subsets of language constructs
that make sense in most or all languages. Recently there has
been more emphasis on langugage implementations that fol-
low the second path [27, 1, 5, 8]. This paper describes the
design and implementation of one such common set of con-
structs, and its realization as a set of concrete extensions
to the input language of an execution platform that has
already been designed with some of this kind of interoper-
ation in mind. The platform is the .NET Common Lan-
guage Runtime [5], an implementation of which is provided
by Microsoft as part of VisualStudio.NET. The intermedi-
ary language of the CLR is called Common IL (CIL), and
our extended language is called ILX.

The constructs that we have included in ILX so far and
which we describe in this paper are:

• First-class functions, closures and thunks;

• Parametric polymorphism;

• Discriminated unions;

• First-class type functions.

Our aim is to provide a practical IL that allows for a stan-
dardized treatment of constructs found in many typed high-
level programming languages, e.g. Mercury, O’Caml and
Generic C# [9, 19, 14]. This is the first time a widely sup-
ported IL has been modified to support these constructs.
Similarly this is the first time these constructs have been in-
tegrated into a typed, object based IL of the kind supported
by the JVM [20] or the .NET CLR.

We have successfully modified the GHC Haskell Compiler
[15] to target these extensions.1 The compiler produces ILX
modules with predictable, typed interfaces that could easily
be called from other .NET languages. Implementors of Mer-
cury, Scheme and Vault [7, 8, 9] are actively pursuing the use
of ILX to compile some or all of the corresponding constructs
for their languages. We are planning an implementation of
the core languages of Standard ML and OCaml.

The remainder of this section discusses the motivations
and design aims for ILX. §2 describes the .NET CLR, and
§3-5 cover the new constructs, describing them mainly by
example. §6 discusses related work and we conclude in §7.
The Appendix describes the current ILX SDK and an aspect
of the current implementation required to support cross-
module recursion and referencing.

We only give brief discussions on implementation tech-
niques in each section as it we believe it is essential to focus
on the design of ILX, and not just the performance prop-
erties of its implementation. Getting functional languages
to run fast has been well explored, but no one has success-
fully provided a basis for getting them to talk to each other.
Clearly this can only be done if a design is suitable for the
needs of many languages.

1.1 Motivation

In a multi-language component programming environment
such as .NET, language interoperability is one of the key
determinants of programmer productivity. There are sev-
eral possible ways to reduce overheads associated with lan-
guage interoperability. One, which is certainly attractive
when it is practical, is to orient the entire computing envi-
ronment around a single programming language. This ap-
proach will naturally be the one preferred by any single pro-
grammer, who will have a favorite language that he or she

1Though see the caveats in the conclusion.



thinks the whole world should be using, or if a project is
starting from scratch without legacy constraints. However,
for better or for worse the computing world is very multi-
lingual – this has certainly been the case historically and
there are of course many languages in use to day. There
are many reasons to expect this situation to continue: the
existing investments in today’s languages are enormous –
it is expensive to change existing source code bases, or to
retrain programmers, or to re-implement advanced compila-
tion technology. This has been the primary motivation for
Microsoft’s approach to multi-language programming in the
context of the .NET platform.

This situation poses both opportunities and problems
for languages with functional and algebraic constructs (e.g.
Standard ML, O’Caml, Mercury, Scheme and Haskell). The
opportunity is that if language interoperability issues are
solved, then these languages are better placed to be used
in the areas where they are most suited, and components
can be written in these languages without revealing that
“exotic” techniques are being used.

However there are many problems. Foremost amongst
these is the simple fact that the vast majority of libraries
are now being written using APIs expressed in the Java
and .NET object systems. Recently some progress has been
made in this area [1, 9, 16, 27]. But the problems for these
languages go beyond simply being able to access libraries:
there is a fundamental lack of interoperability between these
languages over the very constructs which give higher pro-
grammer productivity, i.e. the functional and algebraic con-
structs such as polymorphism and discriminated unions. In-
teroperability is hard for this feature set for the simple rea-
son that there are a number variations on these constructs,
and for each there are many ways to implement them. For
example, there are many ways to represent discriminated
unions in an object model, and even more ways to represent
them at the level of bits and bytes provided by COM and
Corba, or a C FFI. Unfortunately it is only natural that if
multiple possibilities exist, then different implementations
inevitably choose different possibilities, and interoperability
becomes very difficult.

A related problem is that of runtime support, which is
partly addressed by platforms such as the CLR. Consider
garbage collection (GC): the constructs we are interested
work best when the objects are stored in a GC’d heap, but
GC has traditionally been a service provided by the language
implementation itself. Combining multiple GCs and heaps
is technically difficult and it becomes hard to trade objects
seamlessly – at least some level of wrapping is typically re-
quired. Thus sharing a GC between multiple languages is
a great first step. However, the services provided by the
CLR are not always sufficient, as in the case of parametric
polymorphism [17].

1.2 The ILX Design Aims

Given this context, ILX attempts to solve some of these
problems, at least for the .NET platform. The “big-picture”
aims for ILX can be summarized as follows:

• Permit practical interoperability between functional
languages on the .NET platform;

• Be the easiest route to implement a new language that
contains the constructs supported by ILX.

The first aim imagines a world where all the .NET languages
with functional-like constructs can interoperate with relative
ease. Ideally, it shouldn’t matter which language a compo-
nent is written in – for example Mercury, O’Caml or Stan-
dard ML components should be essentially interchangeable,
as long as the APIs to the components are written in a suffi-
ciently common fragment of the respective languages. Fur-
thermore, for the purposes of interoperability it shouldn’t
matter how the common constructs (e.g. function types and
closures) are represented in terms of the underlying soup of
objects, code pointers and the like.

