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Data Management 
in the Worldwide 
Sensor Web

W
ith the rapidly increasing num-
ber of large-scale sensor net-
work deployments, the vision
of a worldwide sensor web is
close to becoming a reality.

Ranging from camera networks that monitor
large wildlife reserves to biological sensors
implanted in the body to monitor vital signs, these

deployments generate tremen-
dous volumes of priceless data.
Simply put, data is the raison
d’être of any sensing exercise.
Most sensor network re-
searchers would probably agree
that we have placed too much
attention on the networking of
distributed sensing and too lit-
tle on tools to manage, ana-
lyze, and understand the data.
However, with standards in
place for many of the net-
working and other infrastruc-
ture-related issues, or at least
an emerging consensus on how
to solve them, the demands of
a sensor web are largely shap-
ing up to be questions of infor-
mation management. What,
then, are the challenges in
working with data in distrib-
uted sensing systems; what ser-
vices might promote good data
sharing and analysis practices?

Can we design sensor networks with data qual-
ity in mind?

Motivating application: 
Public healthcare

Consider, for instance, how we might build a
public-health early warning system on top of the
sensor web. First, we would deploy sensor
sources in large ecosystems, such as habitats and
watersheds, and in human bodies. In fact, sev-
eral such deployments are already being put in
place. Researchers in public-health management
of zooanotic diseases (diseases that can be trans-
mitted between species) such as E. coli, West
Nile virus, and avian flu are beginning to deploy
such global data-collection networks, for detect-
ing the pathogen in the environment and for
tracking infected animals. Hospitals and other
healthcare providers are beginning to report to
the US Centers for Disease Control and Preven-
tion in real time (for example, through the
CDC’s PulseNet database). Medical patients,
including those infected with zooanotic diseases,
are increasingly being monitored in real time
(using RFID tags and/or wearable or implanted
sensors that can monitor cardiac, respiratory,
and other vital signs).

Second, we would build a system that com-
bines these reports into a data warehouse that
would serve to provide early warning and
track and manage an outbreak’s evolution. But
to monitor and manage an outbreak such as
avian flu, many domains must be able to
gather and exchange data. We must also be
able to gather and process the data at high
speed and serve it to higher-level processes
such as large-scale data mining, analysis, visu-
alization, and modeling.

Harvesting the benefits of a sensor-rich world presents many data
management challenges. Recent advances in research and industry aim
to address these challenges.
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Managing sensor web data
The worldwide sensor web will gener-

ate too much data to visualize or analyze
manually. The popular tools of the trade,
such as Matlab, R, Mathematica, and
Excel, cannot scale up to the worldwide
sensor web’s needs—and they are prim-
itive by most standards. On-the-fly and
highly distributed aggregation, fusion,
and summarization of the data are a must
to handle the data volumes and the dis-
tributed nature of the data generation.
Furthermore, to simplify interaction with
the data, the sensor web must incorpo-
rate logical data abstractions and visual-
izations that can shield users from the
complexities of the underlying sensing
infrastructures but still propagate mea-
sures of uncertainty associated with cal-
ibration or sampling effects.

Database management systems pro-
vide a good starting point for managing,
storing, and processing sensor data. They
can scale up to very large volumes of data
and can exploit the significant process-
ing power of parallel and distributed sys-
tems. They provide logical data inde-
pendence, using high-level abstractions
to shield the user from the underlying
hardware and software platforms. Data-
bases support declarative querying inter-
faces that are significantly more intuitive
than writing custom programs for pro-
cessing the data. They also support sev-
eral intuitive concepts for managing and
analyzing large-scale data.1 (For exam-
ple, one can use the data cube operator to
quickly browse through enormous mul-
tidimensional data sets.) Finally, data-
bases provide facilities both to protect
data by keeping many replicas and to
protect privacy with record-granularity
access control mechanisms.

