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ABSTRACT 

This paper presents a novel representation for auditory 
environments that can be used for classifying events of 
interest, such as speech, cars, etc., and potentially used to 
classify the environments themselves. We propose a novel 
discriminative framework that is based on the audio 
epitome, an audio extension of the image representation 
developed by Jojic et al. [3]. We also develop an 
informative patch sampling procedure to train the 
epitomes. This procedure reduces the computational 
complexity and increases the quality of the epitome. For 
classification, the training data is used to learn 
distributions over the epitomes to model the different 
classes; the distributions for new inputs are then compared 
to these models. On a task of distinguishing between 4 
auditory classes in the context of environmental sounds 
(car, speech, birds, utensils), our method outperforms the 
conventional approaches of nearest neighbor and mixture 
of Gaussians on three out of the four classes.  

 

1. INTRODUCTION 

   In this work, we propose a new representation and 
method for auditory perception that has the potential to 
cover a broad range of tasks, from classifying and 
segmenting sound objects to representing and classifying 
auditory environments.   The core representation is an 
epitome, a model introduced by Jojic et al. [3] for the 
image domain.  The basic idea was to find an optimal 
“palette”  from which patches of various sizes could be 
drawn in order to reconstruct a full image. We apply this 
idea to the log spectrogram and log melgram with one-
dimensional patches and find an optimal spectral palette 
from which we can take pieces to explain our input 
sequence.  This epitome will have sound elements of a 
variety of timescales that it finds most appropriate to 
represent what it observed in the input sequence.  For 
instance, if the input contained the relatively long sounds 
of cars passing by and also some impulsive sounds, like 
car doors opening and closing, these would both be stored 
as chunks of sound in the same epitome – without having 
to change the model parameters or training procedure.   
   Furthermore, the epitome is learned without specifying 
the target patterns to be classified, and attempts to learn a 

model of all representative sounds in the environment. To 
aid in this process, we have developed a new training 
procedure for the epitome that efficiently allows us to 
maximize the epitome’s coverage of the different sounds.  
Once we have trained the epitome, we learn distributions 
over the epitome for each target class, which could also be 
applied to entire auditory environments.   In other words, 
we treat the epitome as a continuous “alphabet”  that 
represents the space of all possible sounds, and build 
models of our target classes in terms of this alphabet.  We 
can then classify new patches and do segmentation based 
on these models. 
 

2. PRIOR WORK 

   Thus far, there have been a variety of different 
approaches to recognizing audio classes and classifying 
auditory scenes.  Most of the sound recognition work has 
focused on particular classes such as speech detection, and 
the best methods involve specialized methods and features 
that take advantage of the target class. For example, Zhang 
and Kuo [5] have described heuristics for audio data 
annotation. The heuristics they have chosen are highly 
dependent on the target classes, thus their approach cannot 
be extended to incorporate other more general classes. 
There have been discriminative approaches such as [2], 
where support vector machines were used for general 
audio segmentation and retrieval. This approach is 
promising but is restricted in the sense that you need to 
know the exact classes of sounds that you want to 
detect/recognize in advance at the time of training. 
Similarly, there are approaches based on HMMs [1],[4]. 
These approaches suffer from the same problem of 
spending all their resources in modeling the target classes 
(assumed to be known beforehand), thus extending these 
systems to a new class is not trivial.  Finally, these 
methods were tested on databases where the sounds 
appeared in isolation, which is not a valid model of real-
world situations. 
   We believe that our approach will overcome some of 
these limitations, since we learn a representation of all 
sounds in the environment at once with the epitome and 
then train classifiers based on this representation.  In the 
following sections, we detail the epitomic representation, 
describe how we use it for classification, and show a 



variety of results from our preliminary experiments on 
segmenting and classifying sounds. 
 

3. OUR APPROACH 

Our approach can be divided into two parts: first, learning 
the audio epitome itself, and second, using the epitome to 
build classifiers; both are described in the subsections 
below. 
 
3.1. Audio Epitomes 
 

 

Figure 1: The audio epitome representation. 

  The basic principle of the audio epitome is shown in 
Figure 1 above: the input sequence is a log magnitude 
spectrogram, and the epitome is a “palette”  for such 
spectrograms. Observed patches in the input sequence, 

kZ , are explained by selecting the patch from the epitome 

e with the appropriate transformation (i.e., offset) kT , i.e., 

where in the epitome the patch comes from.  The 
probability of observing kZ  given this epitome and offset 

is a product of Gaussians over pixels as below: 
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where the i ’s are for the iteration over the individual 
frequency-time values or “pixels”  of the spectrogram.  
Jojic et al. [3] describe the mechanisms by which to learn 
this epitome from an input sequence and to do inference, 
i.e., to find ( | , )k kP T Z e  from an input patch.  