It must be admitted that both of the “big-picture” aims
described above will be very difficult to realize in practice,
primarily for economic and social reasons: there is already a
large investment in existing functional language implemen-
tations; whole platforms are still costly to implement; and
there would have to be a convincing economic reason for
functional language implementations to converge and inter-
operate. Fortunately for the author, ILX has served other
purposes as well, discussed further in the conclusion. Per-
haps the most important has been to help identify some
minimal changes required to the CLR design and implemen-
tation to best support the designs described here.

1.3 The ILX Design Philosophy

Our design constraints for ILX have been as follows:

Compatibility. We maintain full compatibility with CIL.
The ILX language includes all existing CIL constructs.

Adequacy for certain languages. The constructs must
be adequate to compile the equivalent constructs in
ML, O’Caml, Haskell and Mercury. Note that ad-
equacy is more important than minimality – if a
“kitchen-sink” approach is required, then so be it. ILX
is not a “common language subset”, but the language
out of which compatible subsets can be specified.

Reasonable efficiency. The design must, in theory, be
translatable to existing CIL constructs. The translated
code must naturally conform to the basic rules of the
.NET CLR, and a verifiable translation must be pos-
sible in theory, perhaps by sacrificing some efficiency.
Essentially the implementation by translation must be
fast enough to mean that compiler writers would prefer
to use these constructs rather than finding their own
encodings in CIL.

Feasibility of direct support. The constructs must be
appropriate to implement directly in some future ver-
sion of the CLR. Looking to the future, the designs
should in principle support a range of optimization
strategies.

Non-enforceability of all language properties. We
do not try to preserve all high-level language properties
in the underlying ILX language. For example, in our
present design discriminated unions are always muta-
ble data structures, even if some high-level languages
typically optimize on the basis of non-mutability.

Design orthogonality. The design of the different exten-
sions must be orthogonal. Indeed, as we implement
the ILX assembler by eliminating the constructs one
by one, they also need to be orthogonal for implemen-
tation reasons.
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2 The .NET Common Language Runtime

A dynamic execution platform (or virtual machine, runtime
environment or execution engine) is the combination of a
number of software services, usually packaged as a process
running on an underlying operating system. The services
typically include execution of a bytecode-based portable bi-
nary format, a garbage collector and a set of standard li-
braries. Other services may include Just-In-Time (JIT)
compilers, marshalling and distribution support, some kind
of code security via encryption, signing and/or code verifica-
tion checks, support for reflective programming, and devel-
oper services such as debugging and profiling APIs. Exam-
ples include the O’Caml bytecode interpreter [19], the Java
Virtual Machine [20], and Microsoft’s .NET CLR [5]. In this
paper we focus on the CLR, though we emphasize that our
approach to extending an IL could be applied in other sit-
uations, and that many of the technical details would carry
over.

The CLR “manages” the execution of code. When devel-
oping code with a language compiler that targets the CLR,
you compile your application or component to code that uses
the services described above. CIL code contains “metadata”
that makes it “self-describing”, so it can be disassembled
into a fairly readable form and used by tools, especially to
provide a common model for component interaction.

The CLR has been designed explicitly to support mul-
tiple programming languages. In particular, it can execute
C#, C, C++ and VB.Net code efficiently and faithfully,
and the constructs required to achieve this have greatly af-
fected its design. Supporting multiple languages is both a
blessing and a curse. Different languages have different exe-
cution models, and the design of the CLR must, necessarily,
end up looking somewhat like the “union of several different
dynamic execution platforms”. For example, to efficiently
execute C code that assumes a 64-bit processor, but which
explicitly performs bit-level operations on pointers, the ma-
chine must certainly provide a rich model of integer types
and pointer arithmetic. To support VB, instructions that
allow a certain kind of “safe” use of pointers (called “byref
parameters”) are required. To support object-oriented lan-
guages, an object model is required, and to support Java-
style arrays, co-variance is allowed between array types, even
though many languages do not require this. A unified model
of several kinds of exceptions is also included. Many lan-
guages have been successfully targeted at the CLR, includ-
ing Mercury, Standard ML, C#, C++ and VB.NET. Any
one language typically only needs a small number of the
features provided.

The CLR provides numerous other services that are well
beyond the scope of this report, e.g. a declarative security
model and “assemblies” for managing code packages. One
of the primary motivations for extending an existing IL is
that we can take advantage of all these features from other
languages.

2.1 CIL

Common IL (CIL) is the intermediary language supported
by the .NET Execution Engine. CIL is a stack-based lan-
guage designed to be easy to generate from source code by
compilers and other tools. Some of the instructions of CIL
are shown in Figure 1.

Figure 2 shows a sample piece of CIL containing an ab-
stract enumeration class and a method that uses this class

Primitive Types Arrays Classes

Methods Fields Construction

Properties Enumerations Exceptions

Interfaces Events Visibility

Identifiers Value Classes

Figure 3: Constructs included in the .NET CLS

to adds up all the lengths in a finite sequence of strings.
The CIL contains a subset that is strongly typed and can
be verified prior to execution. Some aspects of CIL have
been formalized by Gordon and Syme [11]. Note that most
IL instructions are polymorphic with respect to size, e.g.
there is just one add instruction. The JIT reconstructs the
basic types on the stack in order to determine the machine
code to emit.