Existing database systems, however,
have several critical shortcomings that
prevent using them directly to process
live sensor data. First, they are too
heavyweight and slow, devoting much
complexity to handling tasks that might

be irrelevant to the sensor web (for exam-
ple, transactions). Several recently devel-
oped lightweight data management sys-
tems somewhat alleviate this concern.
Furthermore, the aforementioned advan-
tages will start outweighing this concern
as the scale of the data being managed
increases. More important, however, the
sensor web’s global distributed scale and
the sensor data’s inherently noisy and
ephemeral nature raise challenges that are
vastly different from those of managing
the enterprise data for which databases
are typically built.

We now look at some of the most im-
portant data management challenges that
must be solved to enable the worldwide
sensor web vision. Simultaneously, we
present several recent advances in data
management research that address these
challenges, with the hope that the scien-
tific, ubiquitous, and sensor network
communities will embrace these solutions.

Data ingest
Sensor networks generate multidi-

mensional data streams. Each stream has
some common metadata, such as the or-
ganization responsible for the deploy-
ment (and basic facts about the deploy-
ment design), sensor type, location and

physical context, calibration parameters,
precision, accuracy, and maintenance his-
tory. However, the bulk of the informa-
tion is often a time series of measure-
ments (granted, we must take a liberal
view of the term “time series”; in the case
of camera networks, the observations
taken in time are images). In one com-
mon operational model, a sensor reports

a measurement averaged over a given
time period; the measurement area (or
measurement point) is often fixed and
promoted to the metadata. So when ask-
ing who-what-when-where-why, the data
stream is a where-when-what array or,
for fixed instruments, a when-what array.
In actuated networks, sensors report data
only when they have detected an event.
An event might consist of threshold
crossings of measurements from other
sensors on a given node. Or, it could be
a trigger sent by a device at a higher level
in the network (with a corresponding
shift in scale spatially and possibly tem-
porally). For actuation, the “why” be-
comes important.

A sensor network’s data streams pre-
sent, almost by definition, complex issues
related to data quality. Data is often miss-
ing, and when not missing is subject to
potentially significant noise and calibra-
tion effects. For example, temperature
and moisture sensors report voltages that
must be converted to temperature (Cel-
sius) and moisture (partial pressure and
dew point) units. Also, because sensing
relies on some form of physical coupling,
the potential for faulty data is tremen-
dous. Depending on where a fault occurs
in the data reporting, observations might

be subject to unacceptable noise levels (for
example, due to poor coupling or analog-
to-digital conversion) or transmission
errors (packet corruption or loss).

Applications that draw on this data, or
end users hoping to perform an analysis,
will need to contend with observations
that do not fit nicely on a grid in either
space or time. Spatially, complexities in
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the local terrain or intentional experi-
mental design choices might have dic-
tated an irregular arrangement of nodes
(keep in mind that the dominant early
design paradigm for sensor networks was
random placement). Temporally, missing
data or actuated observations yield com-
plex reporting patterns.

So, these data streams are often “gap
filled” by interpolating (estimating)
nearby and historical data to fill in miss-
ing values. They are then regridded to
convolve the measured data into a uni-
form time-space data set that is easier to
analyze, visualize, and compare with
other data sets in a uniform framework
(see figure 1). These operations can be
quite complex, depending on the kinds of
auxiliary observations available and their
correlations with the signal of interest,
and on the underlying physical phenom-
ena’s spatial and temporal variability.
These gap-filling observations must pro-
vide some estimate of uncertainty for the
gridded data. Indeed, points that were
determined from a handful of neighbor-
ing (original) observations will be noisier
than those involving hundreds of nearby
data points. In all cases, we would prefer
to preserve the original data set, but most
analysis would use the regridded data.