    The training procedure requires first selecting a fixed 
number of patches from random positions in the image.  
Each patch is then averaged in to all possible offsets kT  in 

the epitome, but weighted by how well it fits that point, 
i.e., ( | , )k kP Z T e .  The idea is that if we select enough 

patches then we should expect a reasonable coverage of 
the image. In audio, we face two problems. First, the 
spectrograms can be very long, thus requiring a very large 
number of patches before adequate coverage is achieved. 
Second, there is often a lot of redundancy in the data in 
terms of repeated sounds.  We need a training procedure 
that takes advantage of this structure, as we describe in the 
following subsection. 
   
 

3.1.1. Informative Patch Sampling 
Rather then selecting the patches randomly, our 
informative patch sampling approach aims to maximize 
coverage of the input spectrogram/melgram with as few 
patches as possible. The idea is to start with a uniform 
probability of selecting any patch and then updating the 
probability in every round based on the patches selected. 
Essentially, the patches similar to the patches selected so 
far are assigned a lower probability of selection. The 
details are shown in figure 2.  
 

 

Figure 2: Informative patch selection algorithm. 

   Once we have selected the patches representative of the 
input audio signal, we can train the epitome. In our 
implementation, all the patches used for training the 
epitome are of equal size (15 frames, or 0.25 seconds 
long). Note that in all our experiments the audio is 
sampled at 16 kHz; we use an FFT framesize of 512 
samples with an overlap of 256 samples, and 20 mel-
frequency bins for the melgram. We use the EM algorithm 
to train epitomes as described in [3]. One major difference 
is that we do epitomic analysis only in 1-D. Specifically; 
the patches we use are always the full height of the 
spectrogram/melgram, as opposed to the patches of 
varying width and height used in image epitomes.  
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Figure 3: Spectrogram of the toy sequence showing 
repeated sounds. 

 
   Figure 2 shows a toy sequence which exhibits the kind of 
repetition we expect in natural sequences.  It was collected 
in an office environment, and consists of repeating sounds 
of different objects being hit, speech, etc. From the figure 
we can see not only the repetition but also a large amount 
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• Initialize Pi(k) to uniform probability for all 

positions k in the Spectrogram 
• For n = 1 to Num of Patches 

o Sample a position t from Pn. The 
selected patch:  

        pn=spectrogram (: , t : t + patch_size)  
o For all positions k in the input 

spectrogram compute: 
       Err(k) = (spec(:, t : t + patch_size) – pn)2 

       Pn+1(k) = Pn(k) * Err(k) 
o Pn+1(k) = Pn+1(k) / sum(Pn+1(k)) 

 



of silence/background noise. If we randomly select 
patches, we will end up with mostly background patches 
and will have to select quite a few before we cover the 
whole spectrogram.  Figure 4 shows epitomes trained from 
this sequence via both approaches. Figure 4 (left) is the 
epitome generated using random samples and Figure 4 
(right) is the epitome generated using the same number of 
patches but now using our informative sampling scheme. 
Note that with our scheme, all of the individual sound 
elements from the input sequence have been captured, as 
opposed to the random sampling approach. 

 

Figure 4: Epitomes learned using random (left) and 
informative (right) patch sampling. 

 
3.1.2. Classification Using the Epitome 
As we have shown, the learned epitome from an input 
sequence is a palette representing all the sound in that 
sequence. We now want to explore how to use this 
representation for classification.   Since we expect 
different classes will be represented by patches from 
different parts of the epitome, our strategy is to look at the 
distribution of transformations kT given a class c of 

interest, i.e. ( | , )kP T c e , and use this to represent the class.  

We can then classify a new patch by looking at how its 
distribution compares to those of the target classes. 
   In more detail, consider a series of examples from a 
target class that we would like to detect, e.g. a bird chirp.  
We first extract all possible patches of length 1-15 frames. 
Next we look at the most likely transformations from the 
epitome corresponding to each patch extracted from the 
given audio, i.e., max ( | , )k

k
P T c e , and then aggregate 

these to form the histogram for ( | , )kP T c e . 