Logically speaking, the .NET CLR has a much richer in-
put language than is immediately evident from the CIL in-
struction set. This is for two reasons: assembly (the .NET
notion of a software component), class, interface, “struct”
and method definitions form part of the CIL and give a fairly
rich object calculus for organizing and expressing data struc-
tures. This calculus includes a fairly standard kind of pri-
vacy (public, private, protected and assembly scoping) and a
selection of novel declarative security attributes. Secondly,
some aspects of CLR’s behaviour are by rights first-class
constructs in the CIL and are thinly disguised within other
constructs (e.g. delegate and enumerations) or as calls to
class libraries (e.g. dynamic security scopes and threads).

2.2 The CLS

The .NET design already specifies an interoperability stan-
dard called the .NET Common Language Specification
(CLS), for interoperability between object-based languages
such as VC++, Eiffel, C# and VB. The constructs included
are shown in Figure 3. Many constructs are in the CLR but
not in the CLS. These include finalization, immutability,
variable argument functions and optional parameters.

3 The ILX Extensions for First-class Function Values

We now proceed to decribe the extensions to the CIL cur-
rently included in ILX. It has long been recognized that
“anonymous computations” (i.e. lambda terms or function
values) are pervasive in computing. Often they are side-
effect free, but anonymous computations with limited side-
effects also have many uses. Languages that fail to build in
an adequate notion of anonymous computation invariably
force the programmer to use contorted techniques in many
situations, e.g. the simplest “map” operations will have no
natural representation.

Anonymous computations need not be statically typed,
but type systems often include a notion of a function type.
Functions can sometimes also accept other things as argu-
ments besides values, e.g. type functions accept types as
arguments – we consider this case in §5.3.

One of the key goals in this section is to choose a design
that allows an efficient implementation, in particular one
where each closure is compiled to one method, and not one
class as is the case in many existing implementations for
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int32, int64, float32, float64, native int, . . . Types for “32-bit integers” etc.

ldc.i4, ldc.r4, add, sub, mul, div, shl, shr, . . . “Load integer constant”, “add” and other arithmetic instructions.

ldloc, stloc, ldarg, starg “Load local”, “Store local”, etc. Manipulate resources local to a
method invocation.

ldfld, stfld, ldsfld, stsfld “Load field”, “Store field”, “Load static field”, etc. Manipulate
object and static data.

ldloca, ldarga, ldflda, ldsflda, ldind, stind “Load local address”, “Load argument address” etc. Pointer
manipulation.

call, callvirt, newobj Method call and object creation.

ldftn, calli C-style code pointer generation and use.

castclass, isinst Access runtime type information.

box, unbox Convert in-line values (“structs”) to and from heap-allocated ob-
jects.

Figure 1: Some Sample CIL Types and Instructions

.class abstract Enumerator {
.method public abstract bool GetNext() { }
.method public abstract System.Object GetObject() { }

}

.method static int32 MyTotalLengths(Enumerator myEnum) {
.locals(int32 n, System.String s)

ldc 0
stloc n

loop: ldarg myEnum
callvirt instance bool Enumerator::GetNext()
beq done
ldarg myEnum
callvirt instance System.Object Enumerator::GetObject()
castclass System.String
callvirt instance int32 System.String::GetLength()
ldloc n
add
stloc n
br loop

done: ldloc n
ret

}

Figure 2: A Sample Class Definition in CIL
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virtual machines. Furthermore we ensure that it is feasible
to implement the design using some of the standard multiple
entry point tricks from the literature.2

3.1 The ILX Design

We first describe the ILX extensions for function types, clo-
sures and function values, and then consider some imple-
mentation techniques being explored in the current ILX im-
plementation.

The ILX design includes the following aspects.

• n-ary function types. This is a space of function types
of the form τ1, ..., τn → τ , written (func (τ1, ...,τn)
--> τ). The number of arguments accepted by each
application may be zero or greater.

• Closures classes. Closure classes can be declared to
accept one or more groups of multiple arguments, i.e.
closures may be declared in “curried” form. Closure
classes that accept one empty set of arguments can be
declared to have thunking-semantics.

• Function application is performed using the callfunc
instruction. This applies one or more groups of argu-
ments. The function value appears first on the stack,
followed by the argument groups in sequence.

• Closure types. Closure class declarations introduce
corresponding closure types. Type annotations can
then be used to show that function values are known
to belong to particular closure types. An instruction
callclo to perform a “direct call” to a closure is pro-
vided.

• Subtyping rules. These are defined for the new types:
function types are subtypes of System.Object, clo-
sure types are subtypes of their corresponding function
types.3

• Runtime typing and reflection rules for the new types.
The CIL instructions castclass and isinst can be
used on function types with guaranteed “exact” results.
The instruction castclo can be used on closure types
with “inexact” results (see §3.4 below).

• Instructions ldenv and stcloenv to access and perform
limited mutation on the closure environments. Closure
environments may only be mutated in the same block
of code where the function value is allocated. If gen-
eral mutability is required then appropriate fields of the
closure environment must be boxed.

• Cross module closure references. Optimizing compil-
ers can reference closures declared in other modules
directly (see the Appendix).

None of this is terribly surprising in itself – it embodies a
straightforward eval-apply model of function values in the
context of CIL. The key aspects are the fact that the de-
sign is fully integrated with existing CIL constructs and

2Note to the referees: I am currently enquiring with some Scheme
and Lisp implementors about the best reference to include at this
point – it is surprisingly difficult to find a single reference that cap-
tures the wealth of experience with implementing functional lan-
guages, especially when it comes to tricks such as multiple entry
points.

3Function types are not currently co/contra-variant due to the
limitations this would cause on some implementation techniques.

that it permits a range of implementation options. Most
importantly, our design does not commit a translating im-
plementation to realize a closure “class” by a CIL “class”
– indeed in one of our implementations each closure cor-
responds to a single CIL method. We discuss this further
below, but the basis for this result is that the information
that can be specified in a closure class is very limited, and
the reflection semantics of function values are under-defined.
Closure classes may not contain additional methods, fields,
attributes, data, security declarations or any of the other
baggage that comes with regular CIL classes.