Data ingest is the generic name for this
calibrate, gap-fill, regrid process. Building
and operating the data-ingest pipeline is
a major part of building and operating a
sensor information system. Unfortu-
nately, there are few generic tools for data
ingest, so each system is largely custom
built. Database systems have extract-
transform-load tools to build data ware-
houses, but ETL tools typically lack the
calibration, gap-fill, and regrid software.
Instrument vendors often provide cali-
bration software, but that is just one com-
ponent of data ingest—and the software
from different instruments and sensor
networks is quite diverse. Generic data-
ingest tools that you can easily customize
for specific sensor networks would be a
real boon, saving experimenters consid-
erable design and deployment effort.

Managing temporal 
and spatial data

Time and space play central roles in
representing and analyzing sensor data.
They often provide the linking dimen-
sions that let us combine and compare
data sets. Continuing the healthcare ex-
ample, geolocating patients allows com-
parison of disease rates with detection of
diseased animals in various regions and

comparison of climate variables (tem-
perature and pollution levels) with epi-
demiological data. Understanding trends
in time and space (historical analysis) and
responding to emerging trends or local-
ized events (real-time detection and
response) are important functions that
we need to support.

Spatial point data is easily represented
by geographical coordinates (latitude
and longitude). The OpenGIS standard
(www.opengeospatial.org/standards)
defines a representation for regions and
gives an algebra for point-point, point-
region, and region-region comparisons.
The representation of spatially gridded
data has received less standardization.
Gridding is implicit in the HDF (Hierar-
chical Data Format) and NetCDF (Net-
work Common Data Form) standards
that represent data as a (time) sequence
of N-dimensional arrays. However, grid-
ding algorithms are so diverse and idiosyn-
cratic that no standard has yet emerged.

Temporal representations might seem
obvious, but again there are no standard
tools for temporal regridding. Also, rep-
resenting spatiotemporal objects such as
a disease’s spread over a geographic area
is not well understood and has no off-
the-shelf solution. In many such cases, a
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Figure 1. Sensor networks typically generate highly nonuniform observations, and regridding is necessary before the data can be
further processed or analyzed. We can use abstractions such as table functions, user-defined functions,2 or model-based views3 to
push this process into databases.



model for the data (at a fundamental
level, regridding is a kind of modeling),
or rather the sufficient statistics of a
model, might be a useful abstraction for
representing such objects.

Combining two or more gridded data
sets to produce derived data is common
(for example, to compare human disease
rates to animal disease rates). Although
conceptually simple, performing the cal-
culations and visualizing the results require
some programming today (as would per-
forming more formal statistical analyses
to make quantitative comparisons or con-
ducting hypothesis tests of various kinds).
Once configured and loaded with data,
geospatial toolkits and workbenches such
as ESRI’s ArcInfo make certain kinds of
analysis straightforward—but setting up
such systems requires considerable skill.

Data exploration, analysis,
and visualization

Data analysis begins with, well, data. In
the context of a sensor web, that implies
the analyst either knows the data sources
or can identify them through some search
or discovery process. Search in this con-
text can be carried out at the metadata
level (the sensor locations and types, the
governing authority, and so on) or through
links from previous analyses. Both of these
frameworks are close in spirit to how we
identify resources on the World Wide
Web, and we can imagine crawlers or
other kinds of automated processes that
build an index of available data.

Sensing applications, however, might
also want to consider characteristics of
the sensed signal when forming a search
query: “Provide me with a list of sites
experiencing a drop of 20 percent in the
last hour,” “Find me regions of the coun-
try with measurements in a certain inter-
val,” and so on. Sensor database projects
such as sensorbase.org are already inves-
tigating this kind of signal search, but
there is much work to do. In addition, the
underlying framework for constructing

data streams, publishing them, and re-
publishing after aggregation and com-
putation is still in its infancy.

Once the analyst has identified data
sources, he or she must deal with a host of
data quality issues. As we already dis-
cussed, faults and gaps plague current sens-
ing deployments, leading various groups
of researchers to label data quality as the
problem facing embedded sensing.