   Figure 4 shows two example classes and the 
corresponding distributions ( | , )kP T c e . Figure 4 (left) 

corresponds to bird chirps and as the histogram suggests, 
most of the audio patches comes from only 4 positions in 
epitome. Note that this distribution is very different from 
the distribution that arises due to the acoustic event of cars 
passing by (Figure 4, right).  Note that these distributions 
can be learned using very few examples for two reasons: 
first, we generate many patches from each example, and 
second, because the epitome has already compressed the 
input space into an optimal palette, and thus even a small 
number of examples should highlight the regions of the 

epitome that are assigned to explaining the class of 
interest.  
   Given a test audio segment to classify, we first estimate 

( | , )kP T c e  using all the patches of length 1-15 from the 

test segment. We then seek the class  ĉ  whose distribution 
best matches this sample distribution over all classes i in 
terms of the KL-divergence: 

ˆ min ( ( | , ) || ( | , ))i
k k

i
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Figure 5: Distribution over transformations T for bird 

chirps (left) and cars (right) 

  Finally, though we have only used this framework to 
recognize individual sounds in our experiments, the 
method can also be used to model and recognize auditory 
environment via these distributions.  In preliminary 
experiments, we have achieved good results on such tasks, 
and will report on this in a later paper. 

 
4. EXPERIMENTS AND RESULTS 

We first performed a set of experiments to compare the 
epitomic training using the informative patch selection 
with the training using random patch selection. For these 
experiments, we used the spectrogram shown in the figure 
2. Figure 6 compares the likelihood of the input 
spectrogram given the epitomes trained using both the 
methods while varying the number of patches used for 
training. The higher likelihood corresponds to a better 
explanation of the input signal using the epitome. We 
averaged over 10 runs for each point in the curve. We can 
see that the epitome using the informative sampling always 
explains the input better than the epitome trained using 
random sampling. The difference is more prominent when 
the number of patches is small. Naturally, as the number of 
patches goes to infinity the curves will meet. 
   Next, we demonstrate speech detection on an outdoor 
sequence consisting of speech with significant background 
noise from nearby cars. We generated a 1 minute long 
epitome using 8 minutes of data. The speech class was 
trained as described in 3.1.2 using only 5 labeled examples 
of speech. Figure 7 shows the result of applying speech 
detection to a 10 second long audio sequence. The 
detector does a good job of isolating speech segments 
from the non-speech segments in very significant noise 
(around -10dB SSNR; this and other data can be heard at 
http://research.microsoft.com/~sumitb/ae ). Note that there 
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is too much background noise for any intensity/frequency 
band based speech detector to work well.  

 
Figure 6: Evidence vs. number of training patches. 

 
Figure 7: Speech detection example. 

   For the final evaluation, we collected audio data in 3 
environments: a kitchen, parking lot, and a sidewalk along 
a busy street. On this data, we tried the task of recognizing 
four different acoustic classes: speech, cars passing by, 
kitchen utensils, and bird chirps. We segmented 22 
examples of speech, 17 examples of cars, 29 examples of 
utensil sounds, and 24 examples of bird-chirps. 
Furthermore, there were 30 audio segments that contained 
none of the mentioned acoustic classes. We used the log 
mel-gram as our feature space and compared our approach 
with a nearest-neighbor (NN) classifier and a Gaussian 
Mixture Model (GMM) (both trained on individual feature 
frames; for the GMM the number of components were 
1/10 the number of training frames, around 50 per class). 
For the non-epitome models, each frame was first 
classified using the NN or GMM, and then voting was 
used to decide the class-label for the segment.  Note that 
training the epitome (which was used for all classes) took 
the same time as it took to train the GMM for each class.  
Table 1 compares the best performance obtained by each 
method using 10 samples per class for training.    

Table 1:  Classifier performance comparison. 

 
   Epitome  
  Pd            Pfa 

   Nearest-N 
   Pd           Pfa 

   Mix of G 
   Pd        Pfa 

Speech 0.90 0.10 0.86 0.09 0.93 0.28 
Cars 0.94 0.02 0.94 0.01 1.00 0.09 
Utensils 0.78 0.04 0.84 0.21 0.82 0.31 
Bird Chirp 0.79 0.31 0.94 0.11 0.89 0.05 

 

These numbers were obtained by averaging over 25 runs 
with a random training/testing split on every run.  The 
proposed method outperforms both the nearest neighbor 
and the mixture of Gaussian in 2 out of the 4 cases. In one 
of the other 2 cases (cars), it is as good as the best 
performing method.  
  Finally, in Figure 7 we show the performance with 

increasing training data on the task of recognizing utensils. 
We can again see that the classification using the epitome 
is significantly better, especially when the amount of 
training data is small. 
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Figure 8: Perf. vs. number of training examples. 

 
5. CONCLUSIONS AND FUTURE WORK 

We have described a new representation for modeling 
audio and recognizing target classes based on the audio 
version of the epitome.  In our future work, we plan to 
apply our framework to auditory environment 
classification and clustering. 
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