Figure 4 shows how closures are declared and how a func-
tion value is created and called. The declarations that follow
the name of the closure are the members of the environment
– the order and names of these declarations are irrelevant to
the execution semantics. Each closure class must have one
.apply method.

3.2 Mutating Environments

The semantics of mutating an environment (using stcloenv)
are undefined, except in the code block where the function
value is allocated. This mutation is allowed to permit fix-
ups of the environment for mutually recursive functions. If
exact mutation semantics are required in other situations,
then the closure environment should be a reference to an
object that stores the environment – there will then be no
need to mutate this reference itself. This allows implemen-
tations to copy environments as necessary when building
partial applications.

3.3 Thunks

Figure 5 shows a sample ILX program that defines a thunk.
The evaluation code is guaranteed to be executed only once
and the result memoized. The environment is also “copied-
out” to the stack when application occurs to prevent space-
leaks. Otherwise the declarations and instructions used are
identical to closures.

Classes may subtype zero-arity function types in one par-
ticular way, for example:

class MyString : (func () --> class MyString) {
.field public class System.String mydata;

}

Function application always returns the object itself for such
classes. This is allowed to permit data values to be used
where computations are expected. Only values of classes
declared via this route are guaranteed to be compatible with
their lifted type.

3.4 Closure Types

Closure types indicate that a value is not only known to
be a particular function type, but is also known to be an
instance of a particular closure class. The only special you
can do with such a value is perform an application using
callclo, which are normally implemented as faster, direct
calls. Classes may not subtype closure types.

The instruction castclo can be used on a closure type.
However, unlike class types, the mapping between .closure
declarations and runtime closure types need not be 1:1.
That is, the ILX may choose to make two .closure dec-
larations indistinguishable at runtime. In practice compil-
ers should never emit castclo instructions that may fail. If
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// The two closure classes implement the function types:
// (func (int32, int32) --> int32) and
// (func (int32,float32) --> (func (int32) --> (func (int32,float32) --> int32)))
.closure add() {

.apply (int32 x,int32 y) --> int32 {
ldarg x ldarg y add ret

}
}
.closure add_lots(int32 fv1,float64 fv2) {
.apply (int32 x1,float32 x2) (int32 x3) (int32 x4,float32 x5) --> int32 {

ldenv fv1 ldenv fv2 conv.i4 add
ldarg x1 add ldarg x2 conv.i4 add
ldarg x3 add ldarg x4 add
ldarg x5 conv.i4 add
ret

}
}

.method static public void main() {
.locals(int32 result, (func (int32) --> (func (int32,int32) --> int32)) f)
.entrypoint

// allocate a function value:
ldc.i4 10
ldc.r8 3.1415
newclo closure add_lots

// partially apply it:
ldc.i4 20
ldc.r4 2.71
callfunc (int32,float32) --> (func (int32) --> (func (int32,float32) --> int32))
stloc f

// apply the remaining arguments:
ldloc f
ldc.i4 30 ldc.i4 40 ldc.r4 1.11111
callfunc (int32) (int32,float32) --> int32
stloc result

// print the result:
ldloc result
call void class System.Console::WriteLine(int32)
ret

}

Figure 4: Sample ILX Code using First-class Functions
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// The thunk class implements the function type
// (func () --> int32)
.thunk mythunk (int32 x) {

.apply () --> int32 {
ldenv x 17
ldc.i4 17
ret

}
}
.method static public void main() {

.locals(int32 result, (func () --> int32) f)

.entrypoint

// Allocate a thunk closure.
ldc.i4 10
newclo closure mythunk
stloc f

// Evaluate the thunk.
ldloc f
callfunc () --> int32
stloc result

// Evaluate again.
ldloc f
callfunc () --> int32
stloc result
ret

}

Figure 5: Sample ILX Code using Thunks

privacy of closure environments is required, then the envi-
ronment should be wrapped in a class declared private to
the containing assembly.

3.5 Function Types and Delegates

The .NET CLR already includes a notion that is not too far
from function types and anonymous computations, called
delegates. For those unfamiliar with delegates, the guide in
Figure 6 may be helpful.

Delegate types are essentially named function types, in-
troduced by special kinds of class declarations, and it is
worth considering whether one could unify the two con-
cepts, partly because delegate types are used frequently in
the .NET standard libraries. Delegates can be used to im-
plement most of the ILX design described above: closures
would simply become delegate objects, and typically the clo-
sure will itself be the delegate recipient associated with the
delegate object. However, as they stand, delegates are not
adequate to use for function types and closures: delegate
types are named, not structural; the code for the delegate
is tied to the environment; each closure class corresponds
to roughly one delegate recipient class; delegate types are
named, rather than belonging to a general space of function
types; and the costs of delegate construction, invocation and
the space-costs of delegate objects appear high on existing
CLR implementations, at least when compared with typical
functional language implementations.

Nevertheless we plan to experiment with a translation to
delegates, perhaps combined with some modifications to the
CLR, and to determine the runtime costs involved.

3.6 Implementation Strategies

In this section we consider techniques to implement the
above design for function types and closures via translation
to (perhaps unverifiable) CIL code. We also consider taar-
geting Generic CIL, described in [17] and covered further in
§5. A direct implementation of the constructs in the CLR
is naturally possible but is beyond the scope of this paper.

One of the long-term goals of ILX is to determine the
“best” such translation given the overall goals of ILX, and
to identify the minimal modifications to the CIL (if any)
that are required to support it. We are in the process of
completing a spectrum of implementations and comparing
their performance under various parameters.