But even if we could assemble a per-
fect kind of time-space matrix of data,
complete with uncertainty estimates, the
analysis of multimodal, multiscale, spa-
tiotemporal data would still be a chal-
lenge. Models are likely to be a mix of
mathematical specifications (partial dif-
ferential equations) and stochastic com-
ponents and must be easily updatable
given the stream nature of sensor data.
Once an analysis is performed (perhaps
through modules in analysis packages
such as R, Matlab, SAS, or ArcGIS), there
is an inevitable desire to share the analytic
products and computations and to repub-
lish the data for others’ use. Toward this
end, projects such as Kepler (http://kepler-
project.org) are attempting to create
workflows from data streams, linking
analysis and data and achieving a kind of
prepublication mechanism.

Finally, the analysis itself might take
place in various contexts, in the field or
in an office. The kinds of visualizations
that would be effective differ greatly
according to the context (for instance, in
the field, the researcher might carry only
a handheld device).

Statistical modeling 
of sensor data

Statistical analysis and modeling are
perhaps the most ubiquitous processing
tasks performed on sensor data. This has
always been true of scientific data man-
agement, where sensor data collection
usually aims to study, understand, and
build models of real-world phenomena.
Increasingly, however, the need to use sta-

tistical-modeling tools arises in nonscien-
tific application domains as well. Many
of the most common sensor-data-
processing tasks can be viewed as appli-
cations of statistical models. Examples
include

• forming a stochastic description or
representation of the data,

• identifying temporal or spatial trends
and patterns in the data,

• online filtering and smoothing (for
example, Kalman filters),

• predictive modeling and extrapola-
tion,

• detecting failures and anomalies, and
• probabilistically modeling higher-level

events from low-level sensor readings.

Statistical models for spatial data arise
in the context of function estimation
(smoothing) and spatial process fitting
(Kriging and Gaussian processes). In par-
ticular, hierarchical Bayesian models of spa-
tial processes have received considerable
attention in statistics research in the last
decade or so. Owing primarily to advances
in Bayesian computation, rich families of
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models are available to describe many envi-
ronmental processes. Spatiotemporal mod-
eling has received similar attention and is
an area of continued growth.

Unfortunately, today’s data manage-
ment systems do not support statistical-
modeling tasks natively, forcing users to
employ external tools for this purpose.
Scientists, for instance, typically import
raw data into an analysis package such as
R, Matlab, SAS, or ArcGIS, where they
apply various models to it. Once they
have filtered the data, they typically pro-
cess it further using customized programs
that are often quite similar to database
queries (for example, to find peaks in the
cleaned data, extract particular subsets,
or compute aggregates over different
regions).

Some traditional database systems do
support querying of statistical models. For
example, DB2’s Intelligent Miner supports
models defined in PMML (Predictive

Model Markup Language). These ap-
proaches tend to abstract models as user-
defined functions that one can apply to
raw data tables. Several commercial data-
mining tools (for example, the SAS Ana-
lytics Tool) can similarly interact with
databases. This level of integration is,
however, insufficient for many applica-
tions because no support exists for effi-
cient parameter updates or for maintain-
ing the models when new data is available.

On a more promising note, several
researchers have recently considered
integrating specific statistical models into
database systems, for both ease of use
and more efficient execution. For exam-
ple, researchers have considered integrat-
ing tasks such as association rule mining,2

interpolation,4 and classification models5

inside database systems. Similarly, the
MauveDB system aims to integrate arbi-
trary statistical models into relational
databases through the model-based views

abstraction3 (see figure 1).
Far from suggesting a single modeling

paradigm, we would hope that a sophis-
ticated data management platform for sen-
sor network data would let us audition
different tools via some form of workflow
tool (such as in the Kepler project). A com-
mon format for models and the products
of modeling could provide the required
flexibility. Recent progress toward unify-
ing the treatment of probabilistic models
(for example, through abstractions such
as dynamic Bayesian networks) could also
pave the way for building a rich toolbox
of statistical models.