The key aspect of any such implementation is a closure
conversion. A range of type-preserving closure conversions
have been studied in other contexts [21, 1]. One of the key
aspects of such a conversion is the use of existential types
to model environments, and in our situation we use classes,
subclasssing and subtyping (which offer a form of existential
typing) as a replacement.

The simplest closure conversion to CIL is as follows:

• Function types are translated to a set of polymor-
phic abstract base classes Func0<B>, Func1<A,B>,
Func2<A1,A2,B> up to some FuncN .4 Each of these
have an appropriate abstract virtual apply method,
e.g. B apply(A) for Func1. We thus piggyback off
the system of polymorphism described in §5 and rely
on the implementation of that system to handle code-
generation, non-uniform instantiations and the inser-
tion of most of the casts needed for verifiability.

• Closures become subclasses of these classes that imple-
ment the base class at a particular type, overriding the
entrypoint. Other operations map down to CIL object
operations in obvious ways.

Such an implementation has been tried before when imple-
menting languages on the JVM and .NET CLR [8, 1, 26],
and suffers from an obvious and well-known problem: there
will be many, many classes for a typical functional program
(our estimates show one closure per line of Haskell code for
the GHC standard library). By necessity, the implementa-
tion of classes on such systems is always going to be heavy-
weight, as classes must support reflection semantics. Other
problems include the technical difficulties involved with sup-
porting multiple calling conventions for closures under such
a scheme.

Our favoured implementation strategy is rather differ-
ent, and relies on features of the CLR that are not present
in systems such as the JVM. The idea is to have one unver-
ifiable implementation module that encapsulates the unsafe
tricks we use to implement closures. This module can use
the “function-pointer” primitives of CIL (calli and ldftn –
see §2.1) to mimic the implementation strategies of existing
functional language implementations – these are verifiable to
a degree in CIL, in the sense that typesafe function pointers
can generated and be passed to methods that accept them.
As a minimum the module must provide:

• a collection of abstract generic types Func0<B>,
Func1<A,B>, Func2<A1,A2,B> up to some FuncN ;

4Function types of higher arity would be compiled using the given
types combined with a product construct, e.g. a parametric Pair<A,B>
class.
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Delegate types. Named n-ary function types.

Delegate recipient classes. Closure classes where the data-layout of the closure is
tied to the code.

Delegate objects with an associated delegate recipient. Closures where the environment has been separated out
to be another object in the heap.

Multicast delegates. Closures that sequence several side-affecting function ap-
plications.

Figure 6: Delegates v. First-class Functions

• several abstract generic closure classes, defined to
be subclasses of the above function types, e.g.
Clo1<A,B,E> : Func1<A,B> is used to implement clo-
sures containing one free variable with an environment
of type E;

• methods for allocating function values;

• methods for perfoming function applications.

The allocation methods will be generic and have signatures
such as

Clo1<A,B,E> bake1<A,B,E>
(E env, method B *(Clo1<A,B,E> env,A arg) code)

where method τ *(τ1, ..., τn) is the CLR type for a C-
style code pointer.

The application methods are again generic and have sig-
natures such as

B app1<A,B>(Func1<A,B> f, A arg)

These functions will simply tailcall to the code pointer car-
ried in the closure f and should normally be inlined.

The ILX operations then map down to these constructs
in a straightforward fashion. The actual implementation of
the above module has many options: the simplest imple-
mentation will only support one entry point and the code
pointer for each closure will be stored inline in the function
value itself.

Further refinements are possible to this latter implemen-
tation technique, in particular to support multiple entry
points. These are under development and are beyond the
scope of this paper.

4 The ILX Extensions for Discriminated Unions

Discriminated unions are a typesafe way of dividing data
into categories. They form an essential part of the im-
plementation of recursive sum/product structures found in
ML, Haskell, OCaml, Mercury and many other languages,
and thereby help provide a simple, unified way of modeling
structures such as lists, trees, records, enumerations, and
abstract syntax.

.NET does not support discriminated unions directly,
and they must instead be encoded in the object model. Af-
ter a moment’s thought it can be seen that there are many
ways of doing this, depending on the particular datatype in
question, and upon the encoding scheme desired. For ex-
ample, even simple enumerations can be encoded as 32 bit
integers, or as integers of an appropriate size, or as explicitly
unsigned integers. Our aim in this section is to relieve the

compiler writer of the burden of deciding on appropriate rep-
resentations. We do this by extending CIL with constructs
to define and manipulate discriminated unions in a way that
is completely compatible with existing CIL. This will allow
those languages whose compilers generate ILX for their cor-
responding constructs to interoperate to some degree.

The ILX design for discriminated unions is fairly
straightforward, the main questions being ones of implemen-
tation and the guarantees that would be given as to how the
underlying constructs appear as classes to the C# or CLS
programmer. The extensions are as follows. New algebraic
types are defined using the “.classunion” directive:

.classunion color {
.alternative RGB(int32,int32,int32)
.alternative CMY(int32,int32,int32)
.alternative HSB(int32,int32,int32)

}

Each alternative specifies a name and a signature, the latter
representing the data fields that objects of that kind posess.
Note that data fields need not be given names, i.e. names of
data fields are not significant for purposes of binding (link-
ing) or (non-reflective) execution. Constructors with the
same name but different signatures are distinct, so some
overloading is permitted.