Managing data uncertainty
Sensor web data inherently has some

notion of quality attached to it—confi-
dence, trust, accuracy, a probability dis-
tribution over possible values, and so on,
or even a mix of these (see figure 2). Tra-
ditional database systems, built with
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Figure 2. Even if the sensor web data sources used intuitive, well-defined interfaces to publish their data, the complex and semanti-
cally disparate measures of data quality and uncertainty typically associated with sensor webs make data fusion a challenge.



exact data in mind, are not well suited
to manage such data. In recent years,
researchers have tried to extend rela-
tional databases to handle uncertain
data. This research has spanned issues
ranging from theoretical development of
data models and data languages to as-
pects of practical implementation such
as indexing techniques.

The overall problem’s complexity has
resulted in numerous approaches to han-
dling uncertain data. Much of this re-
search has used probability theory as the
basis for representing uncertainty. Under
this model, the data uncertainty is encoded
in the form of probabilities, and the oper-
ations on the uncertainty itself are in accor-
dance with the laws of probability theory.

Probabilistic databases
Approaches to integrating probabilities

into a relational-database framework fall
into two broad categories. Tuple-level
uncertainty approaches attach existence
probabilities to the tuples of a database
table. Consider, for instance, an RFID
reader that detects a tag but does not have
sufficient confidence in the detection. An
exact approach would require the reader
to either report the tag or not report the
tag, both of which are unsatisfactory.
Instead, if the reader attaches a confidence
value to the tag, the applications at the
higher layer can make more informed
decisions.

Attribute-level uncertainty models asso-
ciate (possibly continuous) probability dis-
tributions with tuple attributes. Such mod-
els are especially attractive for sensor data
because the measurement errors and noise
typically do not allow exact determination
of the sensor attributes.

Several recent systems for managing
probabilistic data support tuple-level or
attribute-level uncertainty or, in some
cases, a mix of the two. For a survey of
recent research in this area, see the
March 2006 IEEE Bulletin of the Tech-
nical Committee on Data Engineering.

Most sensor network deployments im-
plement ad hoc and case-by-case solutions
to deal with data uncertainty. Probabilis-
tic databases promise a systematic, intu-
itive alternative to handle such uncertainty.
However, several significant hurdles still
must be crossed before those become a
reality. Even if such systems were in place
today, their application for sensor network
data would still be challenging. Sensor data
contain numerous sources of noise and
uncertainty, some of which are assessable
only after spatial or temporal aggregation.
So, while simply attaching a notion of the
individual sensor’s accuracy to each obser-
vation would seem straightforward, we
might also need to consider other sources
of uncertainty that this number does not
capture. Examples of such sources include
those related to the sensor’s physical cou-
pling, its calibration, and actuation logic.

Data provenance
A related issue to managing data un-

certainty is data provenance. In a world-
wide sensor web, monitoring, data col-
lection, and data analysis will be carried
out in a distributed, autonomous fash-
ion. In such a domain, the ability to deter-
mine a particular piece of information’s
origins, including the sequence of pro-

cessing tasks that generated it, becomes
critical. This is required for both tracing
back incorrect information to its origins
and deciding how much to trust it. Data
provenance refers to recording such in-
formation with the data itself by making
the data self-describing.

Data provenance is especially hard in
a sensor web scenario for two reasons.
First, most sensor data is typically thrown
out after an initial fusion or aggregation

step. Second, the data typically also goes
through many layers of summarization,
aggregation, and modeling, making rea-
soning about the final result’s origins
nearly impossible. Although researchers
in the databases and sciences communi-
ties have been investigating data prove-
nance, more work is necessary.

Data interoperability
A useful query on the worldwide sensor

web might need to compare or combine
data from many heterogeneous data
sources maintained by independent enti-
ties. For example, while treating a patient,
healthcare professionals might query hos-
pitals for the patient’s health profile and
airports for his or her recent travels. They
might then correlate this information with
similar information from other patients
suffering from similar diseases. Because
much of the query-processing task in the
worldwide sensor web will be automated,
data must have a well-defined syntax and
semantics.6 Several such standards are
emerging for low-level representations—
for example, the IEEE 1451 series of
transducer standards, and the DICOM

(Digital Imaging and Communications in
Medicine) standards.