Classunions are much closer to normal CIL classes than
closures, because they are not anonymous and we require
less flexibility in how they are implemented. They may con-
tain:

• static members;

• instance methods, both virtual and non-virtual;5

• custom attributes and security attributes;

• static and instance fields, the instance fields belonging
to the overall class and thus to each alternative;

They may also extend other classes. About the only restric-
tion is that classunions are implicitly sealed and may not
have explicit layout information, restrictions that could in
theory be lifted. Thus our classunions are really “classes
with an embedded discriminated union.”

We introduce instructions newdata, lddata, stdata,
castdata, isdata and switchdata to create and manipu-
late classunion values. The code in Figure 7 illustrates these.
The switcher method illustrates the use of switchdata. At
the branch points the data is left on the stack and, as far as

5Presently the virtual methods belong to the classunion itself, and
as this is final they are effectively non-virtual. However in the fu-
ture the design may permit virtual method implementations for each
alternative.
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.method static public void main() {
.locals(classunion color)
.entrypoint

ldc.i4 0
ldc.i4 255
ldc.i4 255
newdata classunion color RGB(int32,int32,int32)
stloc 0

ldloc 0
castdata classunion color,RGB(int32,int32,int32)
ldc.i4 255
stdata classunion color,RGB(int32,int32,int32),0

ldloc 0
castdata classunion color,RGB(int32,int32,int32)
lddata classunion color,RGB(int32,int32,int32),0
pop

// Create a CMY(0,0,0), call isdata on it, throw the result away
ldc.i4 1
newdata classunion color CMY(int32,int32,int32)
isdata classunion color CMY(int32,int32,int32)
pop
ret

}

.method static public void switcher(classunion color x) {
ldarg x
switchdata classunion color,

(RGB(int32,int32,int32),rgb),
(CMY(int32,int32,int32),cmy)

default: pop
br lab3

rgb: ldc.i4 1
stdata classunion color,RGB(int32,int32,int32),0
br lab3

cmy: ldc.i4 2
stdata classunion color,RGB(int32,int32,int32),0

lab3: ret
}

Figure 7: Sample ILX Code using Discriminated Unions
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the type system is concerned, has a type corresponding to
the appropriate alternative. These types are not first-class
in ILX, and only exist for the purposes of intra-method ver-
ification.

4.1 Implementation Strategies

Once again we only consider implementations to CIL or
Generic CIL. Given this, the range of implementation strate-
gies for discriminated unions is wide but straightforward:
the basic encoding will typically be superclass-subclass
based, with one subclass for each alternative. There are
obvious improvements on this scheme: enumerations can be
encoded as integers; other zero-argument alternatives can be
encoded either by null or by constant members of the super-
class; if there is only one non-zero-argument alternative the
superclass can act as that alternative; if non-verifiable code
is being produced then it may be wiser to use an integer tag
to discriminate between alternatives rather than a runtime
type. As is well known, polymorphism makes it difficult to
be more ambitious than these kinds of global data-layout
optimizations.

The exact choice of a “standard” encoding is outside the
scope of this paper – this depends partly on the efficiency
required an partly whether the results of the translation
should be visible to the C# or other .NET programmers.
We plan to present a detailed analysis of implementation
options when more data is available.

5 The ILX Extensions for Parametric Polymorphism

Generics, or parametric polymorphism, allow classes, meth-
ods and other structures to be parameterized by types. In
parallel with the ILX project we have designed support for
generics as an extension to CIL and implemented it natively
in the Microsoft .NET CLR [17]. In this section we summa-
rize this design and explain its basic interactions with the
constructs described so far.

The key features of the PP design are:

Type abstraction. Classes, interfaces, structs and meth-
ods can be parameterized by type.

Non-uniform instantiations. All polymorphic struc-
tures can be instantiated at both reference and
non-reference types, the latter including 32-bit
unboxed integers, 64-bit unboxed floats and structs.

Polymorphic inheritance. A polymorphic class can ex-
tend a monomorphic superclass, and a monomorphic
class can extend a instantiation of a polymorphic su-
perclass.

Constraints by interfaces. Type parameters may be
constrained by interface and class types, and inter-
faces used in this way may include static (i.e. “static-
virtual”) members.

Exact Runtime Type Semantics. Instantiations of
type parameters are not erased at runtime, and thus
operations such as castclass have “exact” type
semantics.

Polymorphic virtual methods. Type applications are
supported at indirect call-sites such as virtual meth-
ods.

Non-variant. For example, there is no typing relationship
between List<String> and List<Object>.

No higher-kinded polymorphism. Abstraction over
type constructors (e.g. abstracting over “List” or
“Array”) is not permitted.

The new CIL instructions and types are

• class class-name<τ1, ..., τn> – instantiated generic
class type.

• value class value-class-name<τ1, ..., τn> – instanti-
ated generic struct type.

• !n – a class type variable, numbered from the outer-
most to the innermost textually.

• !!n – a method type variable, numbered from the out-
ermost to the innermost textually.

• call, callvirt, ldfld, stfld, newobj, newarr – these
instructions are modified to take specifications of in-
stantiations in addition to their other parameters.

• ldelem.any, stelem.any – these size-polymorphic ar-
ray access instructions are added (they are normally
ldelem.i4, ldelem.ref etc.)

• castclass, isinst – the semantics of these instructions
are modified for exact runtime type semantics.

5.1 Implementation Strategies

ILX provides several implementations of the system de-
scribed above by translating to CIL code.6 It can also op-
tionally emit generic code unchanged to run on a CLR with
generics implemented natively. The translating implemen-
tations currently provided or planned for ILX are:

• Implementation by erasure to the universal representa-
tion System.Object, inserting box/unbox [18] instruc-
tions where necessary, and with loss of exact runtime
type semantics;

• A similar implementation that code-expands with re-
spect to two representations (Object and int32);

• An implementation that uses runtime reflection to gen-
erate new classes as needed (this is work in progress).