Similarly, the Semantic Web can

address many of the technical challenges
of enabling interoperability among data
from different sources. This technology
enables information exchange by putting
data with computer-processable mean-
ing (semantics) on the World Wide Web.

The Semantic Web has three key aspects.
First, data is encoded with self-describing
XML identifiers, enabling a standard
XML parser to parse the data. Second, the
identifiers’ meanings (properties) are ex-
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pressed using the Resource Description
Framework. RDF encodes the meaning in
sets of triples, each triple being like an ele-
mentary sentence’s subject, verb, and ob-
ject, with each element defined by a URI
(uniform resource identifier) on the Web.

Finally, ontologies express the relation-
ships between identifiers. For example,
two data sources can publish data in XML
as “<Temperature><Celsius>20</Celsius>
</Temperature>” and “<Temperature>
<Fahrenheit>68</Fahrenheit></Temper-
ature>.” An associated RDF document
can describe that Celsius and Fahrenheit
are temperature units, and an ontology
can define the relationship between Cel-
sius and Fahrenheit. So, a data-processing
system can automatically infer that these
two data points represent the same tem-
perature value. Such encoding typically
introduces overhead both in the effort to
define and agree on the XML tags and
ontologies and in the extra bytes that must
be carried around with data. Although
some cases (for example, in a closed enter-
prise) might employ more succinct repre-
sentations, seamless interoperability across
organizations might not be achievable
without incurring such overhead.

Major industries are working to estab-
lish their own ontological standards for

the Semantic Web. Noteworthy examples
are RosettaNet (electronics), the Open
Travel Alliance (travel), STAR (Standards
for Technology in Automotive Retail),
and UMLS (Unified Medical Language
System). The Open Geospatial Consor-
tium’s Sensor Web Enablement initiative
has made solid progress in building a
framework for describing geospatial

information and tools to support inter-
operable processing.7 The initiative’s goals
include discovery of sensor systems and
their capabilities, access to sensor para-
meters and live data, and tasking sensors.
These goals align closely with the vision of
a worldwide sensor web.

Much of the framework for a seman-
tic sensor network is in place, but the
remaining work will require contribu-
tions from many communities. First, data
publishers need to start publishing data
using Semantic Web technologies. Unfor-
tunately, there are not many useful tools
to aid them, and so far, data publishers
typically have not found enough incen-
tives to write their own tools (let alone
have sufficient expertise to do so). To
address this problem, more software tools
must be developed, on different plat-
forms, to ease publishing data through
XML, RDF, and ontologies and to dis-
cover, compare, query, analyze, combine,
or integrate diverse data sources. Finally,
domain experts must develop domain-
specific structured vocabularies and
ontologies that data publishers can use.
Several disciplines have already started
the process, and Vincent Tao, Steven
Liang, and Arie Croitoru provide one
early example of sensor-interoperable

processing based on the Open Geospatial
Consortium’s sensor web framework.8

But no one has undertaken such efforts
for a large fraction of the available data
(for example, community sensor data).

Distributed, large-scale 
data processing

Because sensors are geographically dis-

tributed and produce data at high rates,
the worldwide sensor web will require a
distributed data management infrastruc-
ture (see figure 3). In this infrastructure,
sensor data is stored near its source, and
data processing and filtering are pushed to
the edges. Such an architecture reduces
bandwidth requirements and enables par-
allel processing of sensor feeds. Queries
can be posed from anywhere in the world,
but often the querier and the data of inter-
est will be in the same geographical region
(for example, healthcare professionals
will query data about patients in their
vicinity). Building such a distributed,
large-scale data-processing infrastructure
presents four key challenges.

Query processing
For a number of reasons, a world-

wide sensor web will be a distributed-
systems nightmare. While many dis-
tributed systems are geared toward
workloads that are read-intensive, low
volume, or not time critical, the sen-
sor web will be write-intensive, high
volume, and often time critical. Addi-
tionally, the sensors, storage nodes,
and users might be mobile. The data
will often be multimodal (from scalar
temperature readings to rich multime-
dia data), and the system itself will be
heterogeneous in its mix of sensor plat-
forms, storage platforms, communi-
cation capabilities, and administrative
domains. Sensor nodes will be subject
to harsh conditions, yet critical data
should always be available. The world-
wide sensor web must also support
both sensing and actuation. A key goal
is to make this distributed, heteroge-
neous system both easy to manage and
a convenient application platform. It
should thus be queriable as a unit, with
standard query-processing languages
that hide the underlying infrastruc-
ture’s complexity.

The long history of distributed data-
bases has not adequately addressed these
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challenges, focusing instead on tradi-
tional data sources and settings, and lim-
ited scale. Recent work on peer-to-peer
data-processing systems9,10 has begun
addressing some of the scaling and ro-
bustness challenges in shared wide-area
distributed systems, using distributed
hash tables (DHTs) that support a simple
put-get interface. An early system de-
signed to provide a worldwide sensor web
is IrisNet.11 It supports distributed XML
processing over a worldwide collection
of multimedia sensor nodes, and ad-
dresses a number of fault-tolerance and
resource-sharing issues. The Aurora*/
Medusa,12 Borealis,13 and Telegraph-
CQ14 distributed-stream-processing en-
gines enable low-latency continuous pro-
cessing of push-based data streams from
geographically distributed sources. These

engines provide sophisticated fault-
tolerance, load-management, revision-
processing, and federated-operation fea-
tures for distributed data streams. HiFi
also supports integrated push-based and
pull-based queries over a hierarchy
where the leaves are the sensor feeds and
the internal nodes are arbitrary fusion,
aggregator, or cleaning operators.15

While these systems provide steps in
the right direction, none addresses all the
challenges of the worldwide sensor web.
The latter requires rethinking design
decisions at a whole new scale, for a
whole new class of applications.

Continuous, integrated push-based
and pull-based processing

Traditional databases support one-time
queries over stored data, while stream-

processing engines12,13 focus on process-
ing push-based data continuously. Some
systems have started to recognize the need
to support integrated queries over live and
historical data.14,15 Such queries are crit-
ical to help users understand new events
in the context of past observations.

To enable queries over both live and
historical data, the worldwide sensor web
infrastructure must make important deci-
sions regarding where to store data, how
much data to store, what data to sum-
marize, and when to discard data. Com-
bining continuous and historical queries
also raises new challenges regarding
choosing locations for different operators
(that is, sending queries to the data or data
to the queries). This problem is especially
hard because of the data archive size and
the high aggregate data rate.
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Figure 3. The worldwide sensor web distributed infrastructure.



Reliability
With its large scale and the brittleness

of its input data sources, the worldwide
sensor web will never be fully functional:
a subset of the nodes will always be en-
countering component and communica-
tion failures. Moreover, as in any web-
accessible system, flash crowds (a sudden
increase in the number of users on a Web

site) and other load spikes will require the
system to quickly react to large-scale load
variations. The sensor web thus needs to
define quality-of-service goals that are suf-
ficient in this new environment yet do not
require excessive resources.

As we mentioned before, IrisNet,
Aurora*/Medusa, Borealis, TelegraphCQ,
and DHT-based systems provide mecha-
nisms for increasing the availability and
durability of data in large-scale, distrib-
uted push-based or pull-based systems and
for load managing in those systems. What
makes the sensor web particularly chal-
lenging is its unprecedented scale, its mix
of pull-based and push-based processing,
and its infrastructure and administrative
heterogeneity.