5.2 Polymorphism and Discriminated Unions

Given the design for Generic CIL described above, we must
consider how polymorphism interact with the designs de-
scribed so far. We consider discriminated unions first. Here
the design is simple: discriminated unions may be tagged
with generic type parameters:

6While the syntax of ILX’s polymorphism is identical to that for
the Generic CLR, the current implementation does not have identical
semantics. In particular, we do not always maintain exact runtime
type information. This is considered a bug in the current ILX im-
plementation. We had planned to implement this, but now prefer to
use the Generic CLR where possible rather than invest time in the
required rather complex encoding for ILX. The current languages tar-
geting ILX are not affected as they do not make use of exact runtime
types.
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.closure identity<T>() {
.apply (T x) --> T { ldarg x ret }

}
.closure mem_inner_closure<T>(T x) {

.apply (List<T> list) --> int32 {
// Loop through ‘‘list’’ looking for ‘‘x’’

}
}
.method static void main() {

// Create an instance of the closure, with T = int32
ldc.i4 17
newclo mem_inner_closure<int32>
...
// Assume a List<int32> is pushed on the stack.
// Now apply the closure. (We could use a direct call:
// callclo mem_inner_closure<int32>)
callfunc (List<int32>) --> int32

}

Figure 8: Sample ILX Code for Polymorphic Closures

.classunion tree<any T>
.alternative Tip()
.alternative Node(tree<T>, tree<T>)

As noted in §3.6, polymorphism limits implementation
options in some ways when choosing representations for
datatypes. The exact runtime type semantics also limit im-
plementations: for the above discriminated union, values of
the nullary constructor Tip must de discriminable for dif-
ferent T, e.g. Tip<int> must, in some way, be a different
value to Tip<string>, as both are compatible with the type
Object and casting can be used to differentiate one from the
other. This problem can be addressed in a number of ways,
but the use of the null value to represent Tip will not be
possible.

5.3 Polymorphism, First-class Function Values and Type
Functions

Polymorphism is more complex to combine with closures.
Some decisions are easy: the first is to permit closure classes
to be parameterized by type, as illustrated in Figure 8.
These type parameters are effectively the free type variables
in the corresponding λ expression.7 These free type vari-
ables must be specified when a closure is created and when-
ever the closure class is used “directly”, e.g. in the callclo
instruction. These kind of type parameters are not specified
when using callfunc.

The ILX design goes further than this, however, and sup-
ports a notion of first-class type function. Given the pres-
ence of a system of generics that permits the runtime appli-
cation of type parameters, it is natural to extend our notion
of function value to encompass type functions, i.e. anony-
mous function values accepting types as arguments. As it
happens (and this is no coincidence) our target system of
generics [17] includes virtual methods that accept type pa-
rameters as arguments: these are precisely type applications
at indirect callsites, i.e. at runtime. However that system
does not include any types of the form ∀α.τ .

7I have found this a useful insight while analysing the kinds of
polymorphism supported by systems based on parameterized classes
such as C++ templates, GJ, Ada generics and PolyJ [2, 22, 25]

The code in Figure 9 shows an ILX code sample where
a type function is created and then used within a method.
The extensions for type functions are:

• A new form of types of the form ∀α.τ [α], written
(forall <any> ...) and indexing type parameters
from the outermost quantifier inward.

• Modifications to the instructions callfunc and
callclo, which may now incorporate type applica-
tions. For a single type application callfunc <ty1>
--> ty2, a value with static type (forall <any> ty2
must be on the stack, and an object of static substi-
tuted type ty2[ty1] is returned.

• Subtyping rules. Type functions are always subtypes of
System.Object. The following subtyping rule also al-
ways holds: ∀α.τ [α] < ∀α.o where o is System.Object.

• Exact runtime type semantics for the new types
(though currently the ILX implementation does not
correctly implement these semantics.)

It is expected that callfunc instructions involving type ap-
plications are executed rarely, primarily upon class and ob-
ject initialization. Most languages such as Standard ML and
Haskell allow nearly all type applications to be lifted to be-
come free at the “top level”, or into module initialization
code.

6 Related Work

ILX is one attempt to transfer results that have been de-
scribed again and again in an academic setting across to a
“real-world” context. Two areas of recent work are particu-
larly relevant: type systems for low-level languages (a good
summary is in [6]), and the efforts to incoporate algebraic
language features into Java, e.g. Pizza, NextGen and Bücki
and Weck’s work on compund types [23, 4, 3]. In many ways
our work is much closer in spirit to the latter, as we accept
an existing language as our starting point and are trying to
retrofit constructs on top of this. Our constraints have been
somewhat different, as we are trying to satisfy the needs
of languages such as Standard ML, Haskell and Mercury,
rather than the needs of Java programmers, but the recur-
ring problems of finding a design that “feels right” (i.e. has
an appropriate set of orthogonal properties) given an exist-
ing language has been similar. Both kinds of work share a
common requirement to “keep it simple”, in our case in or-
der to make sure that different languages compile constructs
in compatible ways.

The translation steps performed by our implementation
of ILX are strongly reminiscent of those performed by Mor-
risett et al. when implementing TAL [10]. The also share
similarities with the implementation steps in compilers tar-
geting the JVM or .NET CLR, e.g. [1].

There is a growing body of work on interlanguage work-
ing. Our work differs from that based on marshalling, COM
APIs or FFIs, mainly because we seek language interop-
erability via language integration rather than marshalling
techniques.