Federated and shared infrastructure
As with any other expensive scientific

apparatus (for example, large-scale tele-
scopes), economics dictate that the sensor
web be a shared resource. Because build-
ing the worldwide sensor web requires a
huge investment of money, time, effort,
and maintenance, different parties must
provide and maintain subsets of all sen-
sors and servers. Additionally, many
users worldwide will want to run queries
not only on nearby sensors but also on

sensors in various remote locations.
Because processing is distributed and
occurs close to sensing devices, the result-
ing infrastructure must be federated.

A rich literature exists on federated
distributed systems. However, support-
ing many different types of applications
requires carefully planning the most suit-
able abstractions that the system should

expose. These abstractions should sup-
port a large class of applications, pro-
viding them flexible features while hid-
ing system complexity. Sharing resources
also requires models and algorithms to
define and achieve fairness between
applications and to address problems of
competing actuation, where different
applications want to actuate the system
in conflicting ways (for example, pan a
camera in opposite directions). Finally,
data sharing raises important privacy
and security concerns.

Data privacy and security
Much of the data that the sensor web

collects will be highly private (for exam-
ple, location information). Developing
mechanisms to control access to this
data, keep it secure, and regulate its use
are among the sensor web’s most impor-
tant challenges. This problem is in part
one of public policy, but we must still
provide technologies that support the
desired policies.

Security and privacy issues arise at sev-
eral places in the sensor web.16 First, the
data might be compromised on the way
between the sensors and the system because
of compromised sensor nodes or eaves-
dropping. Fortunately, resilient hardware

and encryption can largely solve this prob-
lem. Once the data reaches the system,
keeping the data secure and ensuring pri-
vacy remain nontrivial tasks. 

Database systems have long supported
authorization mechanisms that grant or
restrict data access at different granular-
ities (tables versus attributes), in many
cases using multiple security levels (secret,
confidential, and so on). Recently, Rakesh
Agrawal and his colleagues have pro-
posed Hippocratic databases, which have
privacy as the central tenet, and have iden-
tified the technical challenges in building
such systems.17 Hippocratic databases ex-
plicitly manage privacy by letting users
control the storage and release of their
personal data individually. There has also
been much research on building data stor-
age solutions on top of untrusted servers
(for example, Oceanstore18). These solu-
tions provide more limited authorization
mechanisms but allow distributed stor-
age. Researchers have also proposed algo-
rithms for performing complex compu-
tations (for example, database joins) on
untrusted servers. These techniques are
critical for the sensor web, where differ-
ent parties will own and administer sub-
sets of all resources.

These approaches can help control
access to data while allowing limited
sharing or publishing of data. In general,
we would like to share as much data as
possible without compromising individ-
ual privacy. However, reasoning about
and characterizing privacy loss as a func-
tion of released data have proven chal-
lenging. For example, an adversary that
gains access to temperature sensors in a
home might be able to extract details
about the inhabitants’ private activi-
ties.16 Reasoning about such inferences
requires modeling complex real-world
processes and knowledge.

To address this challenge, many prom-
ising approaches have emerged in recent
years, typically under the topic of pri-
vacy-preserving algorithms.19,20 These
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As with any other expensive scientific 

apparatus (for example, large-scale telescopes),

economics dictate that the sensor web 

be a shared resource. 



approaches aim to control the released
data, either through random perturba-
tions or by hiding identifying attributes,
so that individual privacy is not com-

promised but useful data mining can
still be performed. However, these ap-
proaches are still in their infancy and will
not become mainstream for some time. H

arvesting the sensor-rich
world’s benefits requires us
to address many hard data
management challenges, and
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needs concerted multidisciplinary effort
encompassing databases, machine learn-
ing, networking, and distributed systems,
among other fields. We have discussed
some of the most important challenges,
but this list is hardly complete. As we
make progress toward building the sen-
sor web, additional issues such as data
preservation and archiving loom large.
Several challenges we raised already
form active research areas in various
communities. Useful data management
tools are beginning to emerge, but much
more work remains to make the sensor
web a reality.
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