7 Conclusions

This paper has presented the design aims for ILX and de-
scribed the ILX design choices for function types, closures,
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// The following specifies a closure that accepts a type as its first srgument.
// Objects of this closure have type ∀α. α → α.
.closure id () {

.apply <any> (!0 x) --> !0 {
ldstr "Called id once..."
call void System.Console::WriteLine(class System.String)
ldarg x
ret

}
}

// This method accepts type function as an argument.
// It applies it twice at different types:
.method void go( (forall <any> (func (!0) --> !0)) f) {

ldarg f ldc.i4 17 callfunc <int32> (!0) --> !0 pop
ldarg f ldc.i4 "abc" callfunc <class System.String> (!0) --> !0 pop
ret

}

.method static void main() {
// Create a value that is a type function:
newclo class id
// Pass the type function as an argument:
call void go((forall <any> (func (!0) --> !0)))
ret

}

Figure 9: Sample ILX Code for Type Functions

thunks, discriminated unions and parametric polymorphism.
ILX makes implementing these aspects of a language on the
.NET platform simple, by providing these constructs within
the context of the existing IL. Furthermore, such a compiler
using ILX will automatically produce code that is represen-
tationally compatible with other ILX implementations, thus
making interlanguage working feasible.

Furthermore ILX takes advantage of features of the .NET
execution platform – for example the inclusion of both exact
runtime types and type functions only really makes sense on
an execution environment that can perform Just-In-Time
code specialization.

ILX expects types to be preserved through the compila-
tion process. This can make it difficult to adapt an existing
compiler (it was the primary difficulty in targeting the GHC
compiler at ILX), and also throws into doubt the suitability
of ILX for untyped languages such as Scheme. We are in the
process of reconsidering design and implementation options
to better support untyped languages, especially, of course,
with regard to closures.

Our type system is not higher-kinded, and thus is not
quite capable of directly representing either the essence of
the ML type system (see [24, 13]) or Haskell’s higher-kinded
type abstraction. This is a significant problem that is diffi-
cult to solve – we have considered supporting higher-kinded
abstraction in our system of generics for the CLR but the
complexity increase is high for the benefits achieved.

ILX has served other purposes for the author besides
those outlined in §1. In particular:

• ILX has allowed MSR Cambridge to design and proto-
type the design for generics for the .NET CLR at an
early stage. It has also allowed us to perform certain
controlled performance tests for generics.

• We have used it to prototype other suggested design
changes for the .NET CLR.

• We are using it to systematically investigate encodings
of constructs described with a view to fixing and stan-
dardizing them.

• It has helped us give evidence to CLR teams about
where performance should be improved, or else the de-
sign changed.

In the long run, one major advantage of using a dynamic
execution platform is the opportunity that it gives for ad-
vanced optimization strategies, as such a platform can utilize
incrementally collected global information to make compila-
tion decisions. For example, a dynamic execution platform
can inline function calls across compilation units, something
that compilers cannot do unless they can see the code being
called at compile time and which in any case tends to break
versioning properties of the generated code. There are un-
doubtedly many potential runtime optimization strategies
applicable to the kinds of constructs considered in this pa-
per, and this forms a large area for potential future research.

Many more constructs could be systematically encoded
at the level of ILX. Some constructs we have considered
adding to ILX in the future are:

• Backtracking;

• Type classes [12];

• Compound types [3];

• Join-style synchronization points;

• Covariant return types and contravariant argument
types.
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Finally, the implementation techniques described in this pa-
per are still under development and require further, con-
tinual investigations as the target .NET platform and its
implementations evolve.
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A The ILX Assembler and SDK

This appendix describes some aspects of the ILX assembler
and the current ILX SDK. These do not form part of the
core paper as one might equally implement the extensions
directly in the dynamic execution platform environment.

A.1 Extra Information Required for a Context-Free Trans-
lation

The ILX assembler (ILX2IL) is at somewhat of a disadvan-
tage in contrast to a direct implementation. For example,
in the context of CIL, a JIT compiler can directly resolve
references to named classes, for example to determine the
number of fields in a value class. However the ILX assem-
bler can only access the information in the input file itself,
and, in keeping with typical assembly languages, the im-
porting of context information such as header files is not
allowed.

To ensure that we can translate constructs we require
two additional sets of declarations:

• A declaration for each closure (or thunk) defined in
an external module and used in a newobj, callclo or
castclo instruction.

• A declaration for each discriminated union defined in
an external module and used in one of the new instruc-
tions from §4.

These declarations are required to support cross-module mu-
tual recursion and referencing. As an example, the following
declaration defines a “reference to an externally defined clas-
sunion type”:

.classunion import List<any T> {
.alternative Nil()
.alternative Cons(T, class List<T>)

}

Note that the amount of information given in these dec-
larations effectively limits the range of possible translation
schemes. For example, the signatures for each alternative in
a discriminated unions must be specified but discriminated
unions used within these signatures need not be specified –
i.e. the implementation need not have access to the transi-
tive closure of all datatype declarations. This means that
representation schemes for discriminated unions that “flat-
ten” such types together cannot be implemented.

A.2 The ILX SDK

The ILX SDK is made up of the following tools:

ilx2il.exe Converts ILX assembly language (.ilx) files to
CIL (.il) files. Various options control the conversion.

ilxasm.exe Converts ILX assembly language files directly
to .NET PE binary files (n.b. not implemented in the
current release).

ilxverify.exe Verifies ILX assembly language files using the
typing rules of ILX and a typing environment given on
the command line.

ilxvalid.exe Performs a weaker set of validation checks on
ILX assembly language files.

mkvlb.exe Builds a type environment library to pass to
the ilxverify.exe and ilxvalid.exe tools.

msilxlib.dll The ILX runtime support library.